KROL: A Knowledge Representation Object
Language On Top Of Prolog

Khaled Shaalan
Computer and Information Sciences Dept., Ingtitute of Statistical Studies and Research (ISR),
Cairo Univ., 5 Tharwat St., Orman, Giza, Egypt

Mahmoud Rafea
Central Lab. For Agricultural Expert Systems (CLAES), P.O. Box: 100 Dokki, Giza, Egypt

Ahmed Rafea
Computer and Information Sciences Dept., Ingtitute of Statistical Studies and Research (ISR),
Cairo Univ., 5 Tharwat St., Orman, Giza, Egypt

E-mail:{ shaalan, mahmoud, rafea} @esic.claes.sci.eg
Telephone: 202-361177
Fax:202-3604727

KROL: A Knowledge Representation Object
Language On Top Of Prolog

This paper presents a Knowledge Representation Object Language (KROL)
on top of Prolog. KROL aimed at providing the ability to develop second-generation
expert systems. The main aspects of KROL include multi-paradigm knowiedge
representation (first-order predicate logic, objects, rules), inference mechanisms at
different levels of granularity, explanation facility, object-oriented database management
module, and user-friendly interface. KROL has sufficient expressive power to be used in
applying demanding knowledge-based modeling methodologies, such as KADS and
Generic Tak, which are the major landmarks of the second-generation expert systems
technology. Four successful agricultural expert sysems were developed in the last six
years using KROL. To demonstrate the language capabilities, we present an example of
disorder diagnosis.

1. INTRODUCTION

Objea-Oriented technology has bewme a powerful means of handling the mmplexity inherent in many
systems. Objed-Oriented technology has influenced and benefited from reseach in the aena of artificia
intelligence and Knowledge-Based Systems (KBS) (Harmon, 1995 Schroeder et a. 1994). Asfar asthe
representation of the red world is concened, the goa of knowledge representation in KBS and doject
modeling is the same. An oljed-oriented knowledge structure is not only models the problem domain
closdy, but aso facilitates the implementation of agenericinference @mponent (Lyndon et al., 1995).
Objea-Oriented methodology is used in designing KBS to asdst expert systems designers from the
conceptual design phase to the validation phase (Akoka et a, 199%). Conversdy, a knowledge-based
approach is used to make preparing object-oriented code for reuse significantly easier and more
quantifiable (Etzkorn et al., 1995. Thereisalong history of representing knowledge in the form of rules.
The advantages of rule-based expert systemshave been documented in theliterature (Hayes-Roth, et al.,

1983.

The @mbination of objed and rule processng provides afirm foundation for addressng more complex
probem (Kowalski et al., 1990). Both paradigms increase programmer productivity during application
development and reduce maintenance ®sts. The synthesis of objed and rule processng provides all the
advantages of both technologies, as well as me advantages available only as aresult of their combination.
Augmenting rules with objects makesit possble to refine knowledge about the appli caion even than with
rules alone. The rule-based appli cation can exploit data abstraction and encapsulation principles to structure
knowledge. Enhancing oljeds with rules provides a more powerful paradigm for reasoning about objeds.
In addition, theinferenceenginein arule-based system all ows reasoning knowledge to be expressed more

clearly and concisdly. All these have motivated usto develop a new language on top of Prolog.

Prolog has been a primary language for artificial intelligence

implementation language. Prolog has threepositi ve features (Vranes et al., 1994).

Firg, Prolog syntax and semantics are much closer to formal logic, the most common way of representing
facts and reasoning methods used in artificid intelligence Second, Prolog provides automatic backtracking,
a feature making for considerably easier seach, themost central of all artificia intelli gencetechniques.
Third, Prolog supports multidiredional reasoning in which arguments to a procedure can fredy be
designated inputs and autputs in dfferent ways in different procedure cdl's, so that the same procedure
definition can beused for many different kinds of reasoning. Besides this, new implementation techniques
have dramatically improved the dficiency of the current versions of Prolog. KROL has been implemented
on top of SICStus Prolog (SICS, 1995) for many goad reasons, including: portabil ity to many computer
systems, interface between C and Prolog, therange of libraries that have developed. It isamed at further

extending the expressvenessof representing knowledge and information in Prolog.

Several attempts have been made to extend logic programming for better knowledge representation. Much
of theseworks supports one paradigm of knowledge representation, e.g. frame (lline et a., 1987), semantic
network (Yoshiyuki et a. 1987), and blackboard (Brogi etal., 1991; Vraneset a. 1994. Though some
reseachers have proposed hybrid knowledge representation (Xu et d., 1994), they have no support for
second-generation expert systems. Distinguishing from the above work, owr objedive is todevelop a
knowledge representation languege that has expressve power to ke used in applying demanding
knowledge-based modeling methodol ogies, such as KAD S (Schreiber et al., 1990) and Generic Task (GT)

(Chandrasekaran, 1986), which are suitable for large-scal e knowledge bases (David et al. 1993).

KROL provides facili ties that are important in knowledge representation and processng, such as:

The epressve power to represent complex knowledge. The multi-paradigm knowledge
representation of KROL avoids restricting usersto a sngle way of expressng either knowledge or
data.

The facility to effectively modularize a knowledge base and to construct a hierarchy of concepts.

The facility to control inheritance of properties thorough a wncept hierarchy.

Thefacility to deal with inferencemecdhanisms at different level of granularity.

The knowledge base devel opment tod s that facilitate application devel opment.

The primitives that alow for higher level knowledge base modeling approachesto scale to large
problems, eg. KADS.
The synergy of different inference medchanismsin one system.

A strict typing facil ity.

In agriculture, the potentid offered by expert systems opens up awhole new dimension in the transfer of
knowledge to extensions service and farmers. Thishasled usto develop KROL. KROL isin active use; it
has been working on the devel opment of four reliable and robust crop management expert systems during
the last 9x years. Wetook the advantage of proven knowledge engineering methodologies sich asKAD S
and GT for congructing a model or representation of the underlying domain, and then for designing

reasoning mechanismsthat can be used, together with the model, to devel op these expert systems.

This paper is organized asfoll ows. Sedion 2 describes KROL as a knowledge representation languege. We
present the knowledge representation paradigms with support tods that are needed for application
development. Sedion 3 presents the implementation aspeds of our language. We show how we @n
implement KROL as an efficient programming language. Sedion 4 demonstrates how KROL can be used
to develop a KAD S-based expert system. In this sedion, we show an example of a disorder diagnosis
system. Sedion 5 gives abrief overview of our experiencesto date with devel oping expert systems using

KROL. Sedion 6 concludesthe aticle.

2. KROL: THE LANGUAGE

A new knowledge representation language that combines logic, objed-oriented and rule-based
programming paradigms is designed. This provides a good medium for the seand-generation expert
systems development. Nevertheless from a practical point of view, we have found more dtractive the
designing extenson of the eisting Prolog system to support the combination of knowledge representation
paradigms. Knowledge base development tods that facilitate appli cation devel opment are also designed.
The approach considered in the current work expeded that the developer of KBS is alrealy proficient in

Prolog, and thisisthetarget user.

2.1 Knowledge representation paradigms

The choiceof representation can be aucial to the tractability of the problem. Newell (1987) states that:

Representation = Knowledge + Access.

For a representation to be adequate, it must have sufficient expressvenessto capture the knowledge and
sufficient pragmatic utility to al ow for manipulating the knowledge (Hartley, 1985. The most widdy used
and best-understood representation systems are rule-based systems, frame, and more recently objed
systems. If the relations and inferences in the domain are mostly of a heuristic nature, then a rule-based
system is usualy suitable. Whereas relations and inferences that are mostly of the hierarchical inference
type (generalization, refinement, and inheritance of properties from classto subclasg are usualy more
adequately represented with frame or object systems (Batarekh et a., 1991). The cmbination of object and

rule processng provides a firm foundation for addressng more complex problem.

In KROL, knowledge is represented by asingle formalism, the object. Objects correspond to real-world
concepts or rules. Rules are uniformly handled, in an oljed-oriented manner. The behavior of a concept is
represented by methods and properties (attributes) represent its characteristics. Thereationship between
concepts is governed by the gplied inference For example, inheritance abuilt-in inferencein KROL, isa
spedalization, where dl subobjeds inherit the behavior of their superobjeds. KROL iswritten in Prolog, so
Prolog syntax is used for KROL knowledge structure. An olject object -identifier isdedared by

writingit in the foll owing form:

object-identifier 0
statement- 1 &

statement- 2 &

statement-n

Where object-identifier is a Prolog term that is either an atom or a ompound term of the form
functor (V1,...,Vn), where V1, ..., Vn are distinct variables. The body consists of a number of

statements, posshly none, surrounded by braces. The statementsin objed body are described below.

Rules. A rule dlowsan information about an objed to beinferred, rather than retrieved using atraditiona
message passng against stored data. Thus, rules provide an information derivation mechanism that results
in greaer informational content than is present in the stored data done. The mgjor disadvantage of rule
systems is knowledge maintenance It has been recognized that decomposable knowledge-based system
leads to computationdly efficient inference design and increases maintainability. So, KROL provides a
convenient mechanism for rule dustering. A particular rule cluster is manifested asa set of dedarativerule

instances defined in an objed. A ruleinstanceisdedared by writingit in the foll owing form:

ruleid (conclusion) i f premsie

Where ruleid is any label that uniquely identifies the rule aad concluson partisalis structure. An

eement of thislist is either aderived value of the form

attribute of object = vlaue

or amessage. The premise part has the same @ntrol structure as any Prolog clause body. However, rulesin
KROL differ from Prolog rules in that they are order insensitive andtheir exeaution are handled by a
hypothesis-interpreter, which isafacility to customize theinference ontrol strategy. Atomic statementsin

premiseiseither aderivation of an attribute value of the form

attribute :: object rel_op value

Prolog goal, or a messge, whererel_op isany Prolog relational operator. Thefollowing is an example

of aruleingance

r4([growth_stage of plant = development,

current _date of plantation = DMY]]) if
system :: time(, , ,D,M,Y), % message
ending _dev_date :: plant = Date, % derivation

: compare _date (>=, Date, [D,M,Y]) % prolog call

Methods. Methods are used to perform data manipulation, and implement applicaions. Additionally,
methods may be written diredly in Prolog, this giving the programmer more freedom in terms of
programming constructs and access to Prolog predicaes. A method has a clausal syntax similar to that of
Prolog, but instead o the usua predicate cdls inthe body of a clause there ae method-calls. Ordinary

asaprefix. Atomic goals, i.e messages, in the

body of a method may be in a number of forms, besides being Prolog goals:

» goal tosendthe message goal tothe ohjed self.

« object :goal tosendthemessagegoal to oljed object

» object <:goal toddegate the message goal to oljed object

e goal to send the message goal to a method that may bedefined locally or inherited by the
object

» <:goal to delegate the message goal to a method that may be defined locally or inherited by the

objed.

Thefollowing is an example of a method:

plant (Species,Lwb,Upb):-
subclass (Subclass), % send to self
text (subclass,Text),
menu(subclass,Menu),

self (Self), % inlined method

<:ask (subclass(Self), Text,Menu,Subclass), % delegate to self

Subclass :: plant (Species,Lwb,Upb) % send to object

Note that objeds are based on the notion of prototypes (Lieberman, 1986

to be first-class objeds, and provide a mechanism in addition to inheritance known as method del egation.
In general, a set of objeds dedared may form an inheritance hierarchy. Since objedswith multiple
supertypes are alowed, the hierarchy is generalized into a lattice Hence KROL supports multiple
inheritance Immediate superobjects are dedared by defining the method super within the object in the

following form

super (object-identifier)

In the programming languege literature the restriction on the use of inheritancevary considerably. In
KROL, it takes the form of differential inheritance, where a optional list of excluded methods (
inherit-list) may be spedfied in super definition. For example, consider the dedaration of the objed set

with superobject bag . To exclude the inherited method numberOfOccur ances from set , we write

super (bag,[numberOfOcc urances / 1])

Furthermore, each superoljed possesses automatically the method sub which returnsits subobject, a

labor-saving feature. Thus, an ohjed hierarchy is created with a double link that represents super-sub

relationship. This feature dl ows for easier appli cation of different search algorithms.

Attributes. An object may have attributes that are modifiable. Attributes dedaration takes the form.

att ri but es(Attributes)

where Attributes is a list of compound terms spedfying the attributes with their initial values. For

example, the ohjed point that defines amovable point in atwo-dimension spacemay contain the definition

attributes ([x(0),y(0)])

with x andy initialized to the value 0.

Meta-attributes. A set of facets can be attached to an attribute. In KROL, facets are predicates, which are
used asrulesasciated to events such asvaluerange and vaue set, and rules for inferring attribute values.

Thefollowing faces are provided by KROL:

1) type. KROL hasfive primitive data types, namely: nominal, integer, real, string, and date. Each attribute

must have atype dedaration, e.g.

type (disorder_name / 1,nominal)

Some primitive data types require additional face dedarationsthat are needed for dynamic consistency

cheding:

 legal. The value set of anomina type should be defined. These possble values can be explicit

or implicit, eg.,

legal (colors/ 1,[green,red,white,black,brown D& % explicit
legal (disorder_name [/ 1,Disorders) :- % implicit

disorder :leaves (Disorders)

« range. The valuerange of an integer or red type should be defined, e.g.

range (current_year, 1996 - 2000) % lower_bound - upper_bound

10

2) single or multiple. An attribute of a primiti ve type may take dther a single value or multiple values.

The default is single-valued.

3) source of value
rule. In KROL, they known as: user, database, and derived, respedively. The value of an attribute may

be tried in order from a cmbination of sources, e.g.

source _of value (disorder_name /[1,[derived(] derived,user)]

Noticethat in case of derived , apredetermined rule duster may be given, e.g.

source of value (growth_stage /1,[derived([age_growth_stage])])

It should be stressed that the integration of different inference medhanismsin one system can be achieved
by the virtue of this meta-attribute. Suppose that an attribute value can be derived using a generic task or

routine design problem solvers, one can dedare that in the source_of_value meta-attribute.

If source_of value is user, additional facets may be dedared:
» prompt. This edfiesthe text or window that isto be displayed when the system asks the user

about the atribute value, eg.

prompt (average_temperature / 1, What is the leaves color i n~w? ,

[Current_Month]) :-

planatation :month (Current_Month)

 necessary. This enforces the user to gve a value during the sesson, e.g.

necessary (average_ temperature /1)

11

2.2 Inference Mechanism

A built-in inference isprovided for most common uses. The inferencefoll ows the open world assumption
where ether positive or negative values of attributes are recorded. Dueto the increased complexity of KBS,
appropriate inferencemechaniams at different levels of granularity are designed and implemented. A magjor
feature of thisinferenceisthat it isareusable cmponent that can fit into different domains. I1ts methods are

encapsulated in an objed, known asinference _class, which can be dassfied as foll ows:

1. Methods that directly reason about attribute values. A core operation of the inference is the
get value operation that provides the mechanism for heuristically determining the value of an
inferred (derived) attribute or proving that agiven attribute can have a spedfic value. It differentiates
between two cases during the murse of reasoning: the single-valued attribute and multi-valued attribute.
The general nature of theget valu e operation issimilar to the goa satisfaction processprovided in
an inference engine. When an access to an attribute isrequested duringthe curse of theinference
process the get valu e isautomatically invoked in order to determine or prove an inferred attribute
value for the objed of interest. Thesource_of valu e facet guidesthis operation. Thus, ageneric
inference strategy can be devised to search the domain knowledge for evidencethat will establish a
value for an attribute.

2. Methods that directly invoke the inference in order to reason about attribute values. These methods
provide the apability to express fine-grained inference mechanismsin aflexible and efficient way,
meaning that the relevant parts of the knowledge are involved in the derivation process. There ae two
defined methodsthat can be used to deal with rules: focu s andinvoke . Theformer triesto prove all
rule ingances that drive a given attribute. The latter tries to prove a particular rule.

3. Methods that directly invoke the inference and indirectly reason about attribute values. These ae
middle-grained or coarse-grained inference medhanisms that act upon rule dusters. There aetwo

defined methods that can be used to deal with rules: conclude_relation andconclud e_all

12

The former triesto prove al ruleinstancesin agiven ojed. The later ismore genera and tries to prove

al ruleingancesin agiven ohjed andreaursively its descendant ohjects.

2.3 Knowledge base development support tools

Explanation facility, user interface and database tods are provided to the developer with KROL for

convenient application development. These tods are briefly described bel ow.

2.3.1 Explanation Support Tool

The ahility to explain reasoning processes used for problem solving distinguishes the expert system from
other dedsion support systems (Swinney, 1995. The provision of an explanation facility may actually lead
to ahigher probability of acceptance of the system output (Ye, 1990) and all ow the user to establish deegper

understanding o the system. KROL supports the most widely used types of explanation facility to explain

reached this concluson. Consequently, the dtribute values and their corresponding sources are recorded

during the course of the inference process Also, the order in which rule dusterswere anployed are

history is unlikely to be very illuminative to the user, the system designis augmented to respond with a
customized explanation text template. This template mntains explanations (clarification, textbook
references, case dtation, multimedia, etc.) that can be used aslong as needed, without adding overhead to

the knowledge. KROL provides the ohjed explanation that defines the methods how and why.

2.3.2 User Interface Support Tool

Roesner, 1989. End-user can interact either in Arabic or English, i.e. bilingua. In KROL, it

values whose source of values is defined asuser, reporting an error message, reacting to an explanation
request, and generating areport. Consequently, different styles of interface programming such as dialogue
and menu are supported. The multimedia facility is provided which ishelpful in explanation espedally for

new personnel (Rafea et d., 199%; Rafea, 1995

13

about the dtributes that take an unknown value. Thisisvery useful because sometimes we @n work with
incomplete knowledge or apply heuristics whenever necessry. KROL provides the objed

user_interface , written in C and interfaced to Prolog, that defines the user interface methods.

2.3.3 OODBM S Support Tool

As mentioned in (Yahaya, 1994), the practicd expert systems in the future wil | have to increase in terms of
size aad complexity. In addition, astheir overal size grow, the non knowledge-based component such as
the data processng componentsare also expeded to increase in size. To allow the knowledge engineersto
use asingleway to represent data and knowledge in an appli cation, we have devel oped an Objed-Oriented
Data Base Management System (OODBMYS) support tod. Althoudh important, it is beyond the scope of
this article. We refer to (Kim, 1990 as an excdlent overview and motivation for the subjed. The dbms
objed provides the methods that enable usto define a schema, crede dataobjed, create view, processa

query, and maintain the integrity of databasesin an objed-oriented manner.

3. Implementation Aspects

Objea-Oriented languages have ar undeserved reputation for inefficiency because some early languages
were interpreted rather than compil ed (Rumbaugh et al., 1990). KROL is a mmpil ed language that expands
into SICStus Prolog code. The expansion of KROL definitionsto Prolog definitionsis based on sourceto-
source transformations. The transformation rules given in (ESICM, 199; SICS, 1995 provide the
definitions of genera rewrite rules for expanding definitions. Hence the operationa and dedarative

semantics of KROL programsisgiven in terms of their trandationsto Prolog.

Firg of all, every defined object will trandateto several Prolog clauses belonging to a unique object

module with the sameidentity as the object-identifier . Object modules are significantly cheaper
to create than ordinary modules, as they do not import the built-in Prolog predicates. The module wil |
contain the predicates implementing an oljed dedaration, the method code, therule cde, the attribute

code ad the imported methods. It should be noted that SICStus Prolog uses aflat, not hierarchical, module

14

system with access control mechanisms for exporting methods. These mechanisms provide for efficient
encapsulation of object primitives and enhancethe cde exeaution through dred accessng of the objed

code. The fall owing sedions discussthe implementation aspeds of KROL.

3.1 The Inheritance Mechanism

One asped of object-oriented languages that seamsinefficient is the use of method resolution at runtime
(also known as dynamic binding) to invoke methods. Method resolution isthe process of matching an
operation on an object to a spedfic method. Thiswould seem to require aseach up the inheritance graph at
runtime to find the object that implements the operation. KROL optimizes the lodk-up mecanism to make
it more dficient; a method dspatches in a cnstant time once its target objed becomes determinate
regardiess of the depth of the inheritance graph or thenumber of methodsin the objed. Moreover, the
method dspatcher is cleanly captured and will only contain the relevant information where dl the excluded
entries areremoved. The inheritancemedanism is based on the module accesscontrol medianisms. All the
methods visible in theimmediate supers are wlleded after subtracting those that are spedfied in the

inherit-list, the resulting set is made visible in the module of the inheriting olject by means of importation.

3.2 Object Attributes

Attributes are based on efficient term storage associated to modules. The attributes for an ojea is colleaed
from its ancestors and itself at compile time and used for initiaization at load time. The methods for

accessng and deriving attributes areinlined to primitive all swhenever possble.

3.3 Methods

The method bady is trandated to a Prolog-clause body. The @mdeis traversed, and the method-callsare

transformed according to the foll owing transformation pattern.

Module X Message X Self X Myself
Method-call :{

Module X Message X Self

15

Where Module is the target object modul e, the agument Message is therecaved message, the
argument Self isbound to the aurrent contextua oljed that is needed for dynamic binding o attributes and
methods to dojects at runtime, and the agument Myself is the parameter needed to cater for passng olject

parameters, if any, to the method-call.

Methods are used to perform data manipulation, and implement appli cations. The good programming styles
that are employed at the Prolog level can also be enployed at the KROL level. Thislanguege dficiency is

redized by:

1. Representing oljeds as gedal li ghtweight Prolog modules.

2. Exploiting the first argument indexing o the Prolog compiler, leading to dred accessto the
method clauses.

3. Presarving thelast call optimization in reaursive methods, i.e. the tail primitive is expanded into tail
rearsve Prolog code. Thus, the expanded code will invoke the expanded code diredly instead of

calling the dispatcher.

3.4 Rules

Rules are transformed into Prolog code in a way similar to methods transformation with additional
information. This information provides for flexible pattern matching that improves a great ded the
inferenceprocess Thisisredized by:
» Storing for each attribute the rules that derives a cetain value. This is very useful when
considering the method focus of the inference
» Storing for each rule duster all rule heals, each intheform of acachall goal. Thisisvery
useful when considering the methods conclude_relation and concude_all of the
inference
In general, KROL providesthe caability to expressfine-grained inference mechanisms explicitly in a way

that the granularity, i.e. target rules, used in a program can be adjusted to diredly invoke the inference

16

4. Demonstration of KROL capabilities to develop KADS-based
expert system

Expert system is one of the most successful applications of artificial intelligence With the increase on
demand o using expert systems, they become bigger in size aaxd more complex in structure. A large and
complex expert system must be engineaed carefully if it isto function properly and to be modified easily.
Thus, creating an expert system requires a devel opment methodol ogy that emphasizes a goad structure for

the knowledge within the system.

A common knowledge engineering methodology is to partition the task into smaller components, rather
than have one big system. Each of these modules should be a well-defined portion of the system, with
carefully defined inputs, outputs and functions. The modularization of a system can be donein dfferent
ways. Themost appealing ane isthe knowledge-level approach, which consists of breaking the system into
a number of layers or levels. One of these approachesis KAD S, whichis amajor landmarks of the seaond-
generation expert systems engineering methodologies. Thereby, a structured systematic development of
KBS is achieved. In the following subsedionswe give a brief overview of KAD S and show how KROL

can support their implementation in terms of an example.

4.1 KADS : A brief Overview

KADS is a methodology that has been developed in the framework of the Esprit program. The KAD S
projed has been succeealed by the KADS I (CommonKADS) projed. The theories concerning the
modding of knowledge accordingto KAD S are based on the work of professors Widlinga and Breuker of
the University of Amsterdam. The model-based approach according to KAD Sisrapidly becoming the de
facto standard in Europe. In KADS, the development of a KBSisviewed asamodeling activity. The

KADS methodology is based upon a number of principles derived from cognitive psychology, artificial

17

intelligence and software development. In this paper, we asuumethat the reader isfamiliar with KAD S

methodology, for more details e ésawhere (Schreiber et al., 1993).

The KADS expertise mode distinguishes three types of knowledge, and prescribes gedfic relations
between these knowledge-types.

* The first caegory of knowledge is called domain knowiedge and concerns domain-spedfic
knowledge. Such knowledge describes the objects of discourse in a particular domain, facts that
hold about such objeds, relationships among them. Rules, facts, hierarchies, ohjeds, properties,
relations, etc. often represent thistype of knowledge. A crucia property of thisfirst category of
knowledge is that it is represented as much as possble independent from how it will be used.
Thus, we state which properties andreationshold in a particular domain, but we do not state
how these properties andrdationswill be used in thereasoning process That isthe ancern of
the second category of knowledge.

» The semnd category of knowledge is call ed inference knowledge. Here, we spedfy: a) what the
legal inference steps are that we can use inthereasoning process b) which role the domain
knowledge plays in these inference steps, and c) what the dependenciesare between these
inference steps. Again, acrucia property of this type of knowledge is what it does not contain:
although we spedfy what the legal inference steps are, we do not spedfy the sequencein which
these steps should be applied.

e This sequence of steps is exactly the concen of the third type of knowledge, the task
knowedge. This spedfies in which order the inferences from the second category should be
exeauted. This type of knowledge is concerned with actions, sequences, iterations, state-

trangitions, €tc.

4.2 Disorder Diagnosis : An Example

Diagnosis is the problem of trying to find the causes of abnormal observations. We chose an exampl e that
investigates the appli cation of KROL to a domain theory for diagnosing dsordersin a aucumber production

management system. This system contains 10 concepts, 23 attributes, 1 reation between concepts, 11

18

relation between conceptsingances, 6 relation between expressons, and 109 relations between expresson

instances.

4.2.1 Domain Knowledge

The domain concepts has two types of concepts, thefirst oneissimple mncepts such assoi |, water
climate , plan t, and plantation . Thesemnd ishierarchical concepts sich asobservation and
disorder . The concepts representing the domain were implemented as ohjeds. For example, Fig. 1
illudtrates a mncept hierarchy for identifying disordersthat infedsthe plantsin afarm. Fig. 2 showsthe
implementation of two concepts from such hierarchy. At the topmost isthedisorder ohject, which is
inherited by all of the other objedsin the hierarchy. In general, the domain concepts inherits the behavior
of the generic object doamin_class . At any point in the hierarchy, however, an object has the option to
override the defaults with ones that isspedalized for the problem areg e.g. the objed root_knot . The
objed hierarchy is used to represent the implicit relationships, that isdisorder is_a disorder, between
different classes of disorders concepts, starting from objects at ageneral level down to dojects at spedfic

levels.

Properties with their initial values are implemented as attributes. Some faces are asciated with these
attributes. For example, the attribute value of disorder object has the facets legal that spedfies leaves, the

most spedfic objectsin the hierarchy, asits legal values.

A second type of relation isthe relation between expressions about property values. It isworth noting that
the relations between expressons are grouped according to the semantic of the relation and the cnceptsto
which therdation operands, which are properties, belong. Theright-hand side of ardation is the properties
of one object, whereas theleft-hand side of arelation may be the properties of more than one olject. This
grouping of relations between expressons came out as aresult of our experiencein order to establish a
clear and clesn mapping between the knowledge sources and the relations between expressons. Each
relation is implemented asarule duster, a set of dedarative ruleinstances defined in an objed. It refersto

the sub- or system to which it belongs. For example, the relation caused by spedfies caused by

18

relationship between disorders and observations. A sample of this reation is shown inFig. 3andits

implementation is shown in Fig. 4.

[Insert Fig.1 about here]
[Insert Fig. 2 about here]
[Insert Fig. 3 about here]

[Insert Fig. 4 about here]

4.2.2 Inference Knowledge

obtainsthe ase description from the farm database to predict the assumed disorders. It seleds observations

and factors related to the asaumed disorders, promptsthe user, analyzes the user response and confirmsthe

posshility of disorders existence Then, confirmed disorder isasdggned a cetainty factor, which is either
5 showstheinference structure of the disorder diagnosis. Fig. 6 shows a

sample of implemented inference step. Associated with each inference step isan explanation module. Fig. 7

shows the implementation of the predict explanation module.

[Insert Fig. 5 about here]

[Insert Fig. 6 about here]

[Insert Fig. 7 about here]

4.2.3 Task Knowledge

The goal of the disorder diagnosis task is to provide the user with adiagnostic disorder which causes
problems on plantation or verifies auser'sasaumption. Thetask structure of the diagnosisis expressed in
pseudo code segment shown in Fig. 8. The implementation of thistask is shown in Fig 9. It should be
noted that thetask at the very beginning dfferentiates between disordersthat infeds the plants at different
growth stages, namely: devel opment, middle, and late, upon which the disorder diagnosisis derived.

[Insert Fig. 8 about here]

[Insert Fig. 9 about here]

20

5. Experience

The arrent work is aimed at further extending the expressveness of representing knowledge and
information in Prolog. Plain Prolog represents knowledge in the form of Horn-clauses. The inference mode
is a backward-chaining ordered sensitive system which differs from conventional rule-based systems.
Because, in rule-based systems, the order in which rules are applied depends bath upon datavalues
changing within the system and on therule @ntrol methodol ogy adopted. In fact, the evolution of KROL
came about because of the neeal to kridge the gab between the modeling and the implementation of expert
systems methodologies. The first version was actually a side dfed of aresearch that investigated the
application of KBS in the agriculture sedor. The problem was sifficiently complex so that modularization
became an imperative. Due to itsinherent modularity, Prolog Objeds as alayer on top of SICStus Prolog
appeaed to have the greaest potential for KBS modularization. As a matter of fact, the task wasa
collaborative reseach interest between the Swedish Institute of Computer Science (SICS) and Central
Laboratory For Agricultural Expert Systems (CLAES). However, modul arization aone was not the answer.
It made the system maintainable. To makeit fit into the second generation expert systems methodol ogies,
such as KADS and Generic Task, afull-fledged representation language is designed and implemented. 1t

turned out to be KROL.

KROL has been of red practicd use in developing expert systems for crop production management (Rafea
et a., 1992. This is one of the problems that involves many parameters, and requires very compli cated
optimization and modding steps. The overall production management problemsinvolves, anong aher
aspeds, water requirements calculations, determining fertilizers and pesticides neals, water and soil salinity
calculations, diagnosing the disorders or manutrition that cause symptoms noticed by the growers,
scheduling of agricultural operations and tasks, and advising about remedial and protedive measures. The
nature of the systems that deal with such a problem highly involves non-numeric data manipulation and a
lot of heuristic procedures to get near optimum solutions. Moreover, the size of the probem under
consideration suffers from the lack of enough expertsto support the agriculture growers, and the heavy
dependence upon the experience of these experts, al make the choice of the knowledge based approach for

the solution of this problem amost suitable one.

21

While devel oping these appli cations, the foll owing benefits can be noted:

* Representing data in the form of objects is more modular and efficient than other forms of
representation used with KBS. KB is $lit into smaller, manageable parts. Moreover, the
knowledge about a problem is organized as the interaction of several well-defined, semanticdly
related parts of knowledge.

» Organizing oljeds in ahierarchy refleds a top-down methodol ogy, where a omplex problem
is deaomposed into smaller partsthat are visible to the entire system indicated by the top-level
objed. This characteristic lendsitsef to bridge the gab between the design and implementation
when considering the knowledge level modeling of KAD S and task deampositi on into subtasks
of GT.

* Message passng alows the system to kegp knowledge about data separated from knowledge
about reasoning, which iscritical for good data abstraction and the encapsulation of knowledge.
No object-processng system is complete without full message-passng capabilities.

« Pattern-matching rules enable a clea and concise spedfication of the algorithm. Theserulesare
easily implemented, understood, and maintained. They can keep track of a dynamically

changing situation automaticdly so their performanceis superior to that of procedura rules.

dedarative nature supported by thelogic style of programming.

* Representation paradigms and inference schemes allow that a system can be devel oped through
incrementally encoding domain spedfic knowledge.

» Dired mapping of expert systems modeled through KAD Sand GT into KROL code. This has
the dfect of increasing the productivity during application developments aswell asreducing the

maintenance osts.

6. CONCLUSION

In this paper, the Knowledge Representation Object Language (KROL) has been described. Thislanguage

involves two aspeds. The multi-paradigm knowledge representation based on logic, object-oriented, and

22

rule-based programming paradigms; the knowledge base development support tods, such as object-
oriented database management system, user interface explanation facility, that are convenient for
application development. Moreover, due to the increased complexity of KBS, appropriate inference

medhanisms at different levels of granularity are provided.

The use of the optimized compiler of SICStus Prolog and the schemes for developing an efficient
implementation improve the performance of KROL. Thisimplementation isbased on a compiler. KROL
proggams trandate into Prolog programs, producing a program that can be diredly executed. The

trandation is based on rewriterules.

With KROL, the foundation has been laid to devel op valuable expert systems for active use by agriculture
sedor in Egypt. Four expert systemsthat contribute to the transfer of knowledge to extension service and
farmers have been developed. The expert systems being used are mainly for crop management, which are
developed by CLAES at the Agriculture Research Center of Ministry of Agriculture and Land Redamation
in Egypt. They are: the Cucumber Expert System (CUPTEX), the Citrus Expert System (CITEX), the
Tomato Expert System (TOMATEX), and Neper Whed. The CUPTEX (Rafeaet al., 1991; Rafeaet al.,
1995 is an expert system for cucumber production management under plastic tunndl. CITEX (Salah et al.,
1993 is an expert system for citrus production in open field. TOMATEX (El-shishtawy et al., 1995) isan
expert system for tomato production in different environments, e. g. under plastic tunnels, open fields, and
low tunnels. Neper Wheat (Schroeder et d., 1995 isan Expert System for Irrigated Wheat Management in
open fied. CUPTEX, CITEX and TOMATEX areimplemented using KAD S methodology whereas Neper
Wheat is implemented using Generic Task methodology. These expert systems are intended to be used by
agricultural extensons service within the Egyptian ministry of agriculture and by private sedor. They

demonstrated the goplicability of KROL to implement second-generation expert systems.

23

REFERENCES

Akoka J., & Comyn-Wattiau I. (1996). UNIFESS An Objed-Oriented Method for Expert System design,
In Proceeding of the 3rd World Congress on Expert Systems, Korea, Cognizent Communicéation
Corporation, 614-624.

Batarekh A., PreeceA., Bennett A. & Grogono P. (1991). Spedfying an Expert System, Expert Systems
with Applications, 2, 285-303.

Brogi A., Turini F., & Gaspari M. (1991). Inheritance Hierarchies in Blackboard Architedures, In
Lenzerini, E. (Ed.), Inheritance Hierarchiesin Knowedge Representation and Programming Languages,
John Wiley and Sons Ltd.

Chandrasekaran B. (1986). Generic Tasks in Knowledge-based reasoning: high-level buil ding blocks for
expert system design, |EEE Expert, 1, 23-30,.

David J. & Krivine J, (Eds.) (1993). Second Generation Expert Systems, Springer-Verlag.

El-Shishtawy T., Wahab A., El-Desouki A. & El Azhary E. (1995). From Dependency Networksto
KADS: Implementation Issies, In proceeding of the2™ FAC/IFIP/EnrAgEng workshop on Artificial
Intelligence in Agriculture, The Netherlands.

ESICM (1992. Design of the Compiler for a Knowledge Representation Objed Language (KROL) on top
of Prolog, Technicd Report No. TR-88-024-27 Expert Systems for Improved Crop Management (ESICM),
UNDP/FAO, EGY/88/024.

Etzkorn L. & Davis C. (1995. Knowledge-based Objed-oriented Reusable Component Identification, In
Proceeding of the 8" Florida Artificial Intelligence Research Symposium (FLAIRS), Florida Al Research
Society, 97-101.

Harmon P. (1995. Objed-Oriented Al: A Commercial Perspedive, Communications of the ACM, 38(11),
80-86.

Hayes-Roth F., Waterman D. & Lenat D. (Eds.) (1983. Building Expert Systems, Addison-Wesley.

Hartley R. (1985. Representation of procedural knowledge for expert systems, In Proceeding of the 2™
Conference on Artificial Intelligence Applications. The Engineering of Knowledge-Based Systems, Siver
Spring, MD: |IEEE Computer Society, 256-531.

lline H. & Kanoui H. (1987). Extending Logic Programming to Objed Programming: the system LAP, In
proceeding of the |IJCAI, 34-39.

Kim W. (1990. Objed-Oriented Databases: Definition and Research Diredions, IEEE Transactions on
Knowledge and Data Engineering, 2(3), 327-341.

Kowalski B. & Stipp L. (1990). Object Processng for Knowledge-Based Systems, Al Expert, pp. 34-41.

Lieberman H. (1986. Using Prototypical Objeds to Implement Shared Behavior in Object-Oriented
Systems, In Proceeding of OOPSLA, 214-223.

Lyndon M. & Tan C. (1995. An Objed-Oriented Knowledge Base for Multi-Domain Expert Systems,
Expert Systems with Applications, 8(1), 177-185.

Newedll A. (1981). The knowledge level, Al Magazine, 2(2), 1-20.

SICS (19%). SICStus 164 28,
KISTA, Sweden.

Rafea A., Warkentin M.& Ruth S. (1991). An Expert System for Cucumber Production in Plastic Tunnels,
In Proceeding of The World Congress on Expert Systems, Florida, Orlando, USA, 909-916.

Rafea A., Warkentin, M. & Ruth S. (1992. Knowledge Engineering: Creating Expert Systems For Crop
Production Management in Egypt, In Mann C., and Ruth S (Eds) Expert Systems in Developing
Countries: Practice and Promise, Westview Press 89-103.

24

Rafea A., El-Azhari S. & Hassan E. (19%). Integrating Multimedia With Expert Systems For Crop
Production Management, In Proceeding of the 2™ IFAC/IFIP/EnrAgEng workshop on Artificial
Intelligencein Agriculture, Netherlands.

Rafea A. (1995. On Integrating Agricultural Expert Systems with Data Bases and Multimedia, In
Proceeding of the First International Conference on Multiple Objective Decision Support Systems for
Land, Water, and Environmental Management: Concepts, Approaches, and Applications, Honolulu,
Hawall, USA.

Rafea A., El-Azhari S, lbrahim ., Soliman E. & Mahmoud M. (1995). Experiencewith the Devel opment
and Deployment of Expert Systemsin Agriculture, In Proceeding of 1AAI-95, Montreal, Canada.

Roesner H. (1988). Expet Systems for Commercial Use, In S Savoy (Ed.) Artificial Intelligence and
Expert SystemsChinester, Ellis Horwood, 34-59.

Rumbaugh J., Blaha M., Premerlani W., Eddy F. & Lorensen W. (1990). Object-Oriented Modeling and
Design, Prentice Hall Inc.

Salah A., Hassan H., Tawfik K., lbrahim I. & Farahat H. (1993. CITEX: An Expert System for Citrus
Crop Management, In Proceeding of the 2™ National Expert Systems and Development Workshop
(ESADW-93), Minigry of Agriculture and Land Redamation, Cairo, Egypt.

Schreiber G., Widlinga B. & Breuker J. (Eds.) (1993. KADS A principled approach to knowedge-based
system devel opment, Knowedge-Based Systems, San Diego, CA: Academic Press

Schroeder K., Kamd A., Sticklen J, Ward R., Ritchie J, SchulthessU., RafeaA. & Sdlah A. (1994).
Guiding Objed-Oriented Design via the Knowledge Level Architedure: The Irrigated Wheat Testbed,
Mathl. Comput. Modeling, Elsevier SciencelLtd., Gred Britain, 20(8), 1-16.

Schroeder K., Kame A., Sticklen J., El-Skeikh E., Ward R., Ritchie J., SchulthessU., Rafea A. & Salah A.
(1995. Neper Wheat: An Integrated Architedure For Irrigated Wheat Crop Management, In Proceeding of
the 2™ IFAC/IFIP/EnrAgEng workshop on Artificial Intelligence in Agriculture, Netherlands.

Swinney L. (1995. The Explanation Facility and the Explanation Effect, Expert Systems with Applications,
9(4), 557-567.

Vranes S, Stangjevic M., Lucin M., Stevanovic V. & Subasic P. (1994). A Blackboard Framework on top
of Prolog, Expert Systems with Applications, 7, 109-130.

Xu D. & ZhengG. (1994). A Hybrid Knowledge Representation Based on Logical Objects, In Proceeding
of the 2" International Conference on Expert System for Devel opment, Thailand, IEEE Computer Society
Press 153159.

Yahaya N., (1994). On the Development of Environments for Devel oping Expert Systems, In Proceeding
of the 2" International Conference on Expert System for Devel opment, Thailand, IEEE Computer Society
Press 24-29.

Ye L. (1990). User Reguirements for Explanation in Expert Systems, Ph. D. dissertation, University of
Minnesota, Minneapoalis.

Yoshiyuki and Koseki (1987). Amalgamating Multiple Programming Paradigmsin Prolog, In proceeding
of IJCAI, 76-82.

25

[[[1

Disease ‘ ‘ Mites ‘ ‘ Environmental ‘ ‘ Ins‘ect ‘ ‘Nutrition I‘Deficiency‘ ‘ Tox‘icity ‘ ‘ Nematode

Fungal ‘ Spiders ‘ Low temperature‘ aphids ‘ Nitrogen ‘ Bromide ‘ Root knot

Broad mite ‘ Heavy irrigation ‘ Iron ‘ Bazamide ‘ Root lesion
Leaf mold

Downy mildew

Mosaic
Green Mosaic

Fig. 1 Disorder concept hierarchy

26

disorder :: {
super(domain_class) &
attributes([value(]]), verify([]), confirmed([]),
infection([]), spread_range ([D])

source_of value (value/ 1, [derived])&

source_of value (ve rify/ 1, [derived])&

source_of value (confirmed/ 1, [derived])&
source_of value (infection/ 1, [derived, user])&
source_of value (spread_range /1, [derived, user])&

prompt (value/ 1, disorder value ,[))&
prompt (infection/ 1, disorder_infection D&
prompt (spread_r ange/ 1, disorder spread_range D&

type(value/ 1, nominal)&
type(verify/ 1, nominal)&
type(confirmed/ 1, nominal)&
type(infection/ 1, nominal)&
type(spread_range /1, nominal)&

multiple(value/ 1)&
single(verify/ 1)&
single(confirmed/ 1)&
single(infection/ 1)&
sin gle(spread_range [/ 1)&

legal (value/ 1, Ds):-

disorder .. leaves(Ds)&
legal(confirmed/ 1, confirmed)&
legal(verify/ 1, yesnho)&
legal(infection/ 1, disorder_infection)&
legal(spread_range /1, disorder_spread_range)

}.

root _knot :: {
super (nematode)&

attributes ([root_knot_infection (Mh&

source _of value (root knot_ infection / 1, [user])&

single (root_knot_infection /1 1)&

type (root_knot_infection / 1, nominal)&

prompt (root_knot_infection /1, root_knot_nematode_infection
&

legal (root_knot_infection /1, root_knot_nematode _infection)

Fig. 2. An implementation of two concepts from the diagnosis hierarchy using KROL

27

L eft Hand Side

Right Hand Side

Concept property value concept property value
Leaves L_O_Caoalor Yellow Disorder | Value salt_injury,
Observation nitrogen_def, zinc_def,

heavy irigation,
high_light_intensity
Leavs L_O_Caoalor yellow edges, Disorder | Value jasdd, potassum_def
Observation brown edges
Leaves L_O_Caoalor light green; Disorder | Value iron_def
Observation lemon_yellow
Leaves L_O_Caoalor ydlow but main || Disorder | Vaue magnesium_def,
Observation veins gill green manganese _def
Leaves L_O _Cdlor Purple Disorder Vaue phosphorus_def,
Observation low_temperature
Leaves L_O_Caoalor brown Disorder | Value low_temperature
Observation

Fig. 3. A subset of caused by relation of disorder diagnosis.

28

observation _caused_by_ disorder A

super (diagnosis_system)&

r 1([value of disorder = nitrogen_def
value of disorder = zinc_def
value of disorder = salt_injury ,
value of disorder = high_light_intensity ,
value of disorder = heavy_irrigation] if
| _o_color : leaves_observation =yellow &
r 2([value of disorder = jassid
value ofdi sorder= potassium_def J])if
(1 _o_color : leaves_observation ='yellow edges' -> true
;1 _o_color : leaves_observation ='brown edges'
)&
r 3([value of disorder = iron_def])if
(1 _o_color : leaves_observation ="'light green' -> true
;1 _o_color :: leaves_observation ='lemon yellow'
) &
r 4(Jvalue of disorder = magnesium_def ,
value of disorder = manganese_def]) if
| _o color : leaves_observation ='yellow but main veins
still green'&
r 5([value of disorder = phosphorus_def
value of disorder = low_temperature) if
| o color : leaves_observation = purple &
r 6([value of disorder = low_temperature]) if
| _o_color : leaves_observation = brown
.

Fig. 4. An implementation of subset of caused_hy relation using KROL

29

system predict | complain
description
. hypothesis user
@D assumption

case

description \q:
/\ observation

confirmed

disorder
\/\/e;?y | result
2N\

Fig. 5 An inference structure for disorder diagnosisin a @op management system. Redangles represent
roles; ovals represent inference steps. Arrows are used to indicate input-output dependencies.

30

diagnosis _inference |

super (inference_class)&

determine

predict -)]

(inference _class::conclude_all (observation_caused_by_disorder)-> true;true),
(inference _class::conclude_all (observation_confirm_disorder)-> truejtrue ,
(inference _class::conclude_all (observation_plant_ _caused_by_disorder)-> true;true),
(inference _class::conclude_all (plant_observation_confirm_disorder)-> true;true)&
confirm

verify

1.

Fig. 6 An implementation of subset of disorder diagnosis inference using KROL.

31

predict

super (diagnosis_sy s)&
dynamic rel /1 &
type (rel /1, nominal) &
long _prompt (rel /1,2, 54 Mdiag) :-
appl _presentation . fetch(text(exdiag 3, Mdiag),)&

legal (rel /1,L):-
findall (X, (:: map(X,Y),

(history ;. premise_data (Y, _ Ruleld , disorder, value, _V) % fired rules
;history ;. premise_data (Y,_ Ruleld ,_O, confirmed, _V) % fired rules
N L1,

sort (L1,L)&

% map(text describing the relation, relation name)

map('possible disorders which cause primary observations',
observation_caused_by_disorder &

map('possib le disorders which cause primary observations on fruits',
observation _plant_caused_by disorder)&

map('disorders which confirmed by primary observations',
observation_confirm_disorder &

map('disorders which confirmed by primary observations on fruits',
plant_observation_confirm_disorder)

)
Fig. 7 Animplementation of an explanation module

32

Task: Disorder Diagnosis
Goal: finding causes of user complaint
or verifying of user assumption

DETERMINESystem Description - Case Description)
IF the goalisto find causes of user complaint
THEN
OBTAIN (Complaint)
PREDICT(Complaint + Case Description - Hypothesis)
CONFIRMHypothesis+Case_description+Observation - Confirmed Disorder)
VERIFY(Confirmed Disorder+ System_Descrip tion +Case Description - Result)
PRESENTResult)
EL
OBTAIN(user assumption)
CONFIRM@ser assumption+Case_description+Observation - Confirmed Disorder)
VERIFY(Confirmed Disorder+System_Description+Case Discription - Result)
IF Result contains an unlikely assumption
THEN

PRESENT the unlikely assumption

Fig. 8 Task structure of disorder diagnosis

33

diagnosis _task :{

main :-
system ::time(_HH,_MM,_SS, _DD, Month, _YY),
plant ::updat e(current_month (Month)) &
diagnosis _inference :: determine,
inference _class :: get_value (plant, growth_stage (Gr)),
. diag _menu(Gr),
diagnosis _inference :: predict,

forall (disorder :: value(D), D:: assert(verify(no))),

% invalidate disorders
diagnosis _inference :: confirm,
diagnosis _inference 2 verify,

present_value &

present _value :-
get_likely (Disorders 1),
get_most_likely (Disorders),
present_diagnosis (Disorders, Disorders)&

get _most_likely (Disorders):-
findall (Disorder,
(disorder :: leaf(Disorder),
Disorder : : confirmed('most likely")), Disorders)&
get _most_likely ([N&

get _likely (Disorders):-
findall (Disorder,

(disorder :: leaf(Disorder),

Disorder : : confirmed(likely)), Disorders)&
get _likely (D&

pres ent _diagnosis ([], [I):-!,

inference _class :: get_value (plant, growth_stage (Gr)),
:: check_normal_observation (Gr)&

present _diagnosis (Disorders, Disorders 1):-
. diag _results (Disorders, Disorders 1) &

check _normal_observation (Gr):-
Gr==development

inference _class : get value (leaves_observation , l_o_color (LC)),

inference _class :: get value (leaves_observation , |_o_shape (LS)),
inference _class : get value (stem_spot , s_s_exist (SE)),

inference _class : get value (stem_observation , s_o_shape (SS)),

LC==normal , LS==normal , SE==no, (SS==normal ; SS==cutting), &
check _normal_observation (Gr):-
(Gr==mid ; Gr==late),

inference _class : get value (leaves_observation , l_o_color (LC)),
inference _class : get value (leaves_observation , |_o_shape (LS)),
inference _class :: get value (stem_spot , s_s_exist (SE)),

inference _class :: get value (stem_observation , s_o_shape (SS)),
inference _class : get value (fruit_observation , f o_shape (FS)),
inference _class :: get value (fruit_observation , fo_color (FC)),
LC==normal , LS==normal , SE==no, (SS==normal ; SS==cutting),
FS==normal , FC == normal&

Fig. 9 An implementation of diagnosistask using KROL.

34

