
1

KROL: A Knowledge Representation Object
Language On Top Of Prolog

Khaled Shaalan
Computer and Information Sciences Dept., Institute of Statistical Studies and Research (ISSR),

Cairo Univ., 5 Tharwat St., Orman, Giza, Egypt

Mahmoud Rafea
Central Lab. For Agricultural Expert Systems (CLAES), P.O. Box: 100 Dokki, Giza, Egypt

Ahmed Rafea
Computer and Information Sciences Dept., Institute of Statistical Studies and Research (ISSR),

Cairo Univ., 5 Tharwat St., Orman, Giza, Egypt

E-mail:{ shaalan, mahmoud, rafea} @esic.claes.sci.eg
Telephone: 202-361177

Fax:202-3604727

2

KROL: A Knowledge Representation Object
Language On Top Of Prolog

This paper presents a Knowledge Representation Object Language (KROL)
on top of Prolog. KROL aimed at providing the ability to develop second-generation
expert systems. The main aspects of KROL include multi-paradigm knowledge
representation (first-order predicate logic, objects, rules), inference mechanisms at
different levels of granularity, explanation facility, object-oriented database management
module, and user-friendly interface. KROL has sufficient expressive power to be used in
applying demanding knowledge-based modeling methodologies, such as KADS and
Generic Task, which are the major landmarks of the second-generation expert systems
technology. Four successful agricultural expert systems were developed in the last six
years using KROL. To demonstrate the language capabilities, we present an example of
disorder diagnosis.

3

1. INTRODUCTION
Object-Oriented technology has become a powerful means of handling the complexity inherent in many

systems. Object-Oriented technology has influenced and benefited from research in the arena of artificial

intelligence and Knowledge-Based Systems (KBS) (Harmon, 1995; Schroeder et al. 1994). As far as the

representation of the real world is concerned, the goal of knowledge representation in KBS and object

modeling is the same. An object-oriented knowledge structure is not only models the problem domain

closely, but also facil itates the implementation of a generic inference component (Lyndon et al., 1995).

Object-Oriented methodology is used in designing KBS to assist expert systems designers from the

conceptual design phase to the validation phase (Akoka et a., 1996). Conversely, a knowledge-based

approach is used to make preparing object-oriented code for reuse significantly easier and more

quantifiable (Etzkorn et al., 1995). There is a long history of representing knowledge in the form of rules.

The advantages of rule-based expert systems have been documented in the literature (Hayes-Roth, et al.,

1983).

The combination of object and rule processing provides a firm foundation for addressing more complex

problem (Kowalski et al., 1990). Both paradigms increase programmer productivity during application

development and reduce maintenance costs. The synthesis of object and rule processing provides all the

advantages of both technologies, as well as some advantages available only as a result of their combination.

Augmenting rules with objects makes it possible to refine knowledge about the application even than with

rules alone. The rule-based application can exploit data abstraction and encapsulation principles to structure

knowledge. Enhancing objects with rules provides a more powerful paradigm for reasoning about objects.

In addition, the inference engine in a rule-based system allows reasoning knowledge to be expressed more

clearly and concisely. All these have motivated us to develop a new language on top of Prolog.

Prolog has been a primary language for artificial intelligence,

implementation language. Prolog has three positi ve features (Vranes et al., 1994).

4

First, Prolog syntax and semantics are much closer to formal logic, the most common way of representing

facts and reasoning methods used in artificial intelligence. Second, Prolog provides automatic backtracking,

a feature making for considerably easier search, the most central of all artificial intelli gence techniques.

Third, Prolog supports multidirectional reasoning in which arguments to a procedure can freely be

designated inputs and outputs in different ways in different procedure call s, so that the same procedure

definition can be used for many different kinds of reasoning. Besides this, new implementation techniques

have dramatically improved the eff iciency of the current versions of Prolog. KROL has been implemented

on top of SICStus Prolog (SICS, 1995) for many good reasons, including: portabil ity to many computer

systems, interface between C and Prolog, the range of libraries that have developed. It is aimed at further

extending the expressiveness of representing knowledge and information in Prolog.

Several attempts have been made to extend logic programming for better knowledge representation. Much

of these works supports one paradigm of knowledge representation, e.g. frame (Iline et al., 1987), semantic

network (Yoshiyuki et al. 1987), and blackboard (Brogi et al., 1991; Vranes et al. 1994). Though some

researchers have proposed hybrid knowledge representation (Xu et al., 1994), they have no support for

second-generation expert systems. Distinguishing from the above work, our objective is to develop a

knowledge representation language that has expressive power to be used in applying demanding

knowledge-based modeling methodologies, such as KADS (Schreiber et al., 1993) and Generic Task (GT)

(Chandrasekaran, 1986), which are suitable for large-scale knowledge bases (David et al. 1993).

KROL provides facili ties that are important in knowledge representation and processing, such as:

 • The expressive power to represent complex knowledge. The multi-paradigm knowledge

representation of KROL avoids restricting users to a single way of expressing either knowledge or

data.

 • The facil ity to effectively modularize a knowledge base and to construct a hierarchy of concepts.

 • The facil ity to control inheritance of properties thorough a concept hierarchy.

 • The facil ity to deal with inference mechanisms at different level of granularity.

 • The knowledge base development tools that facilitate application development.

5

 • The primiti ves that allow for higher level knowledge base modeling approaches to scale to large

problems, e.g. KADS.

 • The synergy of different inference mechanisms in one system.

 • A strict typing facil ity.

In agriculture, the potential offered by expert systems opens up a whole new dimension in the transfer of

knowledge to extensions service and farmers. This has led us to develop KROL. KROL is in active use; it

has been working on the development of four reliable and robust crop management expert systems during

the last six years. We took the advantage of proven knowledge engineering methodologies such as KADS

and GT for constructing a model or representation of the underlying domain, and then for designing

reasoning mechanisms that can be used, together with the model, to develop these expert systems.

This paper is organized as follows. Section 2 describes KROL as a knowledge representation language. We

present the knowledge representation paradigms with support tools that are needed for application

development. Section 3 presents the implementation aspects of our language. We show how we can

implement KROL as an efficient programming language. Section 4 demonstrates how KROL can be used

to develop a KADS-based expert system. In this section, we show an example of a disorder diagnosis

system. Section 5 gives a brief overview of our experiences to date with developing expert systems using

KROL. Section 6 concludes the article.

2. KROL: THE LANGUAGE

A new knowledge representation language that combines logic, object-oriented and rule-based

programming paradigms is designed. This provides a good medium for the second-generation expert

systems development. Nevertheless, from a practical point of view, we have found more attractive the

designing extension of the existing Prolog system to support the combination of knowledge representation

paradigms. Knowledge base development tools that facil itate application development are also designed.

The approach considered in the current work expected that the developer of KBS is already proficient in

Prolog, and this is the target user.

6

2.1 Knowledge representation paradigms

 The choice of representation can be crucial to the tractability of the problem. Newell (1981) states that:

Representation = Knowledge + Access.

For a representation to be adequate, it must have sufficient expressiveness to capture the knowledge and

sufficient pragmatic utility to allow for manipulating the knowledge (Hartley, 1985). The most widely used

and best-understood representation systems are rule-based systems, frame, and more recently object

systems. If the relations and inferences in the domain are mostly of a heuristic nature, then a rule-based

system is usually suitable. Whereas relations and inferences that are mostly of the hierarchical inference

type (generalization, refinement, and inheritance of properties from class to subclass) are usually more

adequately represented with frame or object systems (Batarekh et al., 1991). The combination of object and

rule processing provides a firm foundation for addressing more complex problem.

In KROL, knowledge is represented by a single formalism, the object. Objects correspond to real-world

concepts or rules. Rules are uniformly handled, in an object-oriented manner. The behavior of a concept is

represented by methods and properties (attributes) represent its characteristics. The relationship between

concepts is governed by the applied inference. For example, inheritance, a built-in inference in KROL, is a

speciali zation, where all subobjects inherit the behavior of their superobjects. KROL is written in Prolog, so

Prolog syntax is used for KROL knowledge structure. An object object -identifier is declared by

writing it in the following form:

object-identifier :: {

statement- 1 &

statement- 2 &

…

statement-n

}.

7

Where object-identifier is a Prolog term that is either an atom or a compound term of the form

functor (V1, …, Vn) , where V1, …, Vn are distinct variables. The body consists of a number of

statements, possibly none, surrounded by braces. The statements in object body are described below.

Rules. A rule allows an information about an object to be inferred, rather than retrieved using a traditional

message passing against stored data. Thus, rules provide an information derivation mechanism that results

in greater informational content than is present in the stored data alone. The major disadvantage of rule

systems is knowledge maintenance. It has been recognized that decomposable knowledge-based system

leads to computationally efficient inference design and increases maintainability. So, KROL provides a

convenient mechanism for rule clustering. A particular rule cluster is manifested as a set of declarative rule

instances defined in an object. A rule instance is declared by writing it in the following form:

ruleid (conclusion) if premsie

Where ruleid is any label that uniquely identifies the rule and conclusion part is a li st structure. An

element of this list is either a derived value of the form

attribute of object = vlaue

or a message. The premise part has the same control structure as any Prolog clause body. However, rules in

KROL differ from Prolog rules in that they are order insensiti ve and their execution are handled by a

hypothesis-interpreter, which is a facility to customize the inference control strategy. Atomic statements in

premise is either a derivation of an attribute value of the form

attribute :: object rel_op value

Prolog goal, or a message, where rel_op is any Prolog relational operator. The following is an example

of a rule instance:

8

r 4([growth_stage of plant = development,

 current _date of plantation = [D,M,Y]]) if

system :: time(_, _, _, D, M, Y), % message

ending _dev_date :: plant = Date, % derivation

: compare _date (>=, Date, [D,M,Y]) % prolog call

Methods. Methods are used to perform data manipulation, and implement applications. Additionally,

methods may be written directly in Prolog, this giving the programmer more freedom in terms of

programming constructs and access to Prolog predicates. A method has a clausal syntax similar to that of

Prolog, but instead of the usual predicate call s in the body of a clause there are method-calls. Ordinary

as a prefix. Atomic goals, i.e. messages, in the

body of a method may be in a number of forms, besides being Prolog goals:

 • goal to send the message goal to the object self.

 • object ::goal to send the message goal to object object .

 • object <:goal to delegate the message goal to object object .

 • :: goal to send the message goal to a method that may be defined locall y or inherited by the

object .

 • <:goal to delegate the message goal to a method that may be defined locall y or inherited by the

object.

The following is an example of a method:

plant (Species,Lwb,Upb):-

subclass (Subclass), % send to self

text (subclass,Text),

menu(subclass,Menu),

self (Self), % inlined method

9

<:ask (subclass(Self), Text,Menu,Subclass), % delegate to self

Subclass :: plant (Species,Lwb,Upb) % send to object

Note that objects are based on the notion of prototypes (Lieberman, 1986

to be first-class objects, and provide a mechanism in addition to inheritance known as method delegation.

In general, a set of objects declared may form an inheritance hierarchy. Since objects with multiple

supertypes are allowed, the hierarchy is generalized into a lattice. Hence, KROL supports multiple

inheritance. Immediate superobjects are declared by defining the method super within the object in the

following form

super (object-identifier)

In the programming language literature the restriction on the use of inheritance vary considerably. In

KROL, it takes the form of differential inheritance, where an optional li st of excluded methods (

inherit-list) may be specified in super definition. For example, consider the declaration of the object set

with superobject bag . To exclude the inherited method numberOfOccur ances from set , we write

super (bag,[numberOfOcc urances / 1])

Furthermore, each superobject possesses automatically the method sub which returns its subobject, a

labor-saving feature. Thus, an object hierarchy is created with a double link that represents super-sub

relationship. This feature allows for easier application of different search algorithms.

Attributes. An object may have attributes that are modifiable. Attributes declaration takes the form.

attributes(Attributes)

10

where Attributes is a li st of compound terms specifying the attributes with their initial values. For

example, the object point that defines a movable point in a two-dimension space may contain the definition

attributes ([x(0),y(0)])

with x and y initialized to the value 0.

Meta-attributes. A set of facets can be attached to an attribute. In KROL, facets are predicates, which are

used as rules associated to events such as value range and value set, and rules for inferring attribute values.

The following facets are provided by KROL:

1) type. KROL has five primitive data types, namely: nominal, integer, real, string, and date. Each attribute

must have a type declaration, e.g.

type (disorder_name / 1,nominal)

Some primitive data types require additional facet declarations that are needed for dynamic consistency

checking:

 • legal. The value set of a nominal type should be defined. These possible values can be explicit

or implicit, e.g.,

legal (colors/ 1,[green,red,white,black,brown]) & % explicit

legal (disorder_name / 1,Disorders) :- % implicit

disorder ::leaves (Disorders)

 • range. The value range of an integer or real type should be defined, e.g.

range (current_year, 1996 - 2000) % lower_bound - upper_bound

11

2) single or multiple. An attribute of a primiti ve type may take either a single value or multiple values.

The default is single-valued.

3) source_of_value

rule. In KROL, they known as: user, database, and derived, respectively. The value of an attribute may

be tried in order from a combination of sources, e.g.

source _of_value (disorder_name / 1,[derived([derived,user])])

Notice that in case of derived , a predetermined rule cluster may be given, e.g.

source_of_value (growth_stage / 1,[derived([age_growth_stage])])

It should be stressed that the integration of different inference mechanisms in one system can be achieved

by the virtue of this meta-attribute. Suppose that an attribute value can be derived using a generic task or

routine design problem solvers, one can declare that in the source_of_value meta-attribute.

If source_of_value is user, additional facets may be declared:

 • prompt. This specifies the text or window that is to be displayed when the system asks the user

about the attribute value, e.g.

prompt (average_temperature / 1, What is the leaves color i n ~w ? ,

[Current_Month]) :-

planatation ::month (Current_Month)

 • necessary. This enforces the user to give a value during the session, e.g.

necessary (average_temperature / 1)

12

2.2 Inference Mechanism

A built -in inference is provided for most common uses. The inference follows the open world assumption

where either positi ve or negative values of attributes are recorded. Due to the increased complexity of KBS,

appropriate inference mechanisms at different levels of granularity are designed and implemented. A major

feature of this inference is that it is a reusable component that can fit into different domains. Its methods are

encapsulated in an object, known as inference_class, which can be classified as follows:

1. Methods that directly reason about attribute values. A core operation of the inference is the

get_value operation that provides the mechanism for heuristically determining the value of an

inferred (derived) attribute or proving that a given attribute can have a specific value. It differentiates

between two cases during the course of reasoning: the single-valued attribute and multi-valued attribute.

The general nature of the get_valu e operation is similar to the goal satisfaction process provided in

an inference engine. When an access to an attribute is requested during the course of the inference

process, the get_valu e is automaticall y invoked in order to determine or prove an inferred attribute

value for the object of interest. The source_of_valu e facet guides this operation. Thus, a generic

inference strategy can be devised to search the domain knowledge for evidence that wil l establi sh a

value for an attribute.

2. Methods that directly invoke the inference in order to reason about attribute values. These methods

provide the capabil ity to express fine-grained inference mechanisms in a flexible and efficient way,

meaning that the relevant parts of the knowledge are involved in the derivation process. There are two

defined methods that can be used to deal with rules: focu s and invoke . The former tries to prove all

rule instances that drive a given attribute. The latter tries to prove a particular rule.

3. Methods that directly invoke the inference and indirectly reason about attribute values. These are

middle-grained or coarse-grained inference mechanisms that act upon rule clusters. There are two

defined methods that can be used to deal with rules: conclude_relation and conclud e_all .

13

The former tries to prove all rule instances in a given object. The later is more general and tries to prove

all rule instances in a given object and recursively its descendant objects.

2.3 Knowledge base development support tools

Explanation facility, user interface, and database tools are provided to the developer with KROL for

convenient application development. These tools are briefly described below.

2.3.1 Explanation Support Tool

 The ability to explain reasoning processes used for problem solving distinguishes the expert system from

other decision support systems (Swinney, 1995). The provision of an explanation facil ity may actuall y lead

to a higher probabilit y of acceptance of the system output (Ye, 1990) and allow the user to establi sh deeper

understanding of the system. KROL supports the most widely used types of explanation facilit y to explain

reached this conclusion. Consequently, the attribute values and their corresponding sources are recorded

during the course of the inference process. Also, the order in which rule clusters were employed are

history is unlikely to be very ill uminative to the user, the system design is augmented to respond with a

customized explanation text template. This template contains explanations (clarification, textbook

references, case citation, multimedia, etc.) that can be used as long as needed, without adding overhead to

the knowledge. KROL provides the object explanation that defines the methods how and why.

2.3.2 User Interface Support Tool

Roesner, 1988). End-user can interact either in Arabic or English, i.e. bil ingual. In KROL, it

values whose source of values is defined as user, reporting an error message, reacting to an explanation

request, and generating a report. Consequently, different styles of interface programming such as dialogue

and menu are supported. The multimedia facility is provided which is helpful in explanation especiall y for

new personnel (Rafea et al., 1995; Rafea, 1995

14

about the attributes that take an unknown value. This is very useful because sometimes we can work with

incomplete knowledge or apply heuristics whenever necessary. KROL provides the object

user_interface , written in C and interfaced to Prolog, that defines the user interface methods.

2.3.3 OODBMS Support Tool

As mentioned in (Yahaya, 1994), the practical expert systems in the future wil l have to increase in terms of

size and complexity. In addition, as their overall size grow, the non knowledge-based component such as

the data processing components are also expected to increase in size. To allow the knowledge engineers to

use a single way to represent data and knowledge in an application, we have developed an Object-Oriented

Data Base Management System (OODBMS) support tool. Although important, it is beyond the scope of

this article. We refer to (Kim, 1990) as an excellent overview and motivation for the subject. The dbms

object provides the methods that enable us to define a schema, create data object, create view, process a

query, and maintain the integrity of databases in an object-oriented manner.

3. Implementation Aspects

Object-Oriented languages have an undeserved reputation for ineff iciency because some early languages

were interpreted rather than compiled (Rumbaugh et al., 1990). KROL is a compiled language that expands

into SICStus Prolog code. The expansion of KROL definitions to Prolog definitions is based on source-to-

source transformations. The transformation rules given in (ESICM, 1992; SICS, 1995) provide the

definitions of general rewrite rules for expanding definitions. Hence, the operational and declarative

semantics of KROL programs is given in terms of their translations to Prolog.

First of all, every defined object will translate to several Prolog clauses belonging to a unique object

module with the same identity as the object-identifier . Object modules are significantly cheaper

to create than ordinary modules, as they do not import the buil t-in Prolog predicates. The module wil l

contain the predicates implementing an object declaration, the method code, the rule code, the attribute

code and the imported methods. It should be noted that SICStus Prolog uses a flat, not hierarchical, module

15

system with access control mechanisms for exporting methods. These mechanisms provide for eff icient

encapsulation of object primitives and enhance the code execution through direct accessing of the object

code. The following sections discuss the implementation aspects of KROL.

3.1 The Inheritance Mechanism

One aspect of object-oriented languages that seems ineff icient is the use of method resolution at runtime

(also known as dynamic binding) to invoke methods. Method resolution is the process of matching an

operation on an object to a specific method. This would seem to require a search up the inheritance graph at

runtime to find the object that implements the operation. KROL optimizes the look-up mechanism to make

it more eff icient; a method dispatches in a constant time once its target object becomes determinate

regardless of the depth of the inheritance graph or the number of methods in the object. Moreover, the

method dispatcher is cleanly captured and will only contain the relevant information where all the excluded

entries are removed. The inheritance mechanism is based on the module access control mechanisms. All the

methods visible in the immediate supers are collected after subtracting those that are specified in the

inherit-list, the resulting set is made visible in the module of the inheriting object by means of importation.

3.2 Object Attributes

Attributes are based on eff icient term storage associated to modules. The attributes for an object is collected

from its ancestors and itself at compile time and used for initialization at load time. The methods for

accessing and deriving attributes are inlined to primitive call s whenever possible.

3.3 Methods

The method body is translated to a Prolog-clause body. The code is traversed, and the method-call s are

transformed according to the following transformation pattern.

Module × Message × Self × Myself

Module × Message × Self

Method-call :{

16

Where Module is the target object modul e, the argument Message is the received message, the

argument Self is bound to the current contextual object that is needed for dynamic binding of attributes and

methods to objects at runtime, and the argument Myself is the parameter needed to cater for passing object

parameters, if any, to the method-call.

Methods are used to perform data manipulation, and implement applications. The good programming styles

that are employed at the Prolog level can also be employed at the KROL level. This language efficiency is

realized by:

1. Representing objects as special li ghtweight Prolog modules.

2. Exploiting the first argument indexing of the Prolog compiler, leading to direct access to the

method clauses.

3. Preserving the last call optimization in recursive methods, i.e. the tail primitive is expanded into tail

recursive Prolog code. Thus, the expanded code will invoke the expanded code directly instead of

call ing the dispatcher.

3.4 Rules

Rules are transformed into Prolog code in a way similar to methods transformation with additional

information. This information provides for flexible pattern matching that improves a great deal the

inference process. This is realized by:

 • Storing for each attribute the rules that derives a certain value. This is very useful when

considering the method focus of the inference.

 • Storing for each rule cluster all rule heads, each in the form of a catchall goal. This is very

useful when considering the methods conclude_relation and concude_all of the

inference.

In general, KROL provides the capability to express fine-grained inference mechanisms explicitl y in a way

that the granularity, i.e. target rules, used in a program can be adjusted to directly invoke the inference.

17

4. Demonstration of KROL capabilities to develop KADS-based

expert system

Expert system is one of the most successful applications of artificial intelligence. With the increase on

demand of using expert systems, they become bigger in size and more complex in structure. A large and

complex expert system must be engineered carefull y if it is to function properly and to be modified easil y.

Thus, creating an expert system requires a development methodology that emphasizes a good structure for

the knowledge within the system.

A common knowledge engineering methodology is to partition the task into smaller components, rather

than have one big system. Each of these modules should be a well -defined portion of the system, with

carefull y defined inputs, outputs and functions. The modularization of a system can be done in different

ways. The most appealing one is the knowledge-level approach, which consists of breaking the system into

a number of layers or levels. One of these approaches is KADS, which is a major landmarks of the second-

generation expert systems engineering methodologies. Thereby, a structured systematic development of

KBS is achieved. In the following subsections we give a brief overview of KADS and show how KROL

can support their implementation in terms of an example.

4.1 KADS : A brief Overview

KADS is a methodology that has been developed in the framework of the Esprit program. The KADS-I

project has been succeeded by the KADS-II (CommonKADS) project. The theories concerning the

modeling of knowledge according to KADS are based on the work of professors Wielinga and Breuker of

the University of Amsterdam. The model-based approach according to KADS is rapidly becoming the de

facto standard in Europe. In KADS, the development of a KBS is viewed as a modeling activity. The

KADS methodology is based upon a number of principles derived from cognitive psychology, artificial

18

intelligence, and software development. In this paper, we assume that the reader is familiar with KADS

methodology, for more details see elsewhere (Schreiber et al., 1993).

The KADS expertise model distinguishes three types of knowledge, and prescribes specific relations

between these knowledge-types.

 • The first category of knowledge is called domain knowledge and concerns domain-specific

knowledge. Such knowledge describes the objects of discourse in a particular domain, facts that

hold about such objects, relationships among them. Rules, facts, hierarchies, objects, properties,

relations, etc. often represent this type of knowledge. A crucial property of this first category of

knowledge is that it is represented as much as possible independent from how it wil l be used.

Thus, we state which properties and relations hold in a particular domain, but we do not state

how these properties and relations will be used in the reasoning process. That is the concern of

the second category of knowledge.

 • The second category of knowledge is called inference knowledge. Here, we specify: a) what the

legal inference steps are that we can use in the reasoning process, b) which role the domain

knowledge plays in these inference steps, and c) what the dependencies are between these

inference steps. Again, a crucial property of this type of knowledge is what it does not contain:

although we specify what the legal inference steps are, we do not specify the sequence in which

these steps should be applied.

 • This sequence of steps is exactly the concern of the third type of knowledge, the task

knowledge. This specifies in which order the inferences from the second category should be

executed. This type of knowledge is concerned with actions, sequences, iterations, state-

transitions, etc.

4.2 Disorder Diagnosis : An Example

Diagnosis is the problem of trying to find the causes of abnormal observations. We chose an example that

investigates the application of KROL to a domain theory for diagnosing disorders in a cucumber production

management system. This system contains 10 concepts, 23 attributes, 1 relation between concepts, 11

19

relation between concepts instances, 6 relation between expressions, and 109 relations between expression

instances.

4.2.1 Domain Knowledge

The domain concepts has two types of concepts, the first one is simple concepts such as soi l, water ,

climate , plan t , and plantation . The second is hierarchical concepts such as observation and

disorder . The concepts representing the domain were implemented as objects. For example, Fig. 1

ill ustrates a concept hierarchy for identifying disorders that infects the plants in a farm. Fig. 2 shows the

implementation of two concepts from such hierarchy. At the topmost is the disorder object, which is

inherited by all of the other objects in the hierarchy. In general, the domain concepts inherits the behavior

of the generic object doamin_class . At any point in the hierarchy, however, an object has the option to

override the defaults with ones that is specialized for the problem area, e.g. the object root_knot . The

object hierarchy is used to represent the implicit relationships, that is disorder is_a disorder, between

different classes of disorders concepts, starting from objects at a general level down to objects at specific

levels.

Properties with their initial values are implemented as attributes. Some facets are associated with these

attributes. For example, the attribute value of disorder object has the facets legal that specifies leaves, the

most specific objects in the hierarchy, as its legal values.

A second type of relation is the relation between expressions about property values. It is worth noting that

the relations between expressions are grouped according to the semantic of the relation and the concepts to

which the relation operands, which are properties, belong. The right-hand side of a relation is the properties

of one object, whereas the left-hand side of a relation may be the properties of more than one object. This

grouping of relations between expressions came out as a result of our experience in order to establi sh a

clear and clean mapping between the knowledge sources and the relations between expressions. Each

relation is implemented as a rule cluster, a set of declarative rule instances defined in an object. It refers to

the sub- or system to which it belongs. For example, the relation caused_by specifies caused by

20

relationship between disorders and observations. A sample of this relation is shown in Fig. 3 and its

implementation is shown in Fig. 4.

[Insert Fig.1 about here]

[Insert Fig. 2 about here]

[Insert Fig. 3 about here]

[Insert Fig. 4 about here]

4.2.2 Inference Knowledge

obtains the case description from the farm database to predict the assumed disorders. It selects observations

and factors related to the assumed disorders, prompts the user, analyzes the user response and confirms the

possibili ty of disorders existence. Then, confirmed disorder is assigned a certainty factor, which is either

5 shows the inference structure of the disorder diagnosis. Fig. 6 shows a

sample of implemented inference step. Associated with each inference step is an explanation module. Fig. 7

shows the implementation of the predict explanation module.

[Insert Fig. 5 about here]

[Insert Fig. 6 about here]

[Insert Fig. 7 about here]

4.2.3 Task Knowledge

The goal of the disorder diagnosis task is to provide the user with a diagnostic disorder which causes

problems on plantation or verifies a user's assumption. The task structure of the diagnosis is expressed in

pseudo code segment shown in Fig. 8. The implementation of this task is shown in Fig 9. It should be

noted that the task at the very beginning differentiates between disorders that infects the plants at different

growth stages, namely: development, middle, and late, upon which the disorder diagnosis is derived.

[Insert Fig. 8 about here]

[Insert Fig. 9 about here]

21

5. Experience

The current work is aimed at further extending the expressiveness of representing knowledge and

information in Prolog. Plain Prolog represents knowledge in the form of Horn-clauses. The inference mode

is a backward-chaining ordered sensitive system which differs from conventional rule-based systems.

Because, in rule-based systems, the order in which rules are applied depends both upon data values

changing within the system and on the rule control methodology adopted. In fact, the evolution of KROL

came about because of the need to bridge the gab between the modeling and the implementation of expert

systems methodologies. The first version was actually a side effect of a research that investigated the

application of KBS in the agriculture sector. The problem was sufficiently complex so that modularization

became an imperative. Due to its inherent modularity, Prolog Objects as a layer on top of SICStus Prolog

appeared to have the greatest potential for KBS modularization. As a matter of fact, the task was a

collaborative research interest between the Swedish Institute of Computer Science (SICS) and Central

Laboratory For Agricultural Expert Systems (CLAES). However, modularization alone was not the answer.

It made the system maintainable. To make it fit into the second generation expert systems methodologies,

such as KADS and Generic Task, a full -fledged representation language is designed and implemented. It

turned out to be KROL.

KROL has been of real practical use in developing expert systems for crop production management (Rafea

et al., 1992). This is one of the problems that involves many parameters, and requires very complicated

optimization and modeling steps. The overall production management problems involves, among other

aspects, water requirements calculations, determining fertilizers and pesticides needs, water and soil salinity

calculations, diagnosing the disorders or malnutrition that cause symptoms noticed by the growers,

scheduling of agricultural operations and tasks, and advising about remedial and protective measures. The

nature of the systems that deal with such a problem highly involves non-numeric data manipulation and a

lot of heuristic procedures to get near optimum solutions. Moreover, the size of the problem under

consideration suffers from the lack of enough experts to support the agriculture growers, and the heavy

dependence upon the experience of these experts, all make the choice of the knowledge based approach for

the solution of this problem a most suitable one.

22

While developing these applications, the following benefits can be noted:

 • Representing data in the form of objects is more modular and eff icient than other forms of

representation used with KBS. KB is split into smaller, manageable parts. Moreover, the

knowledge about a problem is organized as the interaction of several well -defined, semanticall y

related parts of knowledge.

 • Organizing objects in a hierarchy reflects a top-down methodology, where a complex problem

is decomposed into smaller parts that are visible to the entire system indicated by the top-level

object. This characteristic lends itself to bridge the gab between the design and implementation

when considering the knowledge level modeling of KADS and task decomposition into subtasks

of GT.

 • Message passing allows the system to keep knowledge about data separated from knowledge

about reasoning, which is critical for good data abstraction and the encapsulation of knowledge.

No object-processing system is complete without full message-passing capabilities.

 • Pattern-matching rules enable a clear and concise specification of the algorithm. These rules are

easily implemented, understood, and maintained. They can keep track of a dynamically

changing situation automaticall y so their performance is superior to that of procedural rules.

 •

declarative nature supported by the logic style of programming.

 • Representation paradigms and inference schemes allow that a system can be developed through

incrementally encoding domain specific knowledge.

 • Direct mapping of expert systems modeled through KADS and GT into KROL code. This has

the effect of increasing the productivity during application developments as well as reducing the

maintenance costs.

6. CONCLUSION

In this paper, the Knowledge Representation Object Language (KROL) has been described. This language

involves two aspects. The multi-paradigm knowledge representation based on logic, object-oriented, and

23

rule-based programming paradigms; the knowledge base development support tools, such as object-

oriented database management system, user interface, explanation facility, that are convenient for

application development. Moreover, due to the increased complexity of KBS, appropriate inference

mechanisms at different levels of granularity are provided.

The use of the optimized compiler of SICStus Prolog and the schemes for developing an efficient

implementation improve the performance of KROL. This implementation is based on a compiler. KROL

programs translate into Prolog programs, producing a program that can be directly executed. The

translation is based on rewrite rules.

With KROL, the foundation has been laid to develop valuable expert systems for active use by agriculture

sector in Egypt. Four expert systems that contribute to the transfer of knowledge to extension service and

farmers have been developed. The expert systems being used are mainly for crop management, which are

developed by CLAES at the Agriculture Research Center of Ministry of Agriculture and Land Reclamation

in Egypt. They are: the Cucumber Expert System (CUPTEX), the Citrus Expert System (CITEX), the

Tomato Expert System (TOMATEX), and Neper Wheat. The CUPTEX (Rafea et al., 1991; Rafea et al.,

1995) is an expert system for cucumber production management under plastic tunnel. CITEX (Salah et al.,

1993) is an expert system for citrus production in open field. TOMATEX (El-shishtawy et al., 1995) is an

expert system for tomato production in different environments, e. g. under plastic tunnels, open fields, and

low tunnels. Neper Wheat (Schroeder et al., 1995) is an Expert System for Irrigated Wheat Management in

open field. CUPTEX, CITEX and TOMATEX are implemented using KADS methodology whereas Neper

Wheat is implemented using Generic Task methodology. These expert systems are intended to be used by

agricultural extensions service within the Egyptian ministry of agriculture and by private sector. They

demonstrated the applicabilit y of KROL to implement second-generation expert systems.

24

REFERENCES

Akoka J., & Comyn-Wattiau I. (1996). UNIFESS: An Object-Oriented Method for Expert System design,
In Proceeding of the 3rd World Congress on Expert Systems, Korea, Cognizant Communication
Corporation, 614-624.

Batarekh A., Preece A., Bennett A. & Grogono P. (1991). Specifying an Expert System, Expert Systems
with Applications, 2, 285-303.

Brogi A., Turini F., & Gaspari M. (1991). Inheritance Hierarchies in Blackboard Architectures, In
Lenzerini, E. (Ed.), Inheritance Hierarchies in Knowledge Representation and Programming Languages,
John Wiley and Sons Ltd.

Chandrasekaran B. (1986). Generic Tasks in Knowledge-based reasoning: high-level building blocks for
expert system design, IEEE Expert, 1, 23-30,.

David J. & Krivine J., (Eds.) (1993). Second Generation Expert Systems, Springer-Verlag.

El-Shishtawy T., Wahab A., El-Dessouki A. & El Azhary E. (1995). From Dependency Networks to
KADS: Implementation Issues, In proceeding of the 2nd FAC/IFIP/EnrAgEng workshop on Artificial
Intelligence in Agriculture, The Netherlands.

ESICM (1992). Design of the Compiler for a Knowledge Representation Object Language (KROL) on top
of Prolog, Technical Report No. TR-88-024-27 Expert Systems for Improved Crop Management (ESICM),
UNDP/FAO, EGY/88/024.

Etzkorn L. & Davis C. (1995). Knowledge-based Object-oriented Reusable Component Identification, In
Proceeding of the 8th Florida Artificial Intelligence Research Symposium (FLAIRS), Florida AI Research
Society, 97-101.

Harmon P. (1995). Object-Oriented AI: A Commercial Perspective, Communications of the ACM, 38(11),
80-86.

Hayes-Roth F., Waterman D. & Lenat D. (Eds.) (1983). Building Expert Systems, Addison-Wesley.

Hartley R. (1985). Representation of procedural knowledge for expert systems, In Proceeding of the 2nd

Conference on Artificial Intelligence Applications: The Engineering of Knowledge-Based Systems, Sli ver
Spring, MD: IEEE Computer Society, 256-531.

Iline H. & Kanoui H. (1987). Extending Logic Programming to Object Programming: the system LAP, In
proceeding of the IJCAI, 34-39.

Kim W. (1990). Object-Oriented Databases: Definition and Research Directions, IEEE Transactions on
Knowledge and Data Engineering, 2(3), 327-341.

Kowalski B. & Stipp L. (1990). Object Processing for Knowledge-Based Systems, AI Expert, pp. 34-41.

Lieberman H. (1986). Using Prototypical Objects to Implement Shared Behavior in Object-Oriented
Systems, In Proceeding of OOPSLA, 214-223.

Lyndon M. & Tan C. (1995). An Object-Oriented Knowledge Base for Multi-Domain Expert Systems,
Expert Systems with Applications, 8(1), 177-185.

Newell A. (1981). The knowledge level, AI Magazine, 2(2), 1-20.

SICS (1995). SICStus 164 28,
KISTA, Sweden.

Rafea A., Warkentin M.& Ruth S. (1991). An Expert System for Cucumber Production in Plastic Tunnels,
In Proceeding of The World Congress on Expert Systems, Florida , Orlando, USA, 909-916.

Rafea A., Warkentin, M. & Ruth S. (1992). Knowledge Engineering: Creating Expert Systems For Crop
Production Management in Egypt, In Mann C., and Ruth S. (Eds.) Expert Systems in Developing
Countries: Practice and Promise, Westview Press, 89-103.

25

Rafea A., El-Azhari S. & Hassan E. (1995). Integrating Multimedia With Expert Systems For Crop
Production Management, In Proceeding of the 2nd IFAC/IFIP/EnrAgEng workshop on Artificial
Intelligence in Agriculture, Netherlands.

Rafea A. (1995). On Integrating Agricultural Expert Systems with Data Bases and Multimedia, In
Proceeding of the First International Conference on Multiple Objective Decision Support Systems for
Land, Water, and Environmental Management: Concepts, Approaches, and Applications, Honolulu,
HawaII , USA.

Rafea A., El-Azhari S., Ibrahim I., Soliman E. & Mahmoud M. (1995). Experience with the Development
and Deployment of Expert Systems in Agriculture, In Proceeding of IAAI-95, Montreal, Canada.

Roesner H. (1988). Expert Systems for Commercial Use, In S. Savoy (Ed.) Artificial Intelligence and
Expert SystemsChinester, Ellis Horwood, 34-59.

Rumbaugh J., Blaha M., Premerlani W., Eddy F. & Lorensen W. (1990). Object-Oriented Modeling and
Design, Prentice Hall Inc.

Salah A., Hassan H., Tawfik K., Ibrahim I. & Farahat H. (1993). CITEX: An Expert System for Citrus
Crop Management, In Proceeding of the 2nd National Expert Systems and Development Workshop
(ESADW-93), Ministry of Agriculture and Land Reclamation, Cairo, Egypt.

Schreiber G., Wielinga B. & Breuker J. (Eds.) (1993). KADS: A principled approach to knowledge-based
system development, Knowledge-Based Systems, San Diego, CA: Academic Press.

Schroeder K., Kamel A., Sticklen J., Ward R., Ritchie J., Schulthess U., Rafea A. & Salah A. (1994).
Guiding Object-Oriented Design via the Knowledge Level Architecture: The Irrigated Wheat Testbed,
Mathl. Comput. Modeling, Elsevier Science Ltd., Great Britain, 20(8), 1-16.

Schroeder K., Kamel A., Sticklen J., El-Skeikh E., Ward R., Ritchie J., Schulthess U., Rafea A. & Salah A.
(1995). Neper Wheat: An Integrated Architecture For Irrigated Wheat Crop Management, In Proceeding of
the 2nd IFAC/IFIP/EnrAgEng workshop on Artificial Intelligence in Agriculture, Netherlands.

Swinney L. (1995). The Explanation Facility and the Explanation Effect, Expert Systems with Applications,
9(4), 557-567.

Vranes S., Stanojevic M., Lucin M., Stevanovic V. & Subasic P. (1994). A Blackboard Framework on top
of Prolog, Expert Systems with Applications, 7, 109-130.

Xu D. & Zheng G. (1994). A Hybrid Knowledge Representation Based on Logical Objects, In Proceeding
of the 2nd International Conference on Expert System for Development, Thailand, IEEE Computer Society
Press, 153-159.

Yahaya N., (1994). On the Development of Environments for Developing Expert Systems, In Proceeding
of the 2nd International Conference on Expert System for Development, Thailand, IEEE Computer Society
Press, 24-29.

Ye L. (1990). User Requirements for Explanation in Expert Systems, Ph. D. dissertation, University of
Minnesota, Minneapolis.

Yoshiyuki and Koseki (1987). Amalgamating Multiple Programming Paradigms in Prolog, In proceeding
of IJCAI, 76-82.

26

Fig. 1 Disorder concept hierarchy

Leaf m old

Dow ny m ildew

Fungal

Mosaic

Green Mosaic

V ira l

D isease

Spiders

Broad m ite

Mites

Low tem perature

H eavy irr igation

Environm enta l

aphids

Insect

N itrogen

Iron

N utrition D eficiency

B rom ide

B azam ide

Toxic ity

R oot knot

R oot lesion

Nem atode

Disorder

27

disorder :: {
super(domain_class) &
attributes([value([]), verify([]), confirmed([]),
infection([]), spread_range ([])])

source_of_value (value/ 1, [derived])&
source_of_value (ve rify/ 1, [derived])&
source_of_value (confirmed/ 1, [derived])&
source_of_value (infection/ 1, [derived, user])&
source_of_value (spread_range / 1, [derived, user])&

prompt (value/ 1, disorder_value , [])&
prompt (infection/ 1, disorder_infection , [])&
prompt (spread_r ange / 1, disorder_spread_range , [])&

type(value/ 1, nominal)&
type(verify/ 1, nominal)&
type(confirmed/ 1, nominal)&
type(infection/ 1, nominal)&
type(spread_range / 1, nominal)&

multiple(value/ 1)&
single(verify/ 1)&
single(confirmed/ 1)&
single(infection/ 1)&
sin gle(spread_range / 1)&

legal (value/ 1, Ds):-
disorder :: leaves(Ds)&

legal(confirmed/ 1, confirmed)&
legal(verify/ 1, yesno)&
legal(infection/ 1, disorder_infection)&
legal(spread_range / 1, disorder_spread_range)

}.

root _knot :: {
super (nematode)&
attributes ([r oot_knot_infection ([])])&
source _of_value (root_knot_infection / 1, [user])&
single (root_knot_infection / 1)&
type (root_knot_infection / 1, nominal)&
prompt (root_knot_infection / 1, root_knot_nematode_infection ,
[])&
legal (root_knot_infection / 1, root_knot_nematode _infection)
}.

Fig. 2. An implementation of two concepts from the diagnosis hierarchy using KROL

28

Left Hand Side Right Hand Side
Concept property value concept property value

Leaves_
Observation

L_O_Color Yellow Disorder Value salt_injury,
nitrogen_def, zinc_def,
heavy_irigation,
high_light_intensity

Leavs_
Observation

L_O_Color yellow edges;
brown edges

Disorder Value jassid, potassium_def

Leaves_
Observation

L_O_Color light green;
lemon_yellow

Disorder Value iron_def

Leaves_
Observation

L_O_Color yellow but main
veins still green

Disorder Value magnesium_def,
manganese_def

Leaves_
Observation

L_O_Color Purple Disorder Value phosphorus_def,
low_temperature

Leaves_
Observation

L_O_Color brown Disorder Value low_temperature

Fig. 3. A subset of caused_by relation of disorder diagnosis.

29

observation _caused_by_disorder ::{

super (diagnosis_system)&

r 1([value of disorder = nitrogen_def ,
 value of disorder = zinc_def ,
 value of disorder = salt_injury ,
 value of disorder = high_light_intensity ,
 value of disorder = heavy_irrigation]) if
 l _o_color :: leaves_observation = yellow &
r 2([value of disorder = jassid ,
 value of di sorder = potassium_def]) if
 (l _o_color :: leaves_observation = 'yellow edges' -> true
 ; l _o_color :: leaves_observation = 'brown edges'
)&
r 3([value of disorder = iron_def]) if
 (l _o_color :: leaves_observation = 'light green' -> true
 ; l _o_color :: leaves_observation = 'lemon yellow'
) &
r 4([value of disorder = magnesium_def ,
 value of disorder = manganese_def]) if
 l _o_color :: leaves_observation = 'yellow but main veins
still green'&
r 5([value of disorder = phosphorus_def ,
 value of disorder = low_temperature]) if
 l _o_color :: leaves_observation = purple &
r 6([value of disorder = low_temperature]) if
 l _o_color :: leaves_observation = brown

}.

Fig. 4. An implementation of subset of caused_by relation using KROL

30

� � � � � �
� � � � 	
 � �
 �

� � � � � � � � �

� � � �
� � � � � � � � � �

� � � � � � �

! " # $ % ! & ' ('

) * + , - . /

0 1 2 3 4 5 6 7

8 9 : ;

< 9 9 8 = > ? @ A B

C D E F G H I J K C L

G F E M N J

O C L P K G Q F R

R K E C G R F G

H F G K P S

Fig. 5 An inference structure for disorder diagnosis in a crop management system. Rectangles represent
roles; ovals represent inference steps. Arrows are used to indicate input-output dependencies.

31

diagnosis _inference ::{

super (inference_class)&

determine
predict :-
 (inference _class::conclude_all (observation_caused_by_disorder)-> true;true),
 (inference _class::conclude_all (observation_confirm_disorder)-> true;true),
 (inference _class::conclude_all (observation_plant_ caused_by_disorder)-> true;true),
 (inference _class::conclude_all (plant_observation_confirm_disorder)-> true;true)&

confirm
verify
}.

Fig. 6 An implementation of subset of disorder diagnosis inference using KROL.

32

predict :: {

super (diagnosis_sy s) &
dynamic rel / 1 &
type (rel / 1, nominal) &
long _prompt (rel / 1, 2, 54,Mdiag) :-
 appl _presentation :: fetch(text(exdiag 3, Mdiag), _) &

legal (rel / 1, L):-
findall (X, (:: map(X,Y),

(history :: premise_data (Y, _ RuleId , disorder, value, _V) % fired rules
;history :: premise_data (Y, _ RuleId , _O, confirmed, _V) % fired rules
)), L 1),
sort (L 1, L) &

% map(text describing the relation, relation name)
map('possible disorders which cause primary observations',
observation_caused_by_disorder) &
map('possib le disorders which cause primary observations on fruits',
observation _plant_caused_by_disorder) &
map('disorders which confirmed by primary observations',
observation_confirm_disorder) &
map('disorders which confirmed by primary observations on fruits',
plant_observation_confirm_disorder)

}.
Fig. 7 An implementation of an explanation module

33

Task: Disorder Diagnosis
Goal: finding causes of user complaint
 or verifying of user assumption

DETERMINE(System Description → Case Description)
IF the goal is to find causes of user complaint
THEN
 OBTAIN (Complaint)
 PREDICT(Complaint + Case Description → Hypothesis)
 CONFIRM(Hypothesis+Case_description+Observation →Confirmed Disorder)
 VERIFY(Confirmed Disorder+ System_Descrip tion +Case Description → Result)
 PRESENT(Result)
ELSE
 OBTAIN(user assumption)
 CONFIRM(user assumption+Case_description+Observation →Confirmed Disorder)
 VERIFY(Confirmed Disorder+System_Description+Case Discription → Result)
 IF Result contains an unlikely assumption
 THEN
 PRESENT the unlikely assumption

Fig. 8 Task structure of disorder diagnosis

34

diagnosis _task ::{

main :-
system :: time(_HH,_MM,_SS, _DD, Month, _YY),

plant :: updat e(current_month (Month)) &
diagnosis _inference :: determine,
inference _class :: get_value (plant, growth_stage (Gr)),
: diag _menu(Gr),
diagnosis _inference :: predict,

forall (disorder :: value(D), D:: assert(verify(no))),
% invalidate disorders

diagnosis _inference :: confirm,
diagnosis _inference :: verify,

:: present_value &

present _value :-
:: get_likely (Disorders 1),
:: get_most_likely (Disorders),
:: present_diagnosis (Disorders, Disorders 1) &

get _most_likely (Disorders):-
 findall (Disorder,
 (disorder :: leaf(Disorder),
 Disorder : : confirmed('most likely')), Disorders)&
get _most_likely ([])&

get _likely (Disorders):-
findall (Disorder,

(disorder :: leaf(Disorder),
 Disorder : : confirmed(likely)), Disorders)&

get _likely ([])&

pres ent _diagnosis ([], []):-!,
inference _class :: get_value (plant, growth_stage (Gr)),
:: check_normal_observation (Gr) &

present _diagnosis (Disorders, Disorders 1):-
: diag _results (Disorders, Disorders 1) &

check _normal_observation (Gr):-
Gr==development ,

inference _class :: get_value (leaves_observation , l_o_color (LC)),
inference _class :: get_value (leaves_observation , l_o_shape (LS)),

inference _class :: get_value (stem_spot , s_s_exist (SE)),
inference _class :: get_value (stem_observation , s_o_shape (SS)),

LC==normal , LS==normal , SE==no, (SS==normal ; SS==cutting) ,! &
check _normal_observation (Gr):-

(Gr==mid ; Gr==late),
inference _class :: get_value (leaves_observation , l_o_color (LC)),
inference _class :: get_value (leaves_observation , l_o_shape (LS)),
inference _class :: get_value (stem_spot , s_s_exist (SE)),
inference _class :: get_value (stem_observation , s_o_shape (SS)),
inference _class :: get_value (fruit_observation , f_o_shape (FS)),
inference _class :: get_value (fruit_observation , f_o_color (FC)),
LC==normal , LS==normal , SE==no, (SS==normal ; SS==cutting),
FS==normal , FC == normal&

}.

Fig. 9 An implementation of diagnosis task using KROL.

