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Abstract:   In this paper, we detail our current work on a crop management system for irrigated

wheat in Egypt. The goal of our work is to develop a system that will address all aspects of crop

management including varietal selection, planting/harvest date selection, sowing parameters

decisions, insect/disease/weed identification and remediation, and irrigation/fertilization

management. The approach we take to solve this problem is the Generic Task Approach to expert

systems development pioneered by Chandrasekaran et al. By using the Generic Task (GT)

approach, we set out to model the behavior of an expert in wheat crop management. To accomplish

this goal, the GT approach builds on top of the object-oriented methodology and acts as a guiding

overlay for analyzing knowledge intensive problems, such as wheat crop management. As a multi-

task problem, wheat crop management provides a testbed for the ideas of a Knowledge Level

Architecture introduced by Sticklen. The Knowledge Level Architecture (KLA) provides a means

of understanding large systems in terms of cooperating sub-agents. This paper describes the GT

and KLA methodologies, focusing on the support they afford to the description and understanding

of knowledge-based systems from an object-oriented perspective.

1.0 Introduction

Object-oriented technology has become a powerful means of handling the complexity inherent in

many systems. Object-oriented technology has influenced and benefited from research in the arena

of Artificial Intelligence (AI) and Knowledge-based Systems (KBS). Thinking in terms of objects

provides considerable leverage when dealing with many complex problems. However, it is often

1.  Accepted for presentation at the Object-Oriented Modeling Of Nature And Problem Solving in Ecosystem And

Natural Resource Management Workshop, Ontario, Canada,  September 12-16, 1994 and publication in a special issue

of Mathematical and Computer Modeling by Pergamon Press.
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insufficient when dealing with knowledge intensive problems. In such problems, the key compo-

nent is knowledge. However, understanding how knowledge should be organized and controlled

within a KBS has been a difficult issue facing AI since its onset. Determining the objects needed

during problem solving and how they should be organized takes considerable experience and

expertise. For the knowledge engineer faced with a problem solving scenario for the first time, this

experience is not available. Therefore, we feel a knowledge-based overlay to the object-oriented

approach is needed. The overlay should assists in the identification of objects as well as how they

should interact. The “Generic Task” methodology pioneered by Chandrasekaran et al. (Chan-

drasekaran, 1986) provides us this overlay.

The Generic Task (GT) Methodology is one of several Task Specific Architectures (TSA’s)

developed to address problems associated with early expert systems. These early systems were

often rule or frame-based systems. Two central problems were encountered by the builders of these

early systems. First, control issues were implicit in the representation, not allowing the explicit

representation of control issues relevant to the specific type of problem being addressed. Second,

knowledge engineers often found it necessary to create organizational structures on top of the

already existing formalisms. Pioneers in TSA work recognized that these problems were calls for

control and organization structures beyond what the simple rules and frames could provide (Chan-

drasekaran, 1983). They also recognized that certain problems often had the same control and

organization structures even though they were operating in different domains. For example, diag-

nosis performs the same type of problem solving regardless of whether the domain is medicine or

mechanics. It is in this atmosphere that the GT Methodology developed. GTs provide the knowl-

edge organizations and control structures specific to certain kinds of problem solving across

numerous domains as will be discussed in section 4.

The current problem we set out to address with the Generic Task approach is the development

of a district-level wheat management consultation system for Egypt. This system will address all

aspects of crop management including varietal selection, planting/harvest date selection, sowing

parameters decisions, insect/disease/weed identification and remediation, and irrigation/fertiliza-

tion management. As the length of this list implies, crop management is a complex, multi-task

problem. Previous research in GTs typically focused on applying one GT to one problem. How-

ever, we will utilize numerous GTs, as well as the CERES crop simulation methodology pioneered

by Ritchie et al. (Ritchie,Godwin, & Otter-Nacke, 1985). The GT approach alone does not provide

a template for the integration of these problems solvers. We will use the Knowledge Level Archi-
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tecture proposed by Sticklen in (Sticklen, 1989) as the template by which we will organize our sys-

tem.

 This paper describes Task Specific Architectures, Generic Tasks and the Knowledge Level

Architecture methodologies, focusing on the support they afford to object-oriented design and

implementation of knowledge-based systems. As a starting point, in section 2 we discuss Object-

Oriented Modeling. Although taking an object-oriented approach to design and development of a

system does offer significant leverage, the use of an object-oriented technique alone does not guar-

antee a successful system. In section 3, we will discuss how Task Specific Architectures have built

upon what object-oriented paradigms have already established. In section 4, we give an overview

of one Task Specific Approach known as Generic Tasks that is a principle methodology used in our

system. We discuss GTs in light of the object-oriented approach and how the Generic Task

approach provides a guiding hand during the design and implementation of expert systems. In sec-

tion 5, we discuss our proposed Knowledge Level Architecture and how it guides the organization

of Generic Tasks. Next, we discuss of our approach to building a regional wheat management sys-

tem. We highlight the architecture of our overall system in sections 6 and 7. In section 8, we dis-

cuss the decomposition of the management system into the modules that address the various facets

of wheat crop management. Finally, in section 9, we close the paper with a discussion of our plans

for future research.

2.0 Object-Oriented Modeling

In (Rumbaugh,Blaha,Premerlani,Eddy, & Lorensen, 1991) the authors describe object-oriented

modeling and design as “a new way of thinking about problems using models organized around

real world concepts.” In the area of knowledge-based systems, the problems we deal with are

knowledge intensive problems. Thus, the real world concepts discussed in the definition are not

tangible items. Instead, they are often abstract knowledge organizations or problem solving meth-

odologies which experts find useful when solving a problem. The major objective in building a

knowledge-based system is to effectively select these knowledge structures and problem solving

methodologies needed to solve the problem. We recognize the value of an approach that empha-

sizes knowledge organization and control.
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There are a number of central tenets that run through object-oriented approaches (Rumbaugh et al.,

1991). As will be seen, these ideas are also central to the Generic Task approach as a realization of

the Knowledge Level Architecture. These tenets are:

1. Abstraction: During the design of a system, the goal is to uncover the domain “objects” to
reach an understanding of the domain. However, in knowledge-based systems, what
constitutes an object may be unclear since a knowledge intensive problem often deals with
intangible objects. Thus, we emphasize the need to provide a means for the knowledge
engineer to identify potential objects. We do this by guiding the knowledge engineer
toward the selection of commonly used knowledge organizations and problem solving
methodologies.

2. Encapsulation: The goal of encapsulation is to hide the implementation details of an
object from its external users. In object-oriented programming, an object is defined in
terms of its data structures and its behavior. Other objects should not have access to these
data structures and behaviors. The advantage of encapsulation is that objects which
communicate with other objects, must only be concerned with the interface to these other
objects rather than their implementation details.

3. Reusability: One of the benefits arising from object-oriented approach is that the analysis
of objects in the problem domain often leads to reusable code. After analyzing the domain,
the object may be reused in other problem solving situations. However, taking an object-
oriented approach to a problem does not insure reusability. The reason for this may be in
the improper analysis of what constitutes an object or improper encapsulation of an object
by not attributing the proper behaviors to the proper objects.

4. Inheritance: Often objects within a domain can be broken into classes/subclasses where
relationships among classes follow a hierarchical organization. Depending on the
granularity chosen in the class/subclass hierarchy, these relationships may vary. It is the
responsibility of the knowledge engineer to determine the proper granularity for the
domain. 

A central argument for using an object-oriented approach is that by looking at a domain in terms

of its objects, we can reach a better understanding of that domain. However, we believe that the use

of object-oriented analysis is not sufficient in the area of knowledge-based systems. Problems arise

when one is faced with a knowledge intensive problem for the first time, such as diagnosis. How

does one determine the objects in this case? If we apply a pure object oriented approach to this

problem we might say that each hypothesized diagnosis is an object. However, once this is

decided, we must have a means of using this knowledge efficiently during problem solving. There-

fore, we must determine the organization of the knowledge and control strategies for its use.

Unless one has encountered a similar problem in the past and has experience in deciding what are

the objects and how to organize these objects, a pure object-oriented approach does not necessarily

provide the necessary means for organizing such knowledge and its associated control structures. 
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As the above analysis suggests, taking an object-oriented approach to a problem does not guar-

antee success. Our approach to knowledge-based system guides the object-oriented approach in

terms of higher level concepts. The Generic Task approach as well as other Task Specific Architec-

ture (TSA) approaches provide high level problem solving modules that combine both knowledge

organization and control, assisting in both the design and development of knowledge-based sys-

tems (KBSs).

Before discussing the Generic Task approach it is necessary to understand the landscape of the

TSA area.

3.0 Task Specific Architectures

Task Specific Architectures (TSAs) are a reaction to the problems encountered by “first genera-

tion expert systems.” These systems were often rule or frame-based and considered “universal

approaches” appropriate for all knowledge-based problem solving situations. Proponents of these

architectures argued in favor of the modularity, uniform representation and single control strategies

these architectures provided. However, the use of these lead to disadvantages as well (Chan-

drasekaran, 1987). In particular there were two difficulties:

• important control issues were hidden behind clever programming artifices at the

implementation language level, and

• system builders encountered the need to organize knowledge in the system using

constructs outside the formalism provided by the architecture, such as MYCIN’s

context hierarchy (Buchanan & Shortliffe, 1984) and PROSPECTOR’s models

(Duda & Gaschnig, 1979).

While a KBS could be built at the level of these architectures, these implementations do not pro-

vide guidance in terms of the conceptual problem of the analysis and design of the system. Prob-

lems at higher level of abstraction needed to be addressed. 

Two intuitions grew from common experience with first generation approaches: (1) Certain

knowledge and control structures may be common to a particular task (say, design or diagnosis)

across different domains, and (2) the structures for different task types will likely differ. Both ret-

rospective analysis of existing systems and prospective design of new systems indicated that an

effective KBS will contain — either explicitly or implicitly — a model of the problem solving pro-

cess it realizes. The evolving task-specific approach recognized the advantages of representing
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explicitly the conceptual organization of domain knowledge assembled to solve a particular type

of problem following a given method. This approach denoted a paradigm shift away from use-

independent, uniform knowledge bases toward a view of KBSs as collections of diverse conceptual

structures organized for use in targeted ways. Universal methods are appropriate when no further

knowledge of a domain is available, but typically expertise in a domain affords a more structured

understanding of how knowledge is used to solve problems efficiently. This new outlook signified

one of the central lessons of the first generation. 

Many problem solving approaches at the task level arose during the 1980’s. A classical example

of defining problem solving activity in terms of a higher level task vocabulary is due to Clancey

(Clancey, 1981). After recognizing that the control strategies implicit in the MYCIN/GUIDON

knowledge base could be expressed independent of domain terminology (Clancey, 1981), Clancey

isolated heuristic classification as a method for performing diagnosis and other selection tasks

(Clancey, 1983; Clancey, 1984; Clancey, 1985). This method decomposes selection tasks into a set

of high-level subtasks that characterize the type of problem solving performed by many existing

KBSs. By moving to this more abstract level of description, Clancey and his colleagues were able

to reformulate MYCIN into NEOMYCIN (Clancey, 1981), a system whose control knowledge

made no reference to the application domain and constituted an abstract model of inference inde-

pendent of implementation. 

McDermott and his colleagues have formulated a view of expert problem solving, based on the

notion of role-limiting methods (RLMs), that is strongly driven by experiences in knowledge

acquisition. The RLM approach (McDermott, 1988) posits that a large knowledge base can be con-

structed, maintained, and understood more fruitfully by organizing it according to the various roles

that different kinds of knowledge play. On this view, “each role-limiting method defines the roles

that the task-specific knowledge it requires must play and the forms in which that knowledge can

be represented” (McDermott, 1988). Like Chandrasekaran and Clancey, McDermott holds that

families of tasks exist for which the problem solving method and its control knowledge can be

abstracted away from the peculiarities of a task instance. This approach, however, focuses its con-

cern with these methods on how they circumscribe the roles and the representation of the task-spe-

cific domain knowledge on which they operate. The goal of that research is to identify task families

having these characteristics, to abstract their methods, and then to construct an architecture that

assists knowledge acquisition for the corresponding tasks. For the purpose of knowledge acquisi-
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tion, the RLMs represent an important class of methods because they direct the acquisition process

at a more abstract level while still providing a broad coverage of tasks in a variety of domains. 

Steels (Steels, 1990) has advocated a framework for system analysis and development with

some similarities to Chandrasekaran’s task-oriented approach. Following Steels, one first conducts

a thorough task analysis in which the task is decomposed into subtasks based on the nature of their

inputs and outputs and on the nature of the mappings among them. Second, one constructs a model

of the domain knowledge available to perform the task and subtasks. Finally, one applies problem

solving methods geared to solving individual subtasks and to structuring subtasks in the pursuance

of higher-level tasks. The method selected for each task depends on the kind of knowledge avail-

able to solve the task, as captured in the domain model. This methodology differs from that

espoused by Chandrasekaran and McDermott, however, in that it allows for a representation of

domain knowledge — in the domain model — independent of the method to be selected.

Founded on similar intuitions, KADS (Breuker & Wielinga, 1989) is a methodology for the con-

struction of knowledge-based systems that offers an explicit software life cycle and a set of lan-

guages for describing and creating KBS structures. This methodology rests on the assumption that

task methods share “ways of using knowledge” at a level of abstraction higher than that of concepts

in particular domains (Breuker & Wielinga, 1989). The languages in KADS support the develop-

ment of a conceptual model of the problem solving process and a design model of the target KBS

at a level of abstraction corresponding to the types of knowledge employed. KADS proposes a

four-layer representation of knowledge: (1) a domain layer of domain-dependent concepts, rela-

tions, and structures; (2) an inference layer that describes what inferences can be made in terms of

the roles that domain-level entities play; (3) a task layer that controls when inferences are made in

terms of goal structures; and (4) a strategy layer for goal generation and task monitoring. Like

Steels’ approach, KADS allows “task-neutral” representation of domain knowledge but then

stresses the importance of having high-level task structures through which to view problem-solv-

ing knowledge. These structures include primitive “knowledge sources” at the inference level for

solving particular subtasks and goal structures at the task level for representing task decomposi-

tions.

4.0 Generic Task Approach

The Generic Task (GT) approach of Chandrasekaran and his colleagues is one of the earliest and

one of the most fully developed of the task specific approaches to knowledge-based systems. The
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assumption of the GT approach is that knowledge takes different forms depending on its intended

function (Chandrasekaran, 1986; Chandrasekaran, 1987). Following the Generic Task view, a

problem is analyzed according to methods associated with solving it where each method can be

specified by the forms of knowledge and inferences necessary to apply the method, and by the sub-

tasks that must be solved to carry it out. These subtasks can then be recursively decomposed in a

similar fashion. When analyzed in light of an object-oriented approach, we parallel tasks to

objects. Thus, complex tasks are decomposed into smaller tasks as objects are decomposed into

smaller objects. Furthermore, the tasks are encapsulated in terms of knowledge organization and

control strategies which parallels the encapsulation of data structures and behaviors in the object

oriented terminology.

The Generic Task approach sets out to identify generic tasks - basic combinations of methods,

knowledge structures and inference strategies that serve as subproblems for complex problem

solving across numerous domains. A number of Generic Tasks are currently available. However,

for purposes here, the three most significant are: 

• Hierarchical Classification and Structured Matching (Chandrasekaran & al, 1979; Gomez &

Chandrasekaran, 1981; Mittal, 1980). Hierarchical classification is intuitively a knowledge organi-

zation and control technique for selecting among a number of hierarchically organized options. The

abstract engine used for hierarchical classification, known as CSRL, was the first TSA shell and is

described in (Bylander & Mittal, 1986).

• Routine Design (Brown & Chandrasekaran, 1986; Chandrasekaran,Josephson,Keuneke, & Her-

man, 1989). Routine Design was proposed by Brown as an architecture for performing design and

planning tasks in which substantial experience is available (not for design or planning in totally

novel situations).

• Abductive Assembly (Josephson, 1987). Abductive Assembly is based upon the abductive reason-

ing work of Josephson et al. Given a list of findings, the goal of Abductive Assembly is to form a

composite hypothesis that will collectively explain the set of findings.

The Generic Task approach guides the object-oriented approach in terms of higher level con-

cepts. When a knowledge engineer is face with a new problem, he/she can perform a task decom-

position of the problem. If a task matches one of the generic tasks, the knowledge and control

structures are specified. The knowledge engineer must only obtain the domain knowledge to fill in

the knowledge structure. The data structures and the behavior associated with the task are already

encapsulated within the generic tasks. Having a pre-enumerated set of generic tasks from which to

choose gives the knowledge engineer significant direction during the analysis phase of system
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development. The identification of objects, which is often difficult in object-oriented programming

is directed by what has been useful in the past.

When building an expert system, knowledge acquisition (elucidating knowledge from the expert)

is often the limiting bottleneck. Of central importance to the knowledge engineer is the availability

of a vocabulary that is appropriate for the problem at hand. For example, in diagnosis we speak of

malfunction hierarchies, ruleout strategies, and setting up differentials. On the other hand, design

uses an entirely different vocabulary. According to the Generic Task approach the vocabulary used

by the same task is the same across domains. 

The vocabulary provided by object oriented approaches is in terms of the objects of the domain.

The Generic Task methodology builds on top of this by providing the correct vocabulary for

describing the problem, as well as a vocabulary for use during the design and development of the

knowledge-based system. This vocabulary defines the knowledge structures and inference strategies

specific to the task. The power of this approach is that if the problem matches the function of a

generic task, the vocabulary is determined. Therefore, the knowledge engineer has a means by

which to talk with the experts in terms that are familiar to them thus aiding in knowledge acquisi-

tion. 

5.0 Knowledge Level Architecture

The problem of irrigated wheat management is a multi-task problem with several differing task

types needed to solve the problem. Therefore, there is a need to integrate multiple Generic Tasks

into one problem solver. The Knowledge Level Architecture (KLA) proposed by Sticklen (Sticklen,

1989) provides an organizational overlay to the basic Generic Task Approach to facilitate integra-

tion. 

The KLA is based upon the Knowledge Level Architecture Hypothesis (KLAH). This hypothesis

builds on of what Newell proposed in his AAAI presidential address of 1980 (Newell, 1982). New-

ell's proposal was the existence of a distinct level of analysis for systems, the “Knowledge Level”

which existed above the symbol level. What the Knowledge Level provides is a way of understand-

ing a problem solving agent apart from the implementation of the agent. Although this allows

deeper understanding of problem solving, Newell recognizes in his address that the behavior of an

agent cannot always be predicted at the knowledge level. The reason for this deficiency is the lack
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of any discussion of problem solving control. The KLAH on the other hand, allows discussion of

the control issue, but only in terms of knowledge organization and control. 

Knowledge organization and control are captured in the Knowledge Level Architecture accord-

ing to the Knowledge Level Architecture Hypothesis as stated in (Sticklen, 1989, p.343): 

Knowledge Level Architecture Hypothesis: A problem solving agent may
be decomposed into the cooperative efforts of a number of sub-agents, the
larger agent can be understood at the Knowledge Level by giving a Knowl-
edge Level description of the sub-agents and specifying the architecture the
composition follows. 

This hypothesis leads to the specification of a system by explicitly representing the interactions

between its agents. There are two defining aspects of KLA:

• First, there is a distinct message protocol that exists between problem solvers. The message
protocol between two cooperating agents is defined in terms of the functionality of the agents.
In other words, the protocol provides a means for the agents to request work and respond in a
vocabulary that the other can understand.

• Second, to allow communication between cooperating problem solvers, communication chan-
nels are established. By decomposing the agent into subagents and fixing the communication
paths, the KLA provides a way of organizing the knowledge of the agents.

These aspects provide a means of organizing the knowledge of differing agents. Furthermore, since

control is passed to an agent only when another agent sends a request, the KLA provides a means of

understanding the problem solving activity taking place among the cooperating agents of an inte-

grated system.

Another researcher in the TSA community has explored similarly motivated extensions to the

original Knowledge Level concepts of Newell. Walter Van de Velde developed an extension to the

Knowledge Level orthogonal to that proposed in the KLA. Although orthogonal, Van de Velde's

extension at the bottom line also deals with integrating control issues at the Knowledge Level. This

work, although relevant to our research, is beyond the scope of this paper. Interested readers are

referred to (Van de Velde, 1991).

6.0 Knowledge Level Architecture for Wheat Crop Management

To address the problem of irrigated wheat management, we integrate the Generic Task Approach

with CERES Wheat crop simulation model (Ritchie et al., 1985) into a Knowledge Level Architec-

ture. Within our integrated system, we leverage compiled1 level expertise to “propose” a manage-
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ment scheme, CERES Wheat to test that scheme, and compiled level expertise to (possibly) modify

the suggested management in light of CERES results. 

Figure 1 shows a high-level overview of the system. To understand the processing performed by

the system, we describe the architecture according to the object-oriented paradigm upon which it is

based. At the top level, our system is composed of three cooperating agents, the Strategic Planner,

CERES Wheat and the Plan Critic. These agents can be viewed as specialists whose tasks are plan

generation, plan testing and plan critiquing respectively. The strategic planning module uses com-

piled knowledge of wheat crop management to propose a plan. Next, the CERES Wheat Module

simulates the growth of the wheat under the circumstances set forth by the plan. Finally, the out-

come of testing is handed off to the Plan Critic, where both experience-based knowledge and the

farmer’s opinion can be used to critique the plan. If the plan is found unsatisfactory, a redesign

request is sent to the strategic planner. The farmer may also be asked to change any preferences that

have a negative impact on the plan’s performance. Finally, if the plan is approved by the Plan Critic

specialist, it is handed off to the farmer.

Our plan tester, CERES Wheat (Ritchie et al., 1985) is one of a family of dynamic process-orien-

tated models which simulate the growth, development, and yield of major cereals. Our objective is

1.  Compiled level expertise refers to knowledge based on previous experiences.

Farmer’s 
Circumstances

Farmer’s 
Preferences Strategic Planner Ceres Wheat

Plan Critic

Farmer’s 
Yield Goal

Preference Change 

Farmer’s 
Preferences

Farmer’s 
Circumstances

Request

Farmer’s willingness
and ability to change 

prefs. and circumstances

Strategic Plan

Yield Prediction

Preference Update
Request

Farmer’s change 
request response

Farmer’s yield
goal

Approved Plan

Redesign Request

Module

Parameterization

Day to Day Prediction

Strategic
Plan and

Costs

Figure 1: Irrigated Wheat Crop Management System
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to exploit the model’s simulation capabilities as a dynamic knowledge base for prediction of input

demand and yield as influenced by farm and district-level management decisions. The model is sen-

sitive to crop management decisions including choice of variety, date of planting, fertility levels,

and irrigation amount and timing. With recently incorporated modifications, it can also simulate the

impact of long-term climatic change on yield, crop duration, and nutrient losses. Modeling can thus

be used to evaluate long-term agricultural productivity and sustainability in light of management

decisions. 

As shown in Figure 1, we differentiate between two sets of inputs to the strategic planner. The

first is “Farmer’s Circumstances.” This input provides the system with information about set condi-

tions under which the farmer is proposing to plant wheat. We contrast circumstances with prefer-

ences. The input of “Farmer’s Preferences” provides the system with information about what the

farmer would like to do or has done in the past. Often there are circumstances in which the farmer

must plant that he/she has no control over, but there are also farmers who impose limits on them

selves by sticking with traditions. 

We feel it is important to make to the above distinction between circumstances and preferences.

A major thrust of our work is the education of both inexperienced and experienced farmers. There-

fore, we would like to allow a farmer to input their preferences for management decisions and if

necessary critique these decisions. For example, if a farmer has always grown durum wheat, he/she

may have a strong preference toward growing this type of wheat again. If we view this input as a

preference, we can analyze the remaining conditions the farmer faces. Then we can determine if this

decision is ideal, or if it would be better to plant a bread wheat in his region. If we find a farmer’s

preference runs counter to an optimal decision, we can offer the optimal decision with an explana-

tion as to why the preference is suboptimal. The farmer is then allowed to choose between the pref-

erence and what the system determined as optimal.

7.0 Strategic Planning Module

From an expert systems viewpoint, the heart of our system is the Strategic Planning Module. The

role of the strategic planning module is to generate a plan for the management of a wheat crop dur-

ing an entire cropping season. To design this planning module, we follow the Knowledge Level

Architecture approach. At the highest level, the task of creating a strategic plan is seen as a design

problem - designing a plan for the management of wheat. Thus, the Routine Design Specialist is
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incorporated as the top level problem solving agent. Although Routine Design was first developed

for application in the design of engineering artifacts, it has proven applicable to plan generation

(Chandrasekaran, Josephson, & Keuneke, 1986).

Routine Design makes use of hierarchical structures of design specialists to perform design, each

responsible for a particular part of the overall plan. Hierarchies are used not because the plan is

intrinsically hierarchical, but because hierarchical decomposition is a typical means utilized to man-

age complexity. The input to the Routine Design agent is a set of planning constraints, and the out-

put should be a full set of specifications for the required plan. 

To understand the problem solving conducted by a Routine Design agent, it helps to view the

design problem solver as consisting of a collection of design specialists. Each specialist is respon-

sible for accomplishing a small part of the overall design. Associated with each specialist is a list of

plans that can be carried out to achieve its part of the design. S1 in Figure 2 has two such plans from

which to choose. Generally each specialist chooses just one of its plans. Typically, the actions that

constitute a plan include doing a calculation for a local value, satisfying a local constraint, and

requesting another specialist to refine the current plan. For example, the left plan in S1 invokes the

S2 specialist. If a plan fails, then alternate plans are tried. If part of a plan fails then an attempt is

made to redesign the part of the plan that caused the failure. Potential causes of failure (i.e., where

to try to fix a plan) are precompiled into the specialist.

Considering the Knowledge Level Architecture discussed above, the ability of another “special-

ist” to perform part of a plan is of particular importance. Normally, these subspecialists are other

Specialist S1

Plan

Planning Decision
Constraint
Call Specialist S2

Plan

Planning Decision
Constraint
Call Specialist S2, S3

• • •

Specialist S2

Plan

Planning Decision
Constraint

Plan

Planning Decision
Constraint

• • •

Specialist S3

Plan

Planning Decision
Constraint

Plan

Planning Decision
Constraint

• • •

Figure 2: General structure of a 
Routine Design problem solver.
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routine design specialists. However, these specialists may be other problem solvers from the

Generic Task tool kit or from another source, such as quantitative simulation models (CERES

Wheat in our case). The KLA forces us to identify the communication channels which exist between

two cooperating specialists and to identify the message protocol which they will use to communi-

cate. In other words, how the Routine Designer requests work from other problem solving agents

and what it expects in return must be stated explicitly. 

Figure 3 depicts the top level architecture of the strategic planning module. The top specialist

uses the subspecialists to perform the task of plan generation. We follow a linear ordering of the spe-

cialists to generate the plan. If any of the specialists fail due to constraints set forth by a previous

specialist, redesign knowledge which is precompiled into the problem solver is used to choose an

alternative design.

8.0 Module Descriptions

In the discussion that follows, we will give brief highlights of selected modules that demonstrate the

applicability of our approach.

Top Specialist: Plan Generator
Plan: Varietal Selection, Determine Attainable
Yield, Planting Date, Strategic Pest
Management, Preplant Tillage, Planting
Parameters, Fertilizer and Water Regimes,
Inseason Strategic Pest Management, Harvest.

Varietal Selection
Specialist

Planting Date
Specialist

Determine Attainable
Yield Task

Preplanting Tillage
SpecialistManagement Specialist

Fertilizer/Water Regime
Specialist

Planting Parameters
Specialist

Inseason Strategic Pest 
Management Specialist

Harvest
Specialist

Strategic Pest 

Figure 3: Top level Routine Design agent to perform wheat management plan 
generation.
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8.1 Varietal Selection Module

During the analysis of the wheat crop management problem, we identified varietal selection as a

classification problem. We have identified a list of factors which experts consider when selecting a

variety for planting. The varieties can be classified in terms of the factors we have identified. When

the user presents his/her situation to the system, the system will classify this situation in an attempt

to find a variety which is appropriate for the field in question.

We have chosen a Generic Task known as Hierarchical Classification (HC) to perform the varietal

selection part of the plan. A classification tree has been built which classifies possible varieties in

terms of the following factors: 

• Heat Resistance: susceptible, medium susceptibility, tolerant or resistant.

• Height: dwarf, semidwarf, or tall.

• Loose Smut susceptibility: susceptible, medium susceptibility, tolerant or resistant.

• Market: bread or durum wheat.

• Maturity: number of days to maturity.

• Region: Upper Egypt, Middle Egypt, South Delta, North Delta, Fayoum, Southwest Coast.

• Rusts susceptibility: susceptible, medium susceptibility, tolerant or resistant to leaf, stem, and/or
yellow rusts.

• Planting Date: optimal planting date.

• Salinity: tolerant or susceptible.

When the user runs the system, he/she enters the circumstance on their farm. For example, the

system will ask the user if there are rust problems or salinity problems on the farm. Furthermore, the

farmer can enter preference about various factors (such as planting date, seed color, time for matu-

rity, etc.) as well as their willingness to change these preferences. The system will then classify the

users circumstances/preferences to determine which varieties strongly match, match or weakly

match their requirements.

8.2 Irrigation/Fertilization Module

The high-level picture of our system in Figure 1 shows CERES Wheat as a plan tester. However, this

will not be the only function of CERES. We will also use CERES in plan construction. The irriga-

tion and fertilization specialists will interact with CERES Wheat as shown in Figure 4. CERES

Wheat will provide these module with estimates on irrigation/fertilization timings and amount by

indicating water and Nitrogen stress to the plant.

The Knowledge Level Architecture (KLA) forces us to explicitly identify the points of interac-

tion and the communication that can take place between cooperating agents. The interaction
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between the quantitative simulation model CERES and our generic task Routine Design, shows that

the agents which compose a complex problem solver need not come from the Generic Task perspec-

tive. Provided the communication and message protocol can be determined, any type of agent can

be integrated. This offers considerable flexibility with our KLA approach since we do not limit our

choice of agents to those provided by the Generic Task tool set. 

As Figure 4 shows, if the user has a predetermined irrigation or fertilization plan, it will be tested

by CERES Wheat. CERES Wheat will perform a simulation to show daily plant intakes of water and

Nitrogen and show when any stresses occur. The Optimal Irrigation/Fertilization specialists will

request CERES Wheat to simulate assuming unlimited water and Nitrogen supply according to an

upper bound for the region. These specialists will then use the simulation data to plan amounts and

timings of water and fertilization applications within constraints set by the user.

The weather data upon which the simulation is based is predicted from past weather data. Since

this prediction can never be completely accurate, the schedule for irrigation/fertilization may need

modification during the season to compensate for irregularities in the weather. However, by bring-

CERES Wheat
Module

Fertilizer

Fertilizer

Water
Applications

Deficiencies
Water
Deficiencies

Applications

User Preference Irrigation 
Specialist: 

Plan: Run CERES with the
irrigation schedule presented
by the user and predict
deficiencies. 

User Preference Fertilization 
Specialist:

Plan: Run CERES with the
Fertilization schedule presented
by the user and predict
deficiencies.

Optimal Irrigation Specialist: 
Plan: Run CERES assuming unlimited
amount of water and then determine the
amount of water used by the plant for each
irrigation period. The irrigation period is
calculated based upon constraints on when
the farmer can irrigate. Extra water will need
to be supplied during irrigation to compensate
for evaporation and leeching.

Optimal Fertilization Specialist:
Plan: Run CERES assuming unlimited
Nitrogen (N) and then determine the amount of
N uptake for each fertilization period. The
fertilization period will be calculated based
upon constrains on when the farmer can
fertilize. Extra N will need to be supplied to the
field to compensate for leeching and
denitrification of the fertilizer.

Input (user)
• Irrigation type
Input (standard file)
• Soil analysis
• Residual soil 

moisture
Input (other module)
• Genetic Coefficients
• Planting Date
• Weather predictions
• Planting/Harvest 

Date
• Pest management 

schedule Daily uptake of NitrogenDaily uptake of water

Output: 
• Irrigation 

amounts and 
timings

• Nitrogen 
amounts and 
timings

Figure 4: Interaction between CERES Wheat and Fertilization/Irrigation 



Module Descriptions

Schroeder, Kamel, Sticklen - Ward, Ritchie, Schulthess - Rafea, Salah Page 17 of 20

ing as much knowledge as possible to the task of Irrigation/Fertilization planning, we can make the

best prediction possible.

8.3 Weed, Disease and Insect Management Specialist

Crop protection decisions at the strategic planning level are considerably more complex than those

that occur with the treatment of a single pest1. The difference in complexity is due to the nature of

both problems. The treatment of a single pest is often done by seeking the advice of an extension

agent or company which specialize in crop protection. However, strategic planning must consider

the entire set of pests which require treatment at a given time during the cropping season. The treat-

ment of these problems cannot be considered in isolation due to the interaction which might take

place between treatments. Examples of these interactions are:

• Treatment of one pest may cover multiple pests. Thus, it would be advantageous to consider
treatments that would cover the largest number of pests in one application.

• If multiple treatments are needed, it may be more efficient to perform all treatments on the
crop at the same time (as in the case of tank-mixes). However, due to interactions between
treatments, this may not be possible.

• Treatments in the past may constrain future pest treatments, as well as future cropping plans.
For example, irrigation scheduling can be affected by when a farmer wishes to spray his/her
crop. Furthermore, chemical treatments which are safe for the current crop, can often have
adverse effects on other crops during the next cropping season.

Due to the number of interactions which can exist between crop planning decisions, we must use

a problem solving organization/strategy which can handle these complexities. The Generic Task

which matches this description is Abductive Assembly. The goal of Abductive Assembly is to gen-

erate a composite hypothesis which will explain a set of findings. In the case of pest management,

the goal of Abductive Assembly is to create a composite treatment which will treat all pests occur-

ring in the field. The generation of such a composite treatment follows the same abductive algorithm

described in (Punch, Tanner, Josephson, & Smith, 1990) as follows:

1. Given the list of possible pests (insects, weeds, or diseases) which need treatment, generate a 
list of possible treatments for each pest (consider chemical, mechanical and biological treat-
ments).

2. Select one pest which needs to be treated.

3. For the pest chosen in step 2, select those treatments which are not yet ruled out.

1.  We use the term “pest” to mean any weed, insect or disease which is damaging to the crop.
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4. If only one treatment is available, select that treatment, otherwise select the most plausible
treatment.

5. Add the treatment from step 4 to the compound treatment. Test for incompatibilities with
existing treatments. If they exist we have two choices, either select another treatment for the
current pest, or remove the incompatible treatments and mark the pests that they treat as
untreated.

6. Mark as treated any other pests which can be treated by the treatment added in step 5. If
some pests are still left untreated, then return to step 2.

By using this form of abductive problem solving, we hope to handle the complexity inherent in

treating combinations of insects, diseases and weeds which occur in the field at a given time. The

composite treatment plan we seek is the most efficient, economical and safe treatment available.

9.0 Conclusion

This paper emphasizes the connection between Generic Tasks, Task Specific Architectures, the

Knowledge Level Architecture and object-oriented design and development. Object-oriented design

provides a vocabulary for organization and control within an object by speaking in terms of the

encapsulation of the data structures and behavior associated with objects in the domain. However,

for knowledge intensive problems, a vocabulary which assist the knowledge engineer in identify

these objects and their interaction is required. Generic Tasks (and other TSAs) provide this vocabu-

lary by explicating organization and control structures specific to problem solving tasks which are

common across domains. For multi-task problems, such as wheat crop management, the Generic

Task approach alone is not enough since GTs do not provide a language to describe the integration

of problem solvers. We use the Knowledge Level Architecture (KLA) vocabulary to describe the

organization and control of several problem solvers integrated to perform multi-task problem solv-

ing. 

Investigations into the KLA leads to a distinction between three levels of description of knowl-

edge-based systems:

1.The individual problem solvers: A functioning system is an example at this level. The vocab-
ulary used here is in terms of objects specific to the domain. For example, for the functioning 
MYCIN system, the terms would include strep infection, patient fever, etc.

2. The problem solving types: Since problem solving types span numerous domains, the
vocabulary at this level uses problem solving specific, but domain independent terms. For
example, classification is used in a number of different domains. Terms such as
classification hierarchy, established nodes, etc. are used to describe the problem solver at
this level.
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3. The Knowledge Level Architecture: This is the highest level of description. The
vocabulary used at this level is in terms of agents, communication channels and message
protocols.

By describing a KBS in terms of these levels, a better understanding of the actual problem solving

being performed is possible. 

It is important to emphasize that the problem solving types from level 2 which are integrated into

a KLA need not be from the Generic Task tool set. As the wheat crop management system shows,

other problems solvers such as simulation models can also be incorporated easily into our system.

Other Task Specific Architectures (TSAs) can be integrated as well. The other TSAs provide prim-

itives which are of smaller grain sizes than the GT primitives. Therefore, the construction of a single

problem solving agent often requires the combination of numerous TSA primitives. Once con-

structed, however, these problem solving agents can interact with the GTs along the communication

channels to perform cooperative problem solving.

The irrigated wheat test bed provides an excellent trial for our ideas on the Knowledge Level

Architecture. We have completed the design of the architecture for the irrigated wheat crop manage-

ment system. Current work is focused on the implementation of the individual modules which will

be integrated into our system. The module for varietal selection has been completed, as well as a

picture based identification for pests. In the future, we wish to extend the ground work laid here to

the management of other crops. The systems for various crops can interact and consider the possi-

bilities of crop rotations over multiple years.
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