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Abstract 
Ontology represents the concepts and the relationship between them for 
specialized domain. Building ontology is a complex work, in order to build 
ontology you need a domain expert to help you to declare all domain concepts 
and the relationship between them. In this work we propose a methodology for 
building ontology based on the output of data mining result. We used c4.5 
decision tree algorithm to discover and extract knowledge from structure data. 
Then we built ontology from the generated decision tree.  We represent the 
generated ontology in XML and OWL languages. We work in two case studies; 
in the first case study we work in soybean diseases, and built ontology to 
represent the knowledge of diseases and their symptoms. In the second case 
study we work in animal diseases and extracted the knowledge related to them 
and we built ontology from the extracted knowledge. 
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1. Introduction 
Data Mining is the process of finding and extracting new and potentially useful 
knowledge from data. Data mining is also known as Knowledge discovery in 
databases (KDD). The terms “Data mining” and “Knowledge discovery in 
database” are used interchangeably [1]. Data mining is an interdisciplinary field, 
drawing from different areas including database system, statistics, machine 
learning, data visualization and information retrieval. 

The task of data mining involves two primary goals; those goals are prediction 
and description [2]. Prediction is concerned with using some variables or fields 
in the database to predict unknown or future values of other variable of interest, 
while description focuses on finding human-interpretable patterns describing 
the data. 



1.1 What Is the Ontology 
The word “ontology” has been recognized in philosophy as the subject of 
existence. In Artificial Intelligence community, ontology means a formal, 
explicit specification of a shared conceptualization. Conceptualization refers to 
an abstract model of some world phenomena. Ontology concepts and the 
relationship among those concepts should be explicitly defined. Further, 
ontology should be machine-readable and the ontology should capture 
consensual knowledge accepted by the community [13]. 

Ontology is used for knowledge sharing and reuse. It improves information 
organization, management and understanding. Ontology has a significant role in 
the areas dealing with vast amounts of distributed and heterogeneous computer-
based information, such as World Wide Web, Intranet information systems, and 
electronic commerce. Ontology will play a key role in the second generation of 
the web, which Tim Berners-Lee call�the “Semantic Web”, in which 
information is given well-defined meaning, and is machine-readable.  Search 
engines will use ontology to find pages with words that are syntactically 
different but semantically similar [3, 4, and 5]. 

 

2. Related Work 
Usually the ontology building is performed manually, but researchers try to 
build ontology automatically or semi automatically to save the time and the 
efforts of building the ontology. We survey in this section the most important 
approaches that generate ontologies from data. 

Clerkin et al. used concept clustering algorithm (COBWEB) to discover 
automatically and generate ontology. They argued  that  such  an  approach  is  
highly  appropriate  to  domains  where  no  expert  knowledge  exists, and  they  
propose  how they  might  employ  software  agents  to collaborate, in the place 
of human beings, on the construction of shared ontologies[6]. 

Blaschke et al. presented a methodology that creates structured knowledge for 
gene-product function directly from the literature. They apply an iterative 
statistical information extraction method combined with the nearest neighbour 
clustering to create ontology structure [7]. 

Formal Concept Analysis (FCA) is an effective technique that can formally 
abstract data as conceptual structures [9]. Quan et al. proposed to incorporate 
fuzzy logic into FCA to enable FCA to deal with uncertainty in data and 
interpret the concept hierarchy reasonably, the proposed framework is known as 
Fuzzy Formal Concept Analysis (FFCA).They use FFCA for automatic 
generation of ontology for scholarly semantic web [8]. 



Dahab et al. presented a framework for constructing ontology from natural 
English text namely TextOntEx. TextOntEx constructs ontology from natural 
domain text using semantic pattern-based approach, and analyzes natural 
domain text to extract candidate relations, then maps them into meaning 
representation to facilitate ontology representation [11] 

Wrobel et�al. used different ways to build ontologies automatically, based on 
data mining outputs represented by rule sets or decision trees. They used the 
semantic web languages, RDF, RDF-S and DAML+OIL for defining  
ontologies [10].  

 

3. Problem Scope and Definition 
The traditional task of the knowledge engineer is to translate the knowledge of 
the expert into the knowledge base of the expert system. Knowledge engineer 
uses ontology to represent the knowledge of the domain expert. Due to  of the 
difficulty to find a domain  expert and the needing for updating the knowledge 
represented in the ontology frequently, we proposed a system for building 
ontology automatically from the database. We used data mining techniques to 
extract knowledge from the   database and represent it as ontology. 

 

4. System Overview  
In this section we will discuss system structure. The input to the system is a 
database that represents a repository of raw data, while the output is the 
generated ontology. Figure 1 shows�the overall structure of the system. 

 
Figure 1 overall structure of the system 

 



Ontology building from data mining will be achieved in two phases. The data 
mining phase is related to data mining process including data preparation, 
selection, and extraction of knowledge. The ontology building phase is related 
to the process of building the ontology from the extracted knowledge which 
represents the output of the data mining. 

 

4.1 The Data mining component  
As depicted in figure1 the first step in data mining phase is data preparation, the 
next step is data mapping, the third step is applying data mining techniques for 
discovering knowledge from the mapped data. 

 

4.1.1 Data preparation 
For data preparation the knowledge engineer will understand the semantics of 
the data and specify which tables and attributes will be used in the mining 
process. The Knowledge engineer may create a view in the database if he will 
work in a set of associated tables. 

4.1.2 Data mapping 
Data mapping is the process of representing raw data into format suitable to the 
selected data mining tool or algorithm. In the proposed system we build module 
for data mapping and we call (Data Mapper). 

In the proposed system Data Mapper will be used to transform the input data 
into ARFF format which is used by WEKA (collection of machine learning 
algorithms) [12]. This module converts the input data into a nominal format to 
suit ontology builder requirements. 

The input for this module is the database connection variables such as severer 
IP, username, password, and the database name. 

The data-mapping module will display a list of all database tables and views as 
shown in figure 2.  

The user of this module will specify which database table or view that will be 
mined; further he will select the attributes which will be used in the data mining 
process 



 
Figure 2 Data mapper module 

 

The output of this module will be an ARFF file that contains the mined data. 

  

4.1.3 Applying Data mining techniques for discovering 
knowledge from data 

The third step is discovering knowledge from the preprocessed data. We used 
Weka framework because it is an open source package. The task of data mining 
will be classification. Many algorithms can be used for classification such as 
Support vector machine, Neural Network and decision tree. We select the 
decision tree algorithm because it introduces the discovered knowledge in 
readable format. 

We select (j4.8) decision tree algorithm, which is Weka’s implementation of 
c4.5 decision tree learner.  

C4.5 is an extension to id3 algorithm. It addresses issues not dealt with ID3 
such as: 

• Avoiding over fitting the data, by determining how deeply to grow a 
decision tree. 

• Handling continuous attributes.  
• Handling training data with missing attribute values.  



4.2 The Ontology Building Phase  
At this phase the ontology builder will be used to generate the ontology 
automatically from the data mining output (extracted knowledge). In the next 
section we will discuss the ontology builder, and the algorithm that is used to 
generate ontology form data mining output. 

  

4.2.1 The Ontology Builder  
The Ontology builder is the main component in our system. It is used for 
parsing the output of the data mining result and generating an ontology. The 
ontology builder will generate ontology in two languages (XML & OWL). 

In the first phase of our work we have generated ontology in XML format but to 
keep our work more standard and to support the semantic web vision we 
extended the tool to generate ontology in OWL. The input of the ontology 
builder is the file that contains the decision tree represented in textual format. 
This decision tree represents the output of the data mining process.  

Figure 3 displays the components of the decision tree and its corresponding 
representation in the generated OWL ontology. 

 
Figure 3 mapping decision tree to OWL ontology 

 

In decision trees, decision nodes refer to the root node and internal nodes. As 
can be seen in figure 3, decision nodes can be mapped to OWL classes. 
Decision tree branches can also be represented in OWL as classes. Each branch 
in the decision tree may have a set of leaves. Each leaf in the decision tree 
represents a classification rule. Each rule can be represented as an individual 
(instance) of the class that represents its tree branch. 

 

 



4.2.2 The Ontology Building Algorithm 
The ontology building algorithm from decision tree is represented as follows: 

Input:  
• A decision tree. 
• decision-nodes, the set of distinct decision nodes 
• tree-branches, the set of distinct tree branches 
• target-attribute, the target attribute 
• Get-Branches, a function to get all branches which include 

specific node 
• GetLeaveBranch , a function to get the branch of the leaf node. 
• Get-Class, a function to get the class that represent decision tree 

branch 
• Create-Individual, a function to create an individual for the leaf 

node. 
 
Output: ontology 
 
Method: 

BEGIN 
for each node N of decision-nodes 
    Class C=new (owl:Class) 
   C.Id= N.name   
     DatatypeProperty DP=new (owl:DatatypeProperty) 
   Dp.Id= N.name+”_Value” 
   Dp.AddDomain(C) 
   for each branch B of Get-Branches(N) 
       Dp. AddDomain (B.Get-Class ()) 
     endfor 
endfor 

 
//Generate an OWL class that represents the target-attribute 
 

Class TargetClass= new (owl:Class) 
TargetClass.Id= target-attribute.name 
DatatypeProperty TargetDP=new (owl:DatatypeProperty) 
//Generate DatatypeProperty for the target attribute 
TargetDP.Id= target-attribute.name+”_Value” 
TargetDP.AddDomain (TargetClass) 
//Generate DatatypeProperty that represent certainty 
DatatypeProperty CertaintyDP=new (owl:DatatypeProperty) 
CertaintyDP.Id= “Certainty 
//Generate classes that represent decision tree branches 



for each branch B of tree-branches 
   Class BranchClass= new (owl:Class) 
   BranchClass.Id=”” 
   for each node N of B 
      BranchClass.Id += N.name 
   endfor 
   BranchClass.Id+=”determine”+ target-attribute.name 
   TargetDP.AddDomain(BranchClass) 
   CertaintyDP.AddDomain(BranchClass) 
endfor 
//Representing leaves nodes as individuals 
for each leave-node LN of the decision tree 
   Branch B= GetLeaveBranch(LN)  
   Create-Individual (B, LN) 
endfor 
END 

 

5. System Evaluation 
In order to evaluate the proposed system we conducted two case studies. The 
first case study is concerned with plant diseases and the second case study is 
concerned with veterinary diseases. 

The goal of the first case study is to assess the performance of the system and 
approve the validity of the generated ontology. The goal of the second case 
study is to build ontology for real live system.  

 

5.1   Building Ontology for Soybean Diseases   
We used the proposed system for generating ontology of soybean diseases. We 
get the data from the samples that are augmented to WEKA “data mining tool”. 
There are 35 categorical attributes, Number of instance 683; number of classes 
(diseases) 19. 

We used classification algorithm c4.5 for soybean data. The result of c4.5 is a 
decision tree. 

 Number of Correctly Classified Instances 625 (91.5081%), Number of 
incorrectly Classified Instances 58 (8.4919 %). 

We built ontology for the knowledge represented in the decision tree. 

To evaluate the knowledge represented in the generated ontology we compare 
the symptoms of sample of the most common diseases (7 diseases for 
simplicity) in the generated ontology with the domain expert knowledge.  



We used the standard measures of precision, recall, and F-score (which 
represents the harmonic mean of precision and recall) to evaluate otology [14]. 
The calculations were based on a global contingency table shown in table 1. 

 

Domain expert 
Symptoms 

YES NO 

YES TP FP The 
Generated 
Ontology 

NO 
FN TN 

Table 1 Global contingency table 

• TP (true positives) represents symptoms that are identified by the 
domain expert and the generated ontology. 

• FP (false positives) represents symptoms that are identified by the 
generated ontology but are not identified by the domain expert. 

• FN (false negatives) represents symptoms that are identified by the 
domain expert but are not identified by the generated ontology. 

• TN (True Negatives) represents symptoms that are not identified by 
both domain expert and the generated ontology. 

Precision = TP / (TP + FP) 
Recall       = TP/ (TP +FN) 
F-score = (2* Precision * Recall) / (Precision + Recall) 

Table 2 shows contingency table for soybean disease symptoms 

 

Domain expert Symptoms 
 YES NO 

YES 115 1 Data 
mining NO 10 0 

Table 2 contingency table for soybean disease 

This case study resulted precision=99.13%, a recall=92%,  F-score =95.43% 

From this result we conclude that the generated ontology is similar to the expert 
knowledge and we can apply our idea to build ontology automatically using 
data mining techniques when the expert is not available or to help us to get 
knowledge from the expert to build ontology in semi automatic manner. 



5.2 Building Ontology for BOVIS 
In this case study we build ontology from BOVine Information System (BOVIS 
using data mining techniques. BOVIS has been developed by CLAES (Central 
Laboratory of Agriculture expert system) in co-operation with The Public 
Institute for Veterinary Services at Egypt. BOVIS is a system that enables 
decision makers to obtain statistical data about cattle and buffaloes on the 
national level. It helps in the tracing and management of contagious  
diseases. [15]. Data mining will help decision maker to discover useful 
knowledge and hidden pattern from the data. For mining the BOVIS database 
we focus in tables and attributes which are related to animal diseases. The 
animal diseases data includes information about country, governorate, 
Directorate, units, species, genus, sex in addition to diseases which infect the 
animal and the date of the diagnosis. In this case study we used the data 
mapping component to generate ARFF file to be mined by WEKA.  

Figure (5) shows the generated decision tree for BOVIS diseases data. We used 
the classification algorithm J4.8 which is updated version of C4.5 algorithm. 

 

Figure 5 the generated decision tree For BOVIS diseases 
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In the generated decision tree Each leaf node are fallowed by a number 
(sometimes two) in parenthis. The first number tells how many instances in the 
training set are correctly classified by this node. The second number, if it exists 
(if not, it is taken to be 0.0), represents the number of instances incorrectly 
classified by the node[16]. 

From the generated decision tree that represents animal diseases in BOVIS 
database we generate ontology in XML and OWL languages. Here we will 
display description of the generated ontology in OWL. 

 

5.2.1 Description of the generated ontology  
The  classes that represent decision nodes (Category, Year, Gender, Genus, 
and Governorate) and  the  class that represents a  target attribute (Disorder)  
are displayed in figure (6) 
 

  

Figure 6 Classes that represent decision nodes and target attribute 

 

Part of The classes that represent decision tree branches are displayed in 
 figure (7) 

 

 
Figure (7) classes that represent decision tree branches 

 
Ontology builder created a Data type Property for each distinct decision nodes. 
For example ontology builder created a data type property for the decision node 
“Gender”. The ID of this property will be  
“Gender _value” as displayed in figure (8).  

 

<owl:Class rdf:ID="CategoryDetermineDisorder" /> 
<owl:Class rdf:ID="CategoryYearDetermineDisorder" /> 
<owl:Class rdf:ID="CategoryGenderGenusDetermineDisorder" /> 
…………………. 

<owl:Class rdf:ID="Category" /> 
<owl:Class rdf:ID="Year" /> 
<owl:Class rdf:ID="Gender" /> 
<owl:Class rdf:ID="Genus" /> 
<owl:Class rdf:ID="Governorate" /> 
 <owl:Class rdf:ID="Disorder" /> 



 
 

Figure (8) example for the generated data type property of the decision node 
 

The domain of the “Gender _value” will be the class “Gender” in addition to 
the classes that represent tree branches which includes “Gender “node. 

Each rule generated by the decision tree will be represented as an individual 
(instance) for the class that represents its decision tree branch. Figure (9) shows 
part of the OWL syntax for the individuals that represents these rules 

 

 
Figure (9) OWL syntax for the generated individuals 

 
 
 

<CategoryYearDetermineDisorder rdf:ID="CategoryYearDetermineDisorder2"> 
     <Category_Value 
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> ��������	
	��
��

�	
���
�</Category_Value>  
     <Year_Value 
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">2003</Year_Value>  
     <Disorder_Value 
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">�������	�</Disorder_Value>  
      <Certainty 
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">279.0/103.0</Certainty>  
  </CategoryYearDetermineDisorder> 

<owl:DatatypeProperty rdf:ID="Genus_Value"> 
<rdfs:domain> 
 <owl:Class> 
<owl:unionOf rdf:parseType="Collection"> 
<owl:Class rdf:about="#Genus" />  
<owl:Class rdf:about="#CategoryGenderGenusDetermineDisorder" />  
<owl:Class rdf:about="#CategoryYearGenusDetermineDisorder" />  
<owl:Class rdf:about="#CategoryYearGenusGovernorateDetermineDisorder" />  
</owl:unionOf> 
 </owl:Class> 
</rdfs:domain> 
</owl:DatatypeProperty> 

 



6. Comparison between the proposed system and Wrobel et 
al work 

The proposed system is similar to the approach presented by Wrobel et al. The 
contribution of this paper is the method of ontology representation and building. 
We build ontology in a way that is suitable to all cases of data. We represent 
distinct decision nodes as an OWL classes. Also we represent decision tree 
branches as OWL classes. In our approach each leaf in the decision tree 
represents a classification rule. Each rule can be represented as an individual 
(instance) of the class that represents its tree branch. 
But Wrobel et al represent each node as a class. And they represent the tree as 
class hierarchies. And we find that this representation is not suitable to 
represent all types of data. For example in the case of BOVIS the representation 
of class Year will be a class for example Year_3_2 which is sub class of 
Category1_3. But in realty Year is not a sub class of Category. In Our system 
we will not define the class Year as a sub class of Category. We just define the 
relation between classes that occur in same branch as a class whose name is a 
concatenated string of all classes names that appear in the decision tree branch 
plus the word determine.  
For Example in the BOVIS case study the relation between Category, Year, are 
represented as OWL class CategoryYearDetermineDisorder. This class has 
three data type properties , The first data type property represent the “Category” 
class, and the second data-type property represents  the class “Year” and the 
third data type property represent the class “Disorder”  
Also our system generates ontology in OWL but Wrobel et al represent 
ontology in RDF or DAML+OIL. 
OWL facilitates machine interpretability of web content greater than that 
supported RDF and DAML + OIL.  

 

7. Conclusion and Future Work 
In this paper we proposed a methodology for building ontology that represent 
the knowledge of specific domain using data mining techniques. We proposed a 
system that represents the discovered knowledge in OWL format. This system 
will help us in building an expert system based on the data mining result. In this 
paper we introduce two cases study, one of them for representing plant diseases 
and the other for representing animal disease 

 For future work we propose the idea of helping the knowledge engineer to 
acquire knowledge from the domain expert. Knowledge engineer will use the 
extracted knowledge as a guide in acquiring knowledge from the domain expert. 
The domain expert will validate the extracted knowledge, and remember the 
missed knowledge. Also, for future work we will investigate the methodology 
for building ontology from unstructured data such web pages and documents. 
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