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Abstract:   

 

In this report, we discuss the development of an integrated problem solving
architecture to capture all relevant aspects of a crop management system within one working
computer program. Specifically we discuss the development of a computer expert system to
support the management of irrigated wheat in Egypt on a regional level. Our system will capture
local expertise for the management of irrigated wheat production through the integration of expert
system technology and one of the premier crop simulation models used in agriculture today. The
system will address the various facets of management as follows: planting date selection; water
utilization and management; pest monitoring, identification, and remediation; disease monitoring,
identification, and remediation; and harvest management. The two major methodologies we
integrate in our system are the Generic Task second generation expert systems methodology first
developed by Chandrasekaran 

 

et al (Chandrasekaran

 

, 1986), and the CERES crop simulation
methodology pioneered by Ritchie 

 

et al (Ritchie,Godwin

 

, & Otter-Nacke, 1985). The expected
contributions of this research lie in two major areas. In agriculture, regional level management of
cropping will allow better utilization of crop inputs, particularly water inputs. In knowledge-based
systems, the major contributions of this research lie in proof of principle scale-up of a number of
current problem solving templates and in the integration of expert system and quantitative
simulation technologies.

 

1.0 Introduction

 

The development of a district-level wheat management
consultation system is centrally important in Egypt. In
1990, total harvested wheat acreage in Egypt was
819,150 ha, while (from 1989 figures) total crop land in
Egypt was approximately 2,585,000 ha. (statistics from
CIMMYT, Mexico). Taken together, these statistics indi-
cate that wheat is a central agronomic crop in the Egyp-
tian economy, accounting for approximately 33% of all
harvested acreage. Since the limiting factor for agricul-
tural production in Egypt is water, any comprehensive
management tool must place water management in a
central position. In this paper, we focus on the develop-
ment of a comprehensive irrigated wheat management
system based on the integration of “second generation”
expert systems technology and a quantitative crop simu-
lation model. 

Through the research discussed here, we address
numerous problems related to both computer science
and agriculture. From an expert systems/computer sci-
ence viewpoint, the first problem we address is the “scale
up” issue, which is common in knowledge-based sys-
tems. First generation expert system (ES) technology has

proven difficult to scale to large-scope problems, such as
developing a comprehensive agro-management consult-
ant system for wheat. The difficulties are well docu-
mented and well understood. The second problem we
will address in our research is the integration of numeri-
cal simulation models (specifically in our case, the
CERES Wheat crop model) into a compiled level crop
management system. CERES Wheat takes as input
boundary conditions, such as planting date and irrigation
regime, then predicts (among other items) grain output at
harvest. Although quite accurate in its output, one diffi-
culty is the level of expertise which must be employed to
set the initial input parameters. Within our integrated
system, we leverage compiled level expertise to “pro-
pose” a management scheme, CERES Wheat to test that
scheme, and complied level expertise to (possibly) mod-
ify the suggested management in light of CERES results. 

From a purely ES viewpoint, the problem we set to
integrate compiled-level problem solving and numerical
simulation is receiving wide spread current attention.
The reason is largely due to the perceived “naturalness”
of an interaction between “experience” to quickly center
on a part of a large search space, and numerical methods
to select the correct exact solution from the narrowed
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possibilities. This mode of interaction would utilize the
best of both ES and simulation models, using the ES to
quickly limit the search space, then using simulation-
based methods to find the best candidate in the current
focus. 

 As a starting point, in section 2 we present previous
work in agricultural expert systems. Next, we begin dis-
cussion of our approach to building a regional wheat
management system. In section 3 we give an overview
of the Generic Task approach. We highlight two of the
Generic Tasks which are relevant to the work related
here: Routine Design in section 4 and Functional Rea-
soning/Functional Modeling (FR/FM) in section 5. In
section 6, we discuss the features of the CERES family
of crop simulation models, in particular CERES Wheat.
The integration of the expert systems technology and the
crop simulation tool is discussed in section 7. In section
8 we discuss the division of the management system into
the modules which address the various facets of wheat
crop management. Finally, in section 9 we close the
paper with a discussion of future research.

 

2.0 Background on Expert Systems 
in Crop Management

 

Expert systems have found wide applicability in prob-
lems of crop management in agriculture. In the area of
agronomically important crops, substantial programs
have been produced in a number of areas. For example:

 

•

 

in making fertilization recommenda-
tions (Armoni,Rakantalio, &
Dominguez, 1988; Evans,Mondor, &
Flaten, 1990; Goodrich & Kalbar,
1988),

 

•

 

in diagnosing crop disease (Bou-
lauger, 1983; Stone & Toman, 1989),

 

•

 

in diagnosing and controlling pests
(Batchelor & McClendon, 1989;
Beck,Jones, & Jones, 1989; Pasqual &
Mansfield, 1988; Ton,Sticklen, & Jain,
1991),

 

•

 

weed control (Gonzales-Andu-
jar,Rodreigues, & Navarrete, 1990;
Linker,York, & Wilhite, 1990; Renner
& Black, 1991),

 

•

 

irrigation management (Thompson &
Peart, 1986), and 

 

•

 

varietal selection (Morgan & et.al.,
1989).

The great bulk of these systems have been aimed at
narrow domain problems, and have typically been
implemented under a rule-based approach. Those appli-
cations not written in a rule-based shell have been imple-
mented in a variety of frame-based, blackboard-based or
procedural approaches. These “first generation” expert
systems were capable of performing analytical tasks
with a high degree of expertise. However, experience

has shown that these systems are not powerful enough to
perform the synthesis task necessary to generate an agri-
cultural commodity management plan (Chandrasekaran,
1987). 

Additionally, one of the strongest perceived needs in
the agro-management arena regarding expert systems is
for integrated systems (Whittaker & Thiewe, 1988).
These systems link simulation models and expert sys-
tems to facilitate the use of the proven models. The
expert system is used to parameterize and/or interpret
the results of simulation. There have been very few such
“integrated systems” approaches taken to date for agri-
cultural management problems, notable exceptions
being (Durkin,Godine, & Lu, 1990; IBSNAT, 1986;
Plant, 1989). The management system discussed here is
designed to address the issues involved in creating an
integrated system, and to overcome the problems of first
generation expert systems.

 

3.0 Background on Second 
Generation Expert Systems

 

To overcome the problem associated with the first gener-
ation approaches, our integrated approach involves sec-
ond generation expert system technology, specifically
the 

 

Generic Task

 

 (GT) approach of Chandrasekaran and
his colleagues. The assumption of the GT approach is
that knowledge takes different forms depending on its
intended function (Chandrasekaran, 1986; Chandraseka-
ran, 1987). Following the Generic Task view, a problem
is analyzed according to the methods associated with
solving it, where each method can be specified by the
forms of knowledge and inference necessary to apply the
method, and by the subproblems that must be solved to
carry it out. These sub-problems can then be recursively
decomposed in a similar fashion. The assumption of the
GT approach is that there exist a number of ubiquitous
combinations of method, knowledge structure, and
inference structure (termed 

 

generic tasks

 

) that serve as
sub-problems for a variety of complex problem-solving
tasks in a variety of domains.

One of the main intuitions underlying the Generic
Task approach is the belief that there are a (small) finite
number of very pervasive problem solving types. These
problem solving types are the individual generic tasks
(GT’s). For purposes here, the three most significant are: 

 

•

 

Hierarchical Classification and
Structured Matching

 

 (Chandraseka-
ran & al, 1979; Gomez & Chan-
drasekaran, 1981; Mittal, 1980).
Hierarchical classification is intu-
itively a knowledge organization and
control technique for selecting among
a number of hierarchically organized
options. The abstract engine used for
hierarchical classification, known as
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and requesting another specialist to refine the current
plan. For example, the left plan in S1 invokes the S2 spe-
cialist. If a plan fails, then alternate plans are tried. If part
of a plan fails then an attempt is made to redesign the
part of the plan that caused the failure. Potential causes
of failure (i.e., where to try to fix a plan) are precompiled
into the specialist. 

Of particular importance here is the selection func-
tionality of the design specialist. Note, the specialist
must choose among various plans (i.e., actions) to
achieve the specialist’s goals. But Routine Design does
not make a commitment per se on how the selectors must
operate. In most Routine Design applications to date, the
selection operation has been pattern matching directed.

However, in the agricultural crop management area,
decisions are made in ways that can be viewed as supple-
menting compiled-level experience. First, on the basis of
qualitative simulation, a good agronomist can determine
if a proposed management decision (that was arrived at
on the basis of experience) will produce, in general,
desirable results in a current environment. This “back of
the envelope” type of computation is often based on
causal understanding of a system, and is typically not
capable of detailed, in depth results, but only of indica-
tive results. A GT problem solving method referred to as
Functional Reasoning/Functional Modeling (FR/FM)
used to carry out such qualitative simulation activity is
described below.

In addition, in agro-management, one very important
tool is the numerical simulation models in general, and
the CERES families of models in particular. Given
boundary conditions, these models can accurately pre-
dict crop development and final harvest. The difficulty in
using CERES-type models however, is in setting the ini-
tial parameters. Background on CERES-type models is
described in section 6.

Specialist S1

Plan

Planning Decision
Constraint
Call Specialist S2

Plan

Planning Decision
Constraint
Call Specialist S2, S3

• • •

Specialist S2

Plan

Planning Decision
Constraint

Plan

Planning Decision
Constraint

• • •

Specialist S3

Plan

Planning Decision
Constraint

Plan

Planning Decision
Constraint

• • •

Figure 1: General structure of a 
Routine Design problem solver.

 

CSRL, was the first TSA shell and is
described in (Bylander & Mittal,
1986).

 

•

 

Routine Design

 

 (Brown & Chan-
drasekaran, 1986; Chandrasekaran,Jo-
sephson,Keuneke, & Herman, 1989).
Routine Design was proposed by
Brown as an architecture for perform-
ing design and planning tasks in which
substantial experience is available (not
for design or planning in totally novel
situations).

 

•

 

Functional Reasoning 

 

(Sembuga-
moorthy & Chandrasekaran, 1986;
Sticklen,Chandrasekaran, & Bond,
1989a). Functional reasoning was pro-
posed by Sembugamoorthy and Chan-
drasekaran initially as a means of
capturing the intuition that knowing
what a device is used for (i.e., its pur-
poses/functions) yields leverage in
understanding the device (Sembuga-
moorthy & Chandrasekaran, 1986).
Later, Sticklen and Chandrasekaran
extended functional representational
frameworks by adding a qualitative
simulation component (Sticklen et al.,
1989a). 

Hierarchical classification, as a selection methodol-
ogy, is readily understood, and will not be further
described here. However Routine Design and Functional
Modeling are not as intuitive, and will be described in
more detail below.

 

4.0 Routine Design (Planning)

 

The research presented here is fundamentally a planning
activity. The Routine Design GT is the high level plan-
ning template that is the cornerstone method on which
we rely. Routine Design is used for the generation of
plans for top level crop management, and for the remedi-
ation portions of the disease and insect modules of our
approach.

Routine Design makes use of hierarchical structures
of design specialists to perform design, each responsible
for a particular part of the overall plan. Hierarchies are
used because hierarchical decomposition is a typical
means utilized to manage complexity. The input is a set
of planning constraints, and the output should be a full
set of specifications for the required plan. 

 A design problem solver consists of a collection of
design specialists. Each specialist is responsible for
accomplishing a small part of the overall design. A part
of the decision making conducted by each specialist is to
determine (locally) which of a number of plans to carry
out. S1 in Figure 1 has two such plans from which to
choose. Generally each specialist chooses just one of its
plans. The actions that constitute a plan include doing a
calculation for a local value, satisfying a local constraint,
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5.0 Functional Reasoning and 
Modeling (Causal Relationships)

 

The second Generic Task tool utilized is Functional Rea-
soning/Functional Modeling (FR/FM) which is based on
the functional reasoning approach. Functional Reason-
ing (FR) is a methodology aimed at handling the stag-
gering complexity of causal relationships in real world
devices. The common intuition in all FR approaches is
that provided the goals/purposes of a device are known,
we may organize causal understanding by modularizing
known causal relations and indexing the resultant mod-
ules by the known goals or purposes of the device. 

The functional representation used by FR/FM origi-
nates from the work of Chandrasekaran and Sembuga-
moorthy (Sembugamoorthy & Chandrasekaran, 1986).
Sticklen and Chandrasekaran developed a device simu-
lation overlay to the earlier developed FR representation
scheme which aimed at doing case specific consequence
finding in domains of human body physiology (Sticklen
et al., 1989a). FR/FM has since been applied to a diverse
set of domains, including composite materials applica-
tions (Adegbite,Hawley,Sticklen, & Kamel, 1991;
Kamel & Sticklen, 1990), high performance aerospace
applications (Pegah,Bond, & Sticklen, 1993; Sticklen,-
Bond, & St.Clair, 1988), and initial explorations in mod-
eling landscape level ecological systems (Patzer &
Sticklen, 1992; Sticklen,Robertson, & Tufankji-Attar,
1989b). The diversity of these domains demonstrates the
wide applicability of the approach

 

.

 

A functional representation uses four epistemic
building blocks: devices, functions, behaviors, and state
variables. Devices are the active components of the sys-
tem being represented, and are usually represented in a
component hierarchy. Functions represent abstractly
stated capabilities of devices. Behaviors are implemen-
tations of functions; they describe how functions are
achieved by showing the explicit state changes. State
variables describe relevant aspects of the system. 

Depictions showing a simple functional representa-
tion appear in Figures 2 through 4. Figure 2 shows a
device decomposition of a flashlight. It has three compo-
nents: a switch, a battery, and a light bulb. Figure 3
depicts a device-function-behavior viewpoint of the
flashlight; it shows that “Produce-light” is a function of
the flashlight, and that function is achieved using the
behavior “Turn-on”. Finally, Figure 4 shows the behav-
ior “Turn-on”. It starts with a test; the switch must be
turned to the ON position for this behavior to be applica-
ble. If the switch is on, then the circuit becomes closed,
then current flows in the circuit, and finally light energy
is produced. Notice that the behavior associated with a
function of the flashlight references the functionality of
the flashlight’s component devices.

A case-specific functional simulation is produced
using a process analogous to “macro expansion.” Ini-
tially, the functionality of the top level device is exam-

ined. Any behaviors associated with its functionality
whose tests are true are selected. Normally, these behav-
iors will describe partial state changes which reference a
behavior or function of a subdevice. The information
associated with the referenced behaviors or functions are
then retrieved and replace the annotation. The process is
similar to the expansion of a macro in software applica-
tions such as the preprocessor of a compiler. This pro-
cess of macro expansion continues until all references to
other behaviors and functions are expanded and only
steps annotated with links pointing to “world knowl-
edge” remain. A “By Knowledge” link describes a piece
of the deepest knowledge (world knowledge) incorpo-
rated into the model. For example, a behavior associated
with the function “Provide-electrical-power” of the bat-
tery might be two steps in length. The first step might
reference the functionality of its components (a zinc and
a copper rod and an electrolytic solution between them)

Flashlight

Battery Light bulbSwitch

Figure 2: FR Device Decomposition

Flashlight Produce-light Turn-on

Figure 3: FR Device-Function-Behavior

<Switch State = ON>

By Function: Closed-circuit of: Switch

Circuit State = Closed

By Function: Provide-electrical-power 
of: Battery

Current-flow-in-circuit = Present

By Function: Make-light of: Light-bulb

Light = Present

Figure 4: FR Behavior
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to describe how a voltage drop potential is produced
across its terminals. The second step might reference a
By Knowledge link associated with “Kirchhoff’s Law”:
if a voltage drop exists across a pair of terminals in a
closed circuit then current will flow in the circuit.

 The functional representation actually stores a large
causal net in an organized and modular fashion, with the
modules indexed by functions. When the simulator is
run, only the relevant pieces of the causal net are
retrieved. The functional viewpoint (as expressed in the
FR/FM shell) is utilized to capture the gross causal rela-
tionships among the entire agricultural system under
study. Results of simulation with the FR/FM model we
will develop will be used to drive the CERES model for
wheat growth.

 

6.0  Background on CERES and 
CERES Wheat

 

CERES Wheat (Ritchie et al., 1985) is one of a family of
dynamic process-orientated models which simulate the
growth, development, and yield of major cereals. Sev-
eral of these models and supporting submodels are
incorporated into a single software system, the Decision
Support System for Agrotechnology Transfer (DSSAT),
which provides users with common input/output and
interface features (IBSNAT, 1990). Users of DSSAT can
perform experiments on the computer to estimate what
would happen under various input and management con-
straints. Users can modify the way a simulated crop is
irrigated to predict changes in crop yield as well as other
variables such as evapotranspiration and irrigation
requirements. These computer experiments could
involve any number of alternative ways to irrigate the
crop and simulate them for a number of years to estimate
long term average responses as well as year-to-year vari-
ability in these responses. These experiments could be
repeated on the computer for different soils, varieties,
planting dates, and nitrogen fertilizer management lev-
els. It is also possible to combine crop model results with
economic factors to compare profitability and risks asso-
ciated with each strategy (Boggess & Ritchie, 1988).

DSSAT and CERES Wheat exploit several inter-
related sub-routines which simulate the growth of vari-
ous plant organs and the extraction of nitrogen from the
soil profile. Fine tuned knowledge of the rates and mag-
nitudes of the component processes as influenced by
environment and previous crop circumstances enables
precise prediction of both the timing of crop develop-
mental events and final yield. The following gives a brief
description of the subroutines used by CERES Wheat:

 

•

 

Development

 

 Wheat growth is sepa-
rated in CERES Wheat into two dis-
tinct but interdependent processes,
phasic development and morphologi-
cal development. Phasic development
involves changes in the stages of

growth and is generally associated
with changes in biomass partitioning
patterns. Morphological development
represents the beginning and ending of
plant development within the whole
plant life cycle. 

 

•

 

Yield Prediction

 

 The most important
simulation in the model is partitioning
of biomass to the grains or economic
yield. Calculation of sink size or the
grain number is the most critical step
in accurate yield prediction. 

 

•

 

Soil Water Balance

 

 The soil water
balance model is a one-dimensional
model, which predicts water content of
each layer through time as it is
changed by the processes of infiltra-
tion, redistribution, drainage, evapora-
tion, and root water extraction for
transpiration. 

 

•

 

Soil Nitrogen Dynamics

 

 The nitrogen
(N) balance component of the CERES
crop models simulates the processes of
turnover of soil organic matter and
crop residue, hydrolysis of urea, nitri-
fication, losses of N, and the uptake
and use of N by the crop.

 

•

 

Plant N Uptake

 

 - The plant nitrogen
(N) uptake is determined from the
lesser of plant N demand and N sup-
ply.

The CERES-Wheat model has been extensively
tested by Otter-Nacke et al. (Otter-Nacke,Godwin, &
Ritchie, 1986). Our objective is to exploit the model’s
simulation capabilities as a dynamic knowledge base for
prediction of input demand and yield as influenced by
farm and district-level management decisions. The
model is sensitive to crop management decisions includ-
ing choice of variety, date of planting, fertility levels,
and irrigation amount and timing. With recently incorpo-
rated modifications, it can also simulate the impact of
long-term climatic change on yield, crop duration, and
nutrient losses. Modeling can thus be used to evaluate
long-term agricultural productivity and sustainability in
light of management decisions. 

 

7.0 Integration

 

The regional wheat management system integrates three
levels of problem solvers from the methodologies dis-
cussed above. The most experience-based level is the
Routine Design planning agent. Problem solving is very
direct and relatively straightforward once the experi-
ence-based knowledge necessary is embedded in a sys-
tem. The knowledge for an instance of Routine Design is
highly organized and tuned for one purpose and thus
problem solving efficiency is very high. 

The intermediate problem solving level is imple-
mented using the FR/FM approach. At this level, the
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many causal relations about soil, fertilizer, irrigation
effects, and so on are organized around the function each
part plays in the development of the crop (e.g., soil till-
age has one purpose of aerating the soil). Knowing these
causal relationships, “back of the envelope” computa-
tions are performed to determine likely responses to pro-
posed changes in management. These computations
typically do not produce definitive results, only indica-
tive results. They take a deeper level of expertise than
the purely experience-based problem solving, and are
typically more compute intensive.

At the deepest level, the CERES family of crop sim-
ulation models is utilized. Once several different propos-
als from the experience-based problem solver and
qualitative causal-based simulation show similar bene-
fits, detailed simulation modeling can be applied to dis-
criminate between the candidate management changes.

In general, the problem solving method we follow
can be viewed as a two phase computation for each
growing unit (field). First, given boundary constraints on
economic value of wheat, growing season length, avail-
able varieties, insect and disease problems from the last
crop year, available fertilizer, and available irrigation
water, a rough cut version of a “plan” for the coming
crop year is developed. Then this rough plan is refined
by the use of both a model-based functional reasoner,
and by the CERES Wheat simulation model. The output
of Phase 1 will be an elaborated, pre-planting plan for
the coming crop year.

Phase 2 amounts to following the plan developed in
Phase 1 in the face of additional, real time constraints set
by conditions during the crop year. Most successful
farmers, the world over, follow a version of this two step
management strategy: before planting develop a plan;
during the growing season try to follow the plan, but be
ready to modify or augment it as conditions during the
cropping year demand. 

 

8.0 Wheat Crop Management 
Modules

 

The management of a wheat crop is modularized to
address the various aspects of management as follows:
planting date selection; water utilization and manage-
ment; pest monitoring, identification, and remediation;
disease monitoring, identification, and remediation; and
harvest management. The following discussion gives an
overview of the problem solving architectures used in
each of the modules.

 

•

 

Varietal Selection

 

: Wheat varietal
selection is a relatively straightfor-
ward selection task. The capability of
Hierarchical Classification, aug-
mented with experience-based match-
ing will be used in this module.

 

•

 

Planting Date Calculation

 

: This
module is likewise relatively easy in
concept. Planting date selection is
modeled by following a Routine
Design problem solving method.

 

•

 

Fertilization Requirement and Tim-
ing, and Irrigation

 

: Fertilization and
irrigation is handled in one module.
Unlike planting date (which once
fixed, must remain fixed), fertilization
and irrigation plans can be altered dur-
ing the growing season, and in an irri-
gated regime, changed on a regular
basis. This module at the high level
will be a routine designer, which will
include both FR/FM and CERES
Wheat modules interfaces. 

 

•

 

Pest and Disease Identification

 

: The
two modules which identify growing
season problems (insects or diseases)
will be simple classification systems.
A picture database (on line) will be
supplied to help with the identification
of both insects and diseases.

 

•

 

Pest and Disease Remediation

 

:
These two modules will be experi-
ence-based routine design systems.
Taking as input the identification of a
problem, and current cropping condi-
tions, this module makes recommen-
dations on plans of action to alleviate
the problem.

 

•

 

Harvest Management

 

: This simple
module concentrates on the timing of
harvest.

 

9.0 Future Work

 

The work discussed above is just the starting point for
many extensions to larger regions and to other countries.
The following discussion outlines the long-term goals of
our work and the applicability of the work beyond the
management of wheat in Egypt.

In this paper we have presented what we envision as
the first step in an Egypt-wide water distribution system.
Since the wheat management system we develop can be
considered prototypical for management of other crops
in Egypt, the next step is the development of a manage-
ment system for other major crops. Furthermore, since
the limiting factor for agricultural production in Egypt is
water, each cropping consultant will include a strong
emphasis on water utilization and management. As each
comes on line, it will be interfaced with a country-
scoped water distribution consultant. Thus, we envision
a cooperative problem solving unit in which each of the
district-level crop management agents deals specifically
with maximizing economic yield given local constraints,
and the single water distribution agent deals with maxi-
mizing economic yield for a district-level (and eventu-
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ally region-level and total country-level) basis by
planning water distribution over all areas covered. Fig-
ures 5 and 6 below show the interaction between the
regional district crop management systems and the water
distribution consultant.

Although the present research focuses on agro-man-
agement in Egypt, applicability to the United States is
also anticipated. Problems of water utilization and man-
agement directly affect sectors of US agriculture. In
areas such as the Central Valley of California, water has
always been a limiting factor. We observe agricultural
interests increasingly being asked to justify water allot-
ments. Thus, systematic, effective, and easily docu-
mented water management methods will become
increasingly important.

In addition, although district-level expertise in wheat
and other crops is not typically limiting in the U.S., the
ability to quickly check the results of experience-based

Water
Distribution

System

Wheat
District #1

Management
System

Wheat
District #2

Management
System

Wheat
District #N

Management
System

…

Maize
District #1

Management
System

Maize
District #2

Management
System

Maize
District #M

Management
System

…

Figure 5: Conceptual long term goal - maximizing 
water utilization by cooperative problem solving

Water
Distribution

System

Crop
Region #i

Management
System

water needs list:
 today: K gallons
 tomorrow: L gallons
 …

water availability list:
 today: K gallons
 tomorrow: L gallons

 …

Figure 6: Interaction between water 
distribution agent, and each regional 

crop management specialist

 

reasoning against a cropping simulation model (such as
CERES) is not typically available. Thus, at the level of
our specific problem, results of our research will also
impact U.S. agriculture by providing a problem solving
template for the integration of experience-based reason-
ing with the numerical simulation capability of CERES
models.
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