
1

Practical Development of Internet Prolog
Applications using a Java Front End

Samhaa R. El-Beltagy, Mahmoud Rafea, & Ahmed Rafea

Central Lab for Agricultural Expert Systems
Agricultural Research Center

Ministry of Agriculture and Land Reclamation.
 Cairo, Egypt

El-Nour St. Dokki 12311,Giza Egypt

{samhaa, mahmoud, rafea}@esic.claes.sci.eg

Abstract: This paper introduces a general architecture that could be employed to many
Prolog appli cations to make them available on the Internet. The approach presented makes
use of client-server architecture where the client is a relatively intelli gent front end written
in Java, and the server is the Prolog based appli cation. Two appli cations developed using
this architecture: an intelli gent image retrieval appli cation, and a toy expert system, are
discussed.

Keywords: Prolog, Java, Client-server architectures, Hierarchical Classification, Expert
Systems, Internet appli cations.

Introduction
The widespread use of the Internet and the World Wide Web has motivated much work with the aim
of providing interactive applications on the Internet. Sun’s Java[Java97], Netscape plug-ins
[BuPlg97], and Microsoft’s ActiveX[ActX97] are perhaps the most famous of these endeavors. In
order to support this new technology, Internet browsers, and tools have undergone numerous
evolutions. These advances have made the Internet a very suitable medium for providing
sophisticated services including those of logic based nature. Traditionally, one of the problems faced
by such applications, was that the languages in which they are usually developed (logic programming
languages) was not directly supported on the Internet. Although, this lack of support has deprived
Internet users from using applications that use extensive reasoning faciliti es which are most naturall y
supported by these languages, various work arounds that make use of the emerging technology are
currently being devised.

The use of Netscape Plug-ins is one of these alternatives. However, through our experience in
devising a Prolog plug-in[SiNP97] we have identified several disadvantages associated with such an
approach. Plug-ins can only support light weight applications, they are platform specific, and a user
must download the plugin and install it before using it. Other approaches propose the use of scripting
languages with HTML[3]. While this approach might be effective, it is complex, relies on heavy
communication, and cannot be reused without changes to support other applications.

This paper introduces an approach that takes advantage of the current technology through the use of
Java, to bring the power of Prolog-based applications to the Internet. The approach adopted follows a
client/server architecture where the client is a front end with reasonable intelli gent qualiti es and the
server is the Prolog based application. Java has been chosen for the implementation of the front end
for a number of reasons which are described briefly in the following points:
 • it is platform independent
 • it allows the easy implementation of effective GUIs,
 • it is a safe language (no pointers, and scripts are tagged)

2

 • it supports a number of network communication mechanisms one of which is socket based
communication which is used by the approach presented in this paper

 • and most important of all , it is Internet ready (applets are already the de-facto standard for
executable content on the Web)

The first part of this paper introduces the application architecture devised to support this work. Then,
two applications: an intelli gent image retrieval application, and a toy expert system, which have been
developed using this approach, are discussed.

Application Architecture
In the approach presented in this paper, the application consists of a mobile client component, a static
server component, and two communication components: one for the client and one for the server. The
communication between the client and the server is based on TCP/IP sockets where exchange of
ASCII based string messages is facilit ated. The content of the messages is dependent on an
application defined protocol supported by the socket components. Figure 1, depicts the relationship
between the different application components.

Server Side

Server Socket

Prolog
Appl icat ion

Uses

Front End
Appl icat ion

HC Engine

Interface Library

Cl ient Socket

Uses

Uses

Uses

Client Side
TCP/IP Socket connect ion

Comunicates wi th

Figure 1: Relationship between the application components

 The client side represents the application front end which is entirely written in Java and is
comprised of a number of components. At the heart of the client side is the interface communication
model which is used for intelli gent data collection. The server side, represents the problem-
solving/application-code, and the knowledge-base/data components and is entirely written in Prolog.

The underlying assumption behind this work is that many applications could be separated into two
parts: an application component and an interface or a front end component. However, this work
acknowledges the fact that application separation is not usually a straight forward task since the
control of the interface is usually managed by the application itself. For instance, in many expert
systems, the questions to be asked are determined by answers to previously asked questions. In this
case several solutions are possible. The first and the simplest of these, is devising an application
specific interface where the user is presented with all possible inputs. Needless to say, this approach
will not meet the needs of any reasonably large application, and in addition, will confuse the user.

Another approach, entail s keeping control embedded within the problem solving server application. In
that case, the interface will be used to present the user with an input request upon receiving such a
request from the server(Szeredi, et al, 1996). While this approach might seem reasonable, it suffers
from major limitations. First, it relies on heavy communication between the server application and the
client front end, so the user may have to wait for prolonged periods of time depending on the network
traff ic and band width. In case of synchronous communication, it can engage the server in one

3

connection for an indefinite amount of time, making it impossible for other users to make use of that
same server. Although time-out operations could be implemented to avoid indefinite postponement,
the application server will still not be full y utili zed. In case of asynchronous communication the server
will have to maintain extra knowledge such that data inputs could be mapped to application clients.
This would be necessary in order to maintain data values that are consistent with its clients.

If however, the interface component employed a communication model that had just enough
knowledge about which inputs it should ask about and in which cases, then the client could use this
knowledge to collect all needed inputs in an intelli gent fashion, then, them in one batch to the server
for processing. In this case the connection between the client and the server will only be open for the
period of sending the inputs, processing them at the server and receiving the output. For most
practical applications, this period is usually reasonably short. Meantime, if other clients need to
service a request, the request will be placed in a wait queue where the waiting time will be short
enough to make that wait transparent. However, care must be taken in the selection of the queue size.
Otherwise, if the number of the clients for the application grows, then wait times might also grow to
unsatisfactory figures.

In order to bring this concept into existence, we have implemented an intelli gent client side
communication model which is described in detail i n the next section.

Client side Components

The client side is composed of a communication model and a socket interface. In order to build the
communication model, it uses components from implemented reusable libraries.

The Communication Model
The implemented communication model employs a similar, though not identical, strategy to that
employed by Hierarchical Classification problem solvers. Hierarchical Classification(HC) is a problem
solving method identified by Chandrasekran for solving diagnostic types of problems as part of his
Generic Task approach to expert system development. In HC, knowledge is represented as hypotheses
hierarchicall y organized in a tree structure such that general hypothesis are always above more
specific ones in the tree. Using a control strategy known as establi sh and refine, hypothesis are
explored top down. If a hypothesis at the top level succeeds (establi shes), its immediate descendants
are required to establi sh themselves one by one. This process of attempting to establi sh the
descendants is referred to as "refining" the parent hypothesis. If, on the other hand, a hypothesis fail s,
then it is said to be ruled out and so are all the hypothesis beneath it in the tree[1].

In our model, all knowledge components for which input is desired, are also organized in a
hierarchical fashion. The main difference however, is that no actual problem solving takes place. The
evaluation of the tree nodes in this case, only serves to intelli gently deduce the next data items for
which to ask the user. The process of building this hierarchy is a fairly simple one given that
dependencies and relations between data input items, are known.

Re-Usable Libraries
In order to generali ze development using this approach, a library that supports hierarchical
classification was implemented in Java. In this library a HC engine, as well as node definitions and
manipulation operations, were supplied. In order to build specific applications, the user only has to
extend the HC class, and define nodes in which variables are object instances declared using another
reusable interface library components.

The interface library was built so as to provide a set of standardized dialog components for different
data types. This library manages all error handling and presentation detail s so as to conceal these low
level interface aspects from the application builder. Implemented classes, include support for
boolean, single selection li sts, multiple selection li sts, strings, integers, reals, and date variables. The
library is generic and extensible. Using this library all a programmer has to do is to declare a variable
object using any of the classes defined for each data type. When a value is needed, a simple method
getValue() is invoked upon that object. Upon this invocation, a dialog requesting the value of that
variable is presented to the user and later returned to the caller.

4

The client socket component
The client socket in conjunction with the server socket, act as a communication interface between the

Java client front end, and the Prolog-based
application. The client socket is implemented as a
reusable Java Class. Each time the client front end
needs to communicate with the Prolog application,
it creates an instance of this component giving it
both the host name and the port number on which
the Prolog application’s server socket resides.
Since the front end is usually implemented as a
Java applet, host information is usually passed to it
as parameters from its initiating HTML page for
the purpose of generalit y.

The client socket provides two primary methods to
handle I/O between the client and the server. The
first of these (void out(String outString))

is a method for writing a string on the TCP
stream connection between the client and the

server, while the second (String in()) is a method for reading from that same stream. Using these
two simple methods, suff icient bases for communication between the client and the server, are
establi shed.

Figure 3: Code responsible for socket creation and initiation

Server Side Components

The server side consists of an application component which in turn, could be composed of a number
of components, and a server socket. .

The server socket component
This component is simple. It is linked with the server application code. The server application is
responsible for its initiali zation. Its functions are:
 • Creating a socket and binding it to a specific port number.
 • Creating a backlog queue of a particular length.
 • Opening and closing a client stream.
 • Reading from and writing to the client stream.
 • Managing the clients in the queue sequentiall y on the basis of first come first served.

The service is achieved by passing Prolog terms sent by the client to the server application through a
call to the procedure application_handle / 2. Consequently, the server application must define
the procedure application_handle / 2 so that it never fail s and returns with the term that will be
sent to the client. The server socket component code is shown in figure 4.

� � � � � � � � � 	 � �

 � � � � 	 � � � � � � 	 � �

 � �
 � � � � � � � � � � �

 � �
 � � � � � � � � � � � � � � �

� � � � � � � � � 	 � � � �

� � � � �
� � � �

� � �
 � � � � � � � � �

� � � � � � � � � 	 � �

 � � � � 	 � � � � � � 	 � �

 � �
 � � � � � � � � � � �

 � �
 � � � � � � � � � � � � � � �

� � � � � � � � � 	 � � � �

� � � � �
� � � �

� � �
 � � � � � � � � �

Figure 2: The client socket class

public ClientSocket (String host, int port) {
try {

m_Socket = new Socket(host, port);
m_os =new PrintStream (m_Socket.getOutputStream ()); //get output stream
m_is =new DataInputStream (m_Socket.getInputStream ());//get input stream

}
catch (UnknownHostException e) {

 System.err.println ("Don't know about host: " + host);
}
catch (IOException e) {

 System.err.println ("Couldn't get I/O for the connection to: " + host);
}

}

5

It should be remarked that the success of this architecture depends on the eff iciency of the server
application performance. The shorter the time needed to process the client request, the better the
behavior of the application on the Internet.

Figure 4: Prolog code of the server socket component

Image search application
The objective behind the development of this application is two-fold. The first is to aid a remote
Internet client in searching for the images that best matches his input observations[CuIS97]. The

second is to cooperate with an expert system explanation agent � . As described by our general

architecture, the application is composed of two parts: a static server component and a mobile client
component. Figure 5 shows a simpli fied diagram of interactions between the application components.

The static server component

The static server application was implemented using SICStus Prolog[2]. It, consists of a reusable
search engine, and a domain specific image database mapping observations to images (figure5). The
input to the search engine is a li st of observations and the output is a li st of image-file structures. Each
image-file structure consists of a file name and the actual observations associated with the image in
the file. The database is constructed though the use of two predicates: finding/4 and image/2.

The database predicates take the following pattern:
finding(attribute, value, op, key).
image(key, file)

The input list defined by the application protocol takes the following form:
[attribute1 op value1, attribute2 op value2,]

� The explanation agent will employ a similar architecture to that discussed in this article. It is now

under development.

start_server (Port, QueueLength) :-
socket('AF_INET', Socket),
socket_bind (Socket, 'AF_INET'(localhost , Port)),
socket_listen (Socket, QueueLength),
loop(Socket).

loop(Socket) :-
socket_accept (Socket, Client, Stream),
on_exception (RE, get_request (Stream, Request), h 1(Stream,Client,RE)),
on_exception (PE, process(Request, Stream, Client), h 1(Stream, Client, PE)),
loop(Socket).

get_request (Stream , Request):-
read(Stream, Request).

process(bye, Stream, _Client) :-
close(Stream).

process(Request, Stream, Client) :-
on_exception (E, user:application_handle (Request,Result), h 2(Stream, no, E)),
return(Stream,Result),
on_exception (RE, get_request (Stream, Request 1), h 1(Stream,Client,RE)),
on_exception (PE, process(Request 1, Stream, Client), h 1(Stream, Client, PE)).

return(Stream,Result) :-
nonvar (Result), !,
format(Stream, " ~w~n", [Result]),
flush_output (Stream).

return(_, _).

h1(Stream, C, E) :-
format(Stream, " error~n ",[]),
format(user_output , "Client: ~w~nError : ~w",[C, E]).

h2(Stream, Ack , E) :-
format(Stream, " ~w~n",[Ack]),

format(user_output, "Application Error: ~w~n",[E]).

6

where <op> is among = , > , < , >= , or =<.
The output is a string of the following form:

"f:<filename1>,<attribute><op><value>,..., f:<filename2>....."
OR

"e:<Error>"
where <attribute><op><value>, ... are those belonging to the image.

Image Search
Applet

2.Send
Observations

Prolog Image
Search Egine

4.Return Image File
Names & Attr irbutes

3. Process
Observations

Image Data Base

1.Collect Obsevations

5. Display
Image List

Figure 5: A simplified diagram of the image fetching process.

Figure 6: The Core of Prolog Image search engine

get_image (List, Output) :-
check_syntax (List), !,
findall (File, (list_to_key (List, Fs), image_file (Fs , File)), Files 1),
(Files 1 = [] ->

(list_to_key (List, Fs) ->
length(Fs, Len), % Collect all subsets
findall (I- SubL,(sublist (SubL, Fs), length(SubL, SLen),

 SLen > 0, SLen < Len, I is 1000 // SLen), SubLs),
(SubLs = [] -> % Singlton and fail to get an image

Output = ' e:No image file found'
; keysort (SubLs , SubLs 1), % try maximum

SubLs 1 = [I- SubFs|Rest], % get first subset
best_image_file (Rest,I,SubFs ,[], Files 2),
(Files 2 = [] -> Output = ' e:No image file found'
; format_output (Files 2, Output)
)

)
; Output='e:Some input observation(s) is/are not defined'
)

; format_output (Files 1, Output)
).

get_image (_List, O) :-
O='e:The input is not a valid list ([a op v,...] or op is not defined.)'.

best_image_file ([], _, SubFs, Files 1, Files) :- % Handle input of two observations
findall (File, image_file (SubFs, File), Files 2),
(Files 2 \== [] -> append(Files 2, Files 1, Files) ; Files = Files 1).

best_image_file ([I- Fs|Rest], I 1, SubFs, Files 1, Files) :- % Collect s ame weight images
findall (File, image_file (SubFs, File), Files 2), Files 2 \== [], !,
append(Files 2, Files 1, Files 3),
(I = I 1 -> best_image_file (Rest, I, Fs, Files 3, Files) ; Files = Files 3).

best_image_file ([I- Fs|Rest], I 1, _, Files 1, Files) :- % Keep on looping
(Files 1 = [] -> best_image_file (Rest, I, Fs, Files 1, Files)
; I = I 1 -> best_image_file (Rest, I, Fs, Files 1, Files)
; Files = Files 1
).

. . . .

. . . .

. . . .

7

The client component

The client component is composed of an applet which includes a set of observations, a HC component
where the observations are distributed over nodes, a parser, and a simple GUI. Upon opening the
page that contains the applet, the applet is downloaded and the control interface appears. Using this
GUI, a user may initiate an image search. A series of question dialogs then start to appear. The
ordering of the appearance of the dialogs is controlled by the answers of the user to the previously
presented questions, through the HC component. This process, constitutes the data collection phase.
After this phase is completed, a string representing the aggregate of the inputs is prepared and passed
to a new instance of the client socket which establi shes a link with the server and uses it to send the
string to the Prolog search engine residing on the server. After the search engine has processed the
input, the client socket reads the output which represents the file names with observations that best
match the user’s inputs, and the exact observations associated with each, and passes it to the applet.
The client socket then terminates its connection with the server and dies. The client processes the
output through the parser, and then presents a li st of all image names to the user in a li st. Upon
selecting an image to view, the client fetches the file using the URL passed to it by the server, and
uses the observations requested by the user and the actual observations associated with the image to
determine matching and mismatching features. The image is then presented to the user along with
the match information.

Expert system application
This application is a toy expert system for diagnosing car faults[CaES97]. The server application is
built i n SICStus Prolog[2]. It consists of the application knowledge base and a library of general

problem solving methods
�

. The detail s of the problem solving library are out of the scope of this

article. Actual expert systems that have already been developed at the Central Laboratory for
Agricultural Expert Systems, are currently being ported to the proposed architecture.

In the car fault application, the knowledge base consists of nodes for a hierarchical classification
generic task and a global database object. The latter represents a blackboard which is used by the
reasoning task. The nodes are depicted in figure 7.

Figure 7: Nodes of HC for the car fault expert system

The input the to the expert system is a set of observations and the output is the diagnosis and advice.
Inputs to the expert system are collected via client applet and sent to the server application in a similar
fashion to that of the image application. However, the applet GUI is different than that of the image
search applet in that it provides a text box where the diagnosis and advice of the expert system appear.

�

 This library is under publication.

finding: [s0]

finding: [s1] Diagnosis: D3
finding: [s2,s5,s7]

Diagnosis: D1
finding: [s4]

Diagnosis: D2
finding: [s3]

D1 = Condensation in distributor cap
D2 = Faulty distribution arm
D3 = Worn distribution brushes
s0 = problem(yes)).
s1 = starte r(yes)).
s2 = starter(no)).
s3 = cuts_at_speed (yes)).
s4 = cuts_at_speed (no)).
s5 = start_diff (yes)).
s6 = start_diff (no)).
s7 = cuts_shortly (yes)).
s8 = cuts_shortly (no)).

8

Conclusion and future work
Through the architecture introduced in this paper, many applications developed in Prolog could be
easily ported to the Internet. The Prolog socket component and the Java libraries are reusable without
any modification. An application builder only needs to define relations between data input items
using the communication model presented, and adapt the Prolog application for batch interaction with
the client component.

The implementation of work presented here could be greatly simpli fied through development
automation. For that purpose, a number of tools have been implemented to support this work and its
consistency across the client and server components. However, discussion of these tools, is beyond
the scope of this paper.

 Future work will focus on enhancing the image tool by using a static databases to replace the
Prolog database. It will also implement protocol standardization through support of KQML based
message exchange. A number of existing Prolog based expert systems are currently being ported to
this architecture.

References
 1 . El-Beltagy, S., Rafea, A. Kamel, A., Sticklen, J., Schulthess, U., Ward, R. (1995). "An Expert

System For Wheat Disorders Diagnosis And Treatment Using A Hierarchical Classification
Problem Solver". 2ND IFAC/IFIP/EurAgEng Workshop on Artificial Intelli gence in Agriculture,
Wageningen, Netherlands, Pergamon.

 2 . SICS Programming Systems Group. SICStus Prolog User's Manual. Swedish Institute of
Computer Science, June 1995.

 3 . Szeredi, P., Moln
�
r, K., and Scott R. “Serving Multiple HTML Clients from a Prolog

Application” , Proceedings of the 1st Workshop on Logic Programming Tools for INTERNET
Applications , Bonn, Germany, 1996.

Internet References

[ActX97] Activex.com
URL: http://www.activex.com/

[BuPlg97] Building a Plug-in from the ground up
URL:
http://home.netscape.com/misc/developer/conference/proceedings/ci5/index.html

[CaES97] Car Fault Expert System
URL: http://tomato.claes.sci.eg/carFault/

[CuIS97] Cuptex Image Server
URL: http://tomato.claes.sci.eg/cuptexImgs/

[Java97] The Java home page.
URL: http://java.sun.com

[SiNP97] SICStus Prolog Netscape Plugin
URL: http://potato.claes.sci.eg/claes/plugin/npsp.html

