Practical Development of Internet Prolog
Applications using a Java Front End

Samhaa R. El-Beltagy, Mahmoud Rafea, & Ahmed Rafea

Central Lab for Agricultural Expert Systems
Agricultural Research Center
Ministry of Agriculture and Land Reclamation.
Cairo, Egypt

El-Nour S. Dokki 12311,Giza Egypt

{samhaa, mahmoud, rafea} @esic.claes.sci.eg

Abstract: This paper introduces a general architecture that could be enployed to many
Prolog appli cations to make them avail able on the Internet. The goproach presented makes
use of client-server architecture where the client is arelatively intelli gent front end written
in Java, and the server isthe Prolog based appli cation. Two appli cations developed using
this architecture: an intelligent image retrieval application, and atoy expert system, are
discus=d.

Keywords: Prolog, Java, Client-server architectures, Hierarchical Classfication, Expert
Systems, Internet appli cations.

Introduction

The widespread use of the Internet and the World Wide Web has motivated much work with the aim
of providing interactive applications on the Internet. Sun’s Javal Java97], Netscape plugins
[BuPIg97], and Microsoft's ActiveX[ActX97] are perhaps the most famous of these endeavors. In
order to support this new technology, Internet browsers, and tods have undergone numerous
evolutions. These advances have made the Internet a very suitable medium for providing
sophisticated servicesincluding those of logic based nature. Traditionally, one of the problems faced
by such appli cations, was that the languages in which they are usually developed (logic programming
languages) was not diredly supported on the Internet. Although, thislack of support has deprived
Internet users from using appli cations that use extensive reasoning faciliti es which are most naturally
supported by these languages, various work arounds that make use of the emerging technology are
currently being devised.

The use of Netscape Plug-ins is one of these alternatives. However, through our experiencein
devising a Prolog pug-in[SINP97] we have identified several disadvantages associated with such an
approach. Plug-ins can only support light weight appli cations, they are platform spedfic, and a user
must download the plugin and install it before using it. Other approaches propose the use of scripting
languages with HTML[3]. While this approach might be dfedive, it iscomplex, reieson heavy
communication, and cannot be reused without changes to support other appli cations.

This paper introduces an approach that takes advantage of the arrent technology through the use of
Java, to bring the power of Prolog-based applications to the Internet. The approach adopted foll ows a
client/server architedure where the dient is afront end with reasonable intelli gent qualiti es and the
server is the Prolog based application. Java has been chosen for the implementation of the front end
for anumber of reasonswhich are described briefly in the foll owing points:

* it isplatform independent

« it allowsthe easy implementation of effedive GUIs,

it isasafelanguage (no pointers, and scripts are tagged)

e it supports a number of network communication mecanisms one of which is scket based
communication which is used by the approach presented in this paper

e and most important of all, it is Internet ready (applets are already the de-facto standard for
exeautable mntent on the Web)

The first part of this paper introduces the appli cation architecure devised to support this work. Then,
two applications. an intdli gent image retrieval application, and atoy expert system, which have been
developed using this approach, are discussed.

Application Architecture

In the approach presented in this paper, the appli cation consists of a mohile dient component, a static
server component, and two communication components: one for the dient and one for the server. The
communication between the dient and the server is based on TCP/IP sockets where exchange of
ASCIl based string messages is facilitated. The @ntent of the messages is dependent on an
application defined protocol supported by the socket components. Figure 1, depicts the relationship
between the different application components.

Client Side Server Side

TCP/IP Socket connectio
Front Ef‘d Client Socket U — Server Socket
Application
4
Uses

Uses

HC Engine

Uses

Interface Library

Figure 1: Relationship between the application components

Comunicates with

Prolog
Application

i

The dient side represents the application front end which is entirdy written in Java aadis
comprised of a number of components. At the heart of the dient sideisthe interface @mmunication
model which is used for intelligent data colledion. The server side, represents the probem-
solving/appli cation-code, and the knowl edge-base/data components and is entirely written in Prolog.

The underlying assumption behind this work isthat many applications could be separated into two
parts. an application component and an interfaceor afront end component. However, this work
acknowledges the fact that application separation is not usually a straight forward task sincethe
control of the interface is usually managed by the application itsdf. For instance in many expert
systems, the questions to be asked are determined by answersto previously asked questions. In this
case several solutions are posshle. The first and the simplest of these, isdevising an application
spedfic interface where theuser is presented with all possble inputs. Needlessto say, this approach
will not mee the needs of any reasonably large appli cation, and in additi on, will confuse the user.

Ancther approach, entail s kegoing control embedded within the problem solving server application. In
that case, the interface will be used to present the user with an input request upon receving such a
request from the server(Szeredi, et al, 1996. Whil e this approach might seem reasonable, it suffers
from major limitations. Firgt, it relies on heavy communication between the server appli cation and the
client front end, so the user may have to wait for prolonged periods of time depending on the network
traffic and band width. In case of synchronous communication, it can engagethe server in one

connedion for an indefinite amount of time, making it imposshble for other users to make use of that
same server. Although time-out operations could be implemented to avoid indefinite postponement,
the application server will still not be fully utili zed. In case of asynchronous communication the server
will have to maintain extra knowledge such that datainputs could be mapped to appli cation clients.
Thiswould be necessary in order to maintain data values that are mnsistent with its clients.

If however, the interface @mponent employed a communication modd that had just enough
knowledge about which inputs it should ask about and in which cases, then the dient could use this
knowledge to colled all needed inputs in an intelli gent fashion, then, them in one batch to the server
for processng. In this casethe mnnedion between the dient and the server will only be open for the
period of sending the inputs, processng them at the server and receéving the output. For most
practical applications, this period is usually reasonably short. Meantime, if other clients need to
service a request, the request will be placed in a wait queue where the waiti ng time will be short
enough to make that wait transparent. However, care must be taken in the seledion of the queue size.
Otherwise, if the number of the dientsfor the application grows, then wait times might also grow to
unsatisfactory figures.

In order to kring this concept into existence we have implemented an intelligent client side
communication model which isdescribed in detail i n the next sedion.

Client side Components

The dient side is composed of acommunication model and a socket interface In order to kuild the
communication model, it uses components from implemented reusable libraries.

The Communication Model

The implemented communication model employs a similar, though not identical, strategy to that
employed by Hierarchical Classfication problem solvers. Hierarchical Classfication(HC) isa problem
solving method identified by Chandrasekran for solving diagnostic types of problems as part of his
Generic Task approach to expert system development. In HC, knowledgeis represented as hypotheses
hierarchically organized in a tree structure such that general hypothesis are aways above more
spedfic ones in the tree Using a control strategy known as establish and refine, hypothesis are
explored top down. If a hypothesis at thetop level succedls (establi shes), its immediate descendants
are required to establish themsdves one by one This processof attempting to establi sh the
descendants isreferred to as "refining” the parent hypothesis. If, on the other hand, a hypothesisfail s,
then it is said to beruled out and so are al the hypothesis beneath it in the tred1].

In our model, all knowledge cmponents for which input is desired, are also aganized in a
hierarchical fashion. The main difference however, is that no actual problem solving takes place The
evaluation of the tree nodes in this case, only servesto intelli gently deducethe next data items for
which to ask the user. The process of building this hierarchy is a fairly smple one given that
dependencies and relations between data input items, are known.

Re-Usable Libraries

In order to generalize development using this approach, a library that supports hierarchical
clasgfication was implemented in Java. In thislibrary aHC engine, aswell as node definitions and
manipulation operations, were supgied. In order to huild spedfic applications, the user only hasto
extend the HC class and define nodes in which variables are objed instances dedared using another
reusable interfaceli brary components.

The interfacelibrary was built so asto providea set of standardized dalog components for different
data types. Thislibrary managesall error handling and presentation details © asto conceal these low
level interface aspeds from the application builder. Implemented classes, include support for
bodean, single sdedion lists, multiple seedion lists, strings, integers, reals, and date variables. The
library isgeneric and extensible. Using thislibrary all a programmer hasto doisto dedare avariable
obed using any of the dassesdefined for each datatype. When avalueis nealed, a simple method
getValug() is invoked upon that olhjed. Upon thisinvocation, adialog requesting the value of that
variable is presented to the user and later returned to the aller.

The client socket component

The dient socket in conjunction with the server socket, act asa communication interface between the
Java client front end, and the Prolog-based

— y SN application. The dient socket isimplemented asa
4 — — ~ reusable Java Class Each timethe dient front end

/ ClientSocket .| needs to communicate with the Prolog appli cation,

/ - || it creates an instanceof this component giving it
/ m_So.cke_t : Socket bath the host name and the port number on which
/ n_1_9s : PrintStream / the Prolog application’s srver socket resides.
i m_is - !Z)atalnputStream Since the front end is usualy implemented asa
N - clientSocket() | Java gplet, host information is usually passed to it
~ c;::z()) \ as parameters from its initiating HTML page for

\\ closeClient() /} the purpose of generality.

\ P s T The dient socket provides two primary methods to
N handle 1/O between the dient and the server. The

~ first of these (void out(String outString))
Figure 2: The client socket class is a method for writing a string on the TCP
stream connedion between the dient and the

server, whil e the second (String in()) isamethod for reading from that same stream. Using these
two simple methods, sufficient bases for communication between the dient and the server, are
establi shed.

public ClientSocket (String host, int port) {
try {
m_Socket = new Socket(host, port);
m_os =new PrintStream (m_Socket.getOutputStream ()); /lget output stream
m_is =new DatalnputStream (m_Socket.getinputStream ());//get input stream

catch (- UnknownHostException e){
System.err.printin ("Don't know about host: " + host);

}
catch (IOException e){

System.err.printin ("Couldn't get I/O for the connection to: " + host);
}

Figure 3: Coderesponsible for socket creation and initiation

Server Side Components

The server side mnsists of an appli cation component which in turn, could be mmposed of a number
of components, and a server socket. .

The server socket component

This component is smple. It is linked with the server appli cation code. The server application is
responsible for itsinitializaion. Itsfunctions are;

» Creating asocket and binding it to a spedfic port number.

» Creating abacklog gueue of a particular length.

e Opening and closing a client stream.

» Reading from and writi ng to the dient stream.

» Managing the dientsin the queue sequentially on the basis of first comefirst served.

The service isachieved by passng Prolog terms snt by the dient to the server application through a
cal tothe procedure application_handle / 2. Consequently, the server appli cation must define
the procedure application_handle / 2 sothat it never fail s and returns with the term that will be
sent to the dient. The server socket component codeis own in figure 4.

It should be remarked that the success of this architedure depends on the dficiency of the server
application performance The shorter the time neealed to process the dient request, the better the
behavior of the application on the Internet.

start_server (Port, Queuelength) :-
socket('AF_INET', Socket),

socket_bind (Socket, 'AF_INET'(localhost , Port)),
socket_listen (Socket, QueuelLength),
loop(Socket).
loop(Socket) :-
socket_accept (Socket, Client, Stream),
on_exception (RE, get _request (Stream, Request), h 1(Stream,Client,RE),
on_exception (PE, process(Request, Stream, Client), h 1(Stream, Client, PE)),
loop(Socket).

get_request (Stream , Request):-
read(Stream, Request).

process(bye, Stream, _Client) :-
close(Stream).

process(Request, Stream, Client) :-
on_exception (E, user:application_handle (Request,Result), h 2(Stream, no, E)),
return(Stream,Result),
on_exception (RE, get_request (Stream, Request 1), h 1(Stream,Client,RE),
on_exception (PE, process(Request 1, Stream, Client), h 1(Stream, Client, PE)).

return(Stream,Result) :-
nonvar (Result), !,
format(Stream, " ~w~n", [Result]),
flush_output (Stream).

return(_, _).

h1(Stream, C, E) :-
format(Stream, " error~n ",[]),
format(user_output , "Client: ~w~nError : ~w",[C, E]).

h2(Stream, Ack, E) :-
format(Stream, " ~w~n",[Ack]),
format(user_output, "Application Error: ~w~n",[E]).

Figure 4: Prolog code of the server socket component

Image search application

The objedive behind the development of this application istwo-fold. Thefirst isto aid aremote
Internet client in searching for the images that best matches hisinput observationg Cul S97]. The
semnd is to cooperate with an expert system explanation agent'. As described by our general

architedure, the application is composed of two parts. a static server component and a mohile dient
component. Figure 5 shows a simplified dagram of interactions between the appli cation components.

The static server component

The satic server application was implemented using SICStus Prolog[2]. It, consists of a reusable
search engine, and a domain spedfic image database mapping observationsto images (figures). The
input to the search engineisalist of observations and the output is alist of image-fil e structures. Each
image-file structure mnsists of a file name and the actual observations associated with theimagein
thefile. The database is constructed though the use of two predicates: finding/4 and image/2.

The database predicates take the foll owing pattern:
finding(attribute, value, op, key).
image(key, file)

Theinput list defined by the appli cation protocol takes the foll owing form:
[attributel op valuel, attribute2 op value2,]

' The eplanation agent will employ asimilar architedture to that discussd in thisarticle. It is now
under development.

where<op>isamong =, >, <, >=,0r =<,
The output is a string of the foll owing form:

"f:<filenamel> < attribute><op><value>,..., f.<filename2>....."
OR

"e:<Error>"

where <attribute><op><value>, ... are those belonging to theimage.

1.Collect Obsevations

5. Display 4
Image List

Image Search
Applet

Prolog Image
Search Egine

Observations

3. Process
4.Return Image File Observations
Names & Attrirbutes

Image Data Base

Figure5: A simplified diagram of the image fetching process.

get_image (List, Output) :-
check_syntax (List), !,

findall (File, (list_to_key (List, Fs), image_file (Fs, File)), Files 1),
(Files 1 =[->
(list_to_key (List, Fs) ->
length(Fs, Len), % Collect all subsets
findall (I- SubL,(sublist (SubL, Fs), length(SubL, SLen),
SLen > 0, SlLen <Len,lis 1000 // SLen), SubLs),
(SubLs =[] -> % Singlton and fail to get an image
Output=" e:No image file found'
; keysort (SubLs, SubLs 1), % try maximum
SubLs1l =[l- SubFs|Rest], % get first subset
best_image_file (Rest,l,SubFs [], Files 2),
(Files 2 =[] ->Output =" e:No image file found'

; format_output (Files 2, Output)
)

; Output="e:Some input observation(s) is/are not defined'
; format_output (Files 1, Output)

)
get_image (_List, O) :-
O='e:The inputis not a valid list ([a op v,...] or op is not defined.)".

best_image_file a, _, SubFs, Files 1, Files) :- % Handle input of two observations

findall (File, image_file (SubFs, File), Files 2),

(Files 2 \==1]] -> append(Files 2, Files 1, Files) ; Files = Files 1).
best_image_file (I- Fs|Rest 1,1 1, SubFs, Files 1, Files):- % Collects ame weight images

findall (File, image_file (SubFs, File), Files 2), Files 2 \==1,1,

append(Files 2, Files 1, Files 3),

(=1 1 -> best_image_file (Rest, I, Fs, Files 3, Files) ; Files = Files 3).
best_image_file (I- Fs|Rest 1,1 1,_, Files 1, Files) :- % Keep on looping

(Files 1 =[-> best_image_file (Rest, I, Fs, Files 1, Files)

; =1 1 -> best_image_file (Rest, I, Fs, Files 1, Files)

Files = Files 1

Figure 6: The Core of Prolog mage sear ch engine

The client component

The dient component is composed of an applet which includes a set of observations, a HC component
where the observations are distributed over nodes, aparser, and asimple GUI. Upon opening the
page that containsthe applet, theapplet is downloaded and the mntrol interface appears. Using this
GUI, a user may initiate an image search. A seriesof question dialogs then start to appear. The
ordering of the appearance of the dialogs is controlled by the answers of the user to the previoudy
presented questions, through the HC component. This process constitutes the data coll edion phase.
After this phaseis completed, a string representing the aggregate of the inputsis prepared and passed
to anewinstanceof the dient socket which establishes alink with the server and usesit to send the
string to the Prolog search engineresiding on the server. After the search engine has processed the
input, the dient socket reads the output which represents the file names with observations that best
match the user’'s inputs, and the exact observations assciated with each, and passsit to the applet.
The dient socket then terminates its connedion with the server and des. The dient processs the
output through the parser, and then presents a list of al imagenamestotheuser inalist. Upon
seleding an image to view, the dient fetchesthefile using the URL passd to it by the server, and
uses the observations requested by the user and the actual observations asociated with theimage to
determine matching and mismatching features. The image isthen presented to the user along with
the match information.

Expert system application

This application is a toy expert system for diagnosing car faultgfCaES97]. The server application is
built in SICStus Prolog[2]. It consists of the application knowledge base and alibrary of general
problem solving methods’. The details of the problem solving library are out of the scope of this

article. Actual expert systems that have already been developed at the Central Laboratory for
Agricultural Expert Systems, are airrently being ported to the proposed architedure.

In the ar fault application, the knowledge base wnsists of nodes for ahierarchical classfication
generic task and a global database objed. The latter represents a blackboard which is used by the
reasoning task. The nodes are depicted in figure 7.

findng: [0]
D1 = Condensation in distributor cap
D2 = Faulty distribution arm
D3 = Worn distribution brushes
sO = problem(yes)).
- - ; sl =starte r(yes)).
finding: [s1] _Dlagnoas D3 s2 = starter(no%/.)
findng [$2,5,57] s3 = cuts_at speed (yes)).
s4 = cuts_at speed (no)).
s5 = start_diff (yes)).
s6 = start_diff (no)).
; ; ; ; 7 = cuts_shortl (yes)).
Diagnasis D1 Diagnasis D2 si= Yy
findng [s4] findng [3] s8 = cuts_shortly (no)).

Figure 7: Nodes of HC for the car fault expert system

The input the tothe expert system is a set of observations and the output is the diagnosis and advice
Inputs to the expert system are @lleded via client applet and sent to the server application in asimilar
fashion to that of theimage application. However, the applet GUI is different than that of the image
search applet in that it provides a text bax where the diagnosis and advice of the expert system appear.

% Thislibrary is under publication.

Conclusion and future work

Through the architedure introduced in this paper, many applications developed in Prolog could be
easly ported tothe Internet. The Prolog socket component and the Java li braries are reusabl e without
any modification. An application builder only needs to define relations between data input items
using the mommunication model presented, and adapt the Prolog appli cation for batch interaction with
the dient component.

The implementation of work presented here wuld be greatly simplified through devel opment
automation. For that purpose, a number of tods have been implemented to support thiswork and its
consistency across the dient and server components. However, discusson of thesetods, is beyond
the scope of this paper.

Future work will focus on enhancing the image tod by using adatic databasestoreplace the
Prolog database. It will also implement protocol standardization through support of KQML based
messge echange. A number of existing Prolog based expert systems are aurrently being ported to
this architedure.

References

1. EI-Bdtagy, S., Rafea, A. Kamd, A., Sticklen, J., Schulthess U., Ward, R. (1995. "An Expert
System For Wheat Disorders Diagnosis And Treatment Using A Hierarchical Classfication
Problem Solver". 2ND IFAC/IFIP/EurAgEng Workshop on Artificial Intelligencein Agriculture,
Wageningen, Netherlands, Pergamon.

2. SICS Rogramming Systems Group. SICStus Prolog User's Manual. Swedish Ingtitute of
Computer Science, June 1995

3. Szeredi, P.,, Manar, K., and Scott R. “Serving Multiple HTML Clients from a Prolog
Application”, Procealings of the 1st Workshop on Logic Programming Todsfor INTERNET
Applications, Bonn, Germany, 1996

Internet References

[ActX97] Activex.com
URL.: http://mw.activex.com/

[BuPIg97] Building a Plugrin from the ground up
URL:
http://home.netscape.com/misc/devel oper/conference/proceedings/ci5/index.html

[CaES97] Car Fault Expert System
URL.: http://tomato.claes.sci.eg/carFault/

[CulS97] Cuptex Image Server
URL.: http://tomato.claes.sci.eg/cuptexlmgs/

[Javad7] The Java home page.
URL.: http://java.sun.com

[SINPO7] SICStus Prolog Netscape Plugin
URL.: http://potato.claes.sci.eg/claes/plugin/npsp.html

