
 An approach for automating the verification of KADS-
based expert systems

Abeer El-Korany
Central Lab. For Agricultural Expert Systems (CLAES), P.O. Box: 100 Dokki, Giza, Egypt

abeer@esic.claes.sci.eg

Khaled Shaalan
Computer and Information Science Dept., Institute of Statistical Studies and Research (ISSR),

Cairo Univ., 5 Tharwat St., Orman, Giza, Egypt
shaalan@esic.claes.sci.eg

Hoda Baraka
Hbarka@idsc1.gov.eg

Computer Engineering Dept., Faculty of Engineering, Cairo University, Dokki, Giza, Egypt

Ahmed Rafea
Computer and Information Science Dept., Institute of Statistical Studies and Research (ISSR),

Cairo Univ., 5 Tharwat St., Orman, Giza, Egypt
rafea@esic.claes.sci.eg

Abs t rac t ca t ion

plays an impor tant ro le in assu r ing the rel iabi l i t y of exper t systems. Exper t systems ver i f i ca t ion

involves check ing the knowledge base for consistency, completeness, and other er rors. Ou r study

indica tes tha t in order to ver i fy an exper t system, i t i s necessa ry to have a concep tua l mode l of the

knowledge base. T he KADS methodology lends i tse l f to conceptua l model ing of the knowledge base.

T his enabled us to bu i ld an au tomat ic ver i f i ca t ion tool . T his tool i s able to detect d i f ferent

knowledge base er ror types. A novel fea tu re of th is too l is i ts abi l i ty to detect consistency er rors tha t

a r ise due to using KADS methodology in knowledge model ing.

1. Introduction

he impor tance of assur ing the qual i ty of exper t systems is now widely

recogn ized. Qual i ty assurance is a major issue in development of exper t

systems. A consensus has been reached in the l i terature that the

evaluat ion of exper t systems to ensure their rel iabi l i ty involves two pr inciple

act ivi t ies, usual ly cal led ver i ficat ion and val idat ion (V&V). Studies have shown

that veri f icat ion, can lead to the ear ly detect ion of er rors that otherwise would

have remained even after extensive val idat ion tests (1,2,3). Ver i ficat ion , therefore

T

2

is an impor tan t par t of rel iabi l i ty assurance for these systems, and i t is the in terest

of a l l exper t system bui lders to ensure that ver i ficat ion is per formed on their

system pr ior to t radi t ional methods of test ing. Our proposed approach for ver i fying

knowledge bases is based on using conceptual model ing for knowledge base (KB).

Conceptual models, such as suppor ted by KADS methodology (4,5) make i t

possible to der ive the structure of knowledge base systems (KBS). Th is enabled us

to bui ld an automat ic ver i ficat ion tool . Th is tool is able to detect di fferen t KB

er ror types such as consistency and completeness er rors, as wel l as other er rors. A

novel feature of th is tool is i ts abi l i ty to detect consistency er rors that ar ise due to

using KADS methodology in knowledge model ing.

The structure of the paper is as fol lows. Sect ion 2 discusses the needs for

assur ing the qual i ty of exper t systems. Sect ion 3 presents the di fferen t approach in

ver i ficat ion and val idat ion of exper t systems. Sect ion 4 br iefly descr ibes the

knowledge base development environment upon wh ich we bui ld our ver i ficat ion

tool . Sect ion 5 examines the proposed ver i ficat ion tool in detai ls. Sect ion 6 studies

the abi l i ty of ver i ficat ion tool in ver i fying some real-wor ld knowledge bases.

Sect ion 7 summar izes the paper and considers some open research issues.

2. The needs for assuring the quality of expert systems

Several factors have led to need for assurances about the qual i ty of exper t

systems (6). One such factor is a new generat ion of exper t systems wh ich are

beginn ing to appear . These exper t systems are embedded wi th in another

hardware/software system in such a way that users may not even real ize that an

exper t system is a par t of the software.

Another factor is that exper t systems are being proposed for mission-

cr i t ica l appl icat ion . In such appl icat ions, there is a possibi l i ty of great financia l

loss and/or loss of l i fe i f the exper t system mal funct ions.

An addi t ional factor is the expectat ions and standards for qual i ty software

which the commercia l comput ing communi ty has al ready establ ished. The

3

commercia l comput ing community is un l ikely to lower i ts expectat ions or

standards of qual i ty in order to adapt to exper t systems. Exper t system developers

wi l l have to adapt to the preestabl ished expectat ions and standards of commercia l

comput ing community.

3. Different approaches in verif ication and validation of
knowledge- based systems

Dur ing the fi rst years of KBS product ion , researchers thought of KBS l i fe

cycle as rapid prototype, wh i le the V&V was handled on as-needed basis. Recent ly,

methods (and their suppor t tools) were developed to detect problems in rule-based

systems, such as redundant, subsumed, or missing rules. However the field lacked

a comprehensive view of KBS val idat ion and the role of V&V in the KBS l i fe cycle

(7). Two approaches have been real ized for them.

One approach discusses the relat ion of KBS V&V to the sof tware

engineering methodology for program cor rectness and evaluat ion . Th is discussion

deal t wi th the usabi l i ty and usefulness of formal program speci ficat ion for exper t

systems. Tradi t ional methods of software test ing produce empir ica l measures of

rel iabi l i ty: they involve runn ing test cases th rough the system and evaluat ing the

cor rectness of the resul t obta ined.

A second approach is the use of conceptual model ing f rameworks such as

KADS (8) and the Components of Exper t ise (9) as a new kind of speci ficat ion for

KBS design . Knowledge models provide a framework in wh ich include the V&V of

pragmat ic constra ins, and the progressive refinement of knowledge models

provides pr incipled mapping to the symbol level necessary for V&V (2).

4. A brief description of the knowledge base development
environment

The major chal lenge for any model ing approach to KBS construct ion is to

find an adequate answer to the quest ion of how to model exper t ise. The

requirement of the resul t ing model of exper t ise, that is of a knowledge-level

nature: independent of a par t icular implementat ion (10). KADS is a method for the

4

structured and systemat ic development of KBS, wh ich aims to provide software

engineer ing suppor t for the knowledge engineer ing process (11,12).

Other observed di fficul t ies in bui lding KBS resul t from the kind of

language used to bui ld these systems, since the conceptual model must have an

expl ici t semant ic foundat ion . KROL (13,14) has been successful ly used in bui lding

several KADS-based exper t systems at CLAES (Centra l Laboratory of Agr icul ture

Exper t System) at the Agr icul ture Research Center of Min ist ry of Agr icul ture and

Land Reclamat ion in Egypt such as: CITEX (15) and CUPTEX (16).These exper t

systems are in actual use by the Egypt ian extensions service. The fol lowing

sect ions give an overview for the knowledge base development environment upon

which we bui l t our ver i ficat ion tool . However , i t is not in tended to const i tute an

in troduct ion to th is topic, and sui table reading mater ia l wi l l be refer red to dur ing

discussion .

4.1 KADS: A methodology for modeling knowledge-based systems

KADS (17) is a methodology that has been developed in the framework of

the Espr i t program. The model-based approach according to KADS is rapidly

becoming the de facto standard in Europe.

In (18), we descr ibed our approach for bui lding KADS-based exper t systems.

Br iefly, the domain knowledge ident i fies the domain in terms of concepts,

proper t ies of these concepts, and relat ions. Fig 1. Shows an example of the

relat ion between expressions soi l_determine_soi l, wh ich means that the soi l

parameters are to be determined by using other soi l parameters. The inference

knowledge is a declarat ion of what pr imi t ive in ferences can be made using the

domain knowledge. The task knowledge descr ibes the steps that must be car r ied

out in order to ach ieve a par t icular goal using the in ference steps of the in ference

layer .

5

LEFT HAND SIDE RIGHT HAND SIDE
Concept Property Value Concept Property Value

 Soil Texture salt loam Soil S_Status suitable
Profile Depth >= 1.2
ESP =< 15
Ph =< 8

Soil Texture loam Soil Type medium
sily loam
sandy clay loam

 Soil Texture sand Soil Type coarse
sandy loam

Figure 1: An Example of a relation between expressions

4.2 KROL: The language
Our implementat ion language KROL, (13) is a Knowledge Representat ion

Object Language that addresses the representat ion of knowledge. KROL is bui l t on

top of SICStus Prolog language (19).

The appl icabi l i ty of KROL as a language to implement KADS-based exper t systems

could be descr ibed as fol lows. Domain knowledge is represented by a single

formal ism, the object . Objects cor respond to real-wor ld concepts or rules. Rules

are un i formly handled in an object-or ien ted manner . The behavior of an object is

represented by methods and i ts character ist ics are represented by proper t ies

(at t r ibutes). At t r ibutes may have facets (value type, value source, possible values,

and i f the proper ty takes a single or mul t iple value). The relat ion between

concepts can be represented by the method super wi th in the concept . A par t icular

relat ion between expressions is man i fested as a set of declarat ive rule instances

defined in an object . A rule instance, or simply a rule, is declared by wr i t ing i t in

the fol lowing form:

rule id(conclusion) i f premise

The in ference knowledge is represented by an object wi th in ference steps as i ts

behavior . Each in ference step ei ther uses the pr imi t ive in ference defined by the

bui l t - in inference_class object , e.g. conclude_al l pr imi t ive wh ich t r ies to prove al l

rules in a given relat ion between expressions and recursively i ts descendents.

6

The task knowledge is represented by an object that i ts behavior descr ibes

the appl icat ion of in ference steps that sat isfies a par t icular goal using the

in ference steps of the in ference knowledge. Fig.2 i l lustrates a sample of each

KADS layers using KROL.

Soil_determine_soil :: {

super(assessment_system) &

r1([s_status of soil = suitable]) if
 texture :: soil = 'salt loam'

profile_depth :: soil >= 1.2,
esp :: soil =< 15,
ph :: soil =< 8.0,
calcium_c_c :: soil =< 40.0 &

r2([s_status of soil = unsuitable]) if
 texture :: soil = 'loam' -> true
; profile_depth :: soil < 1.2 -> true
; esp :: soil >= 15 -> true
; ph :: soil >= 8.5 -> true
; calcium_c_c :: soil > 40.0

assesment_inference :: {

super(inference_class) &

abstract:-
inference_class:: conclude_all(soil_determine_soil),
inference_class::conclude_all(water_determine_water),
...

assign:-
inference_class::conclude_all(soil_determin_conclusion),
inference_class::conclude_all(water_determin_conclusi),
...
}.

assessment_task :: {
...

start:-
assesment_inference::abstract,
assesment_inference:: assign

}.

Rela t ion between expressions Inference layer T ask layer

Figure 2: An example of the KADS layers implemented using KROL

5. The methodology
Ver i ficat ion examines the techn ical aspects of an exper t system in order to

determine whether the exper t system is bui l t cor rect ly. One of the major tasks in

ver i fying exper t systems is the ver i ficat ion of the knowledge contained wi th in the

KB. Ver i fying the KB involves examin ing the consistency, completeness, and

cor rectness of the knowledge by detect ing er rors such as redundancy,

contradict ion , and ci rcular i ty (6). Several ver i ficat ion cr i ter ia have been proposed.

Our approach in automat ing ver i ficat ion of the KB involves checking the KB for

commonly occur r ing er rors. The approach indicates a lso that , in order to ver i fy an

exper t system, i t is necessary to have a conceptual model of the KB. The KADS

methodology lends i tsel f to conceptual model ing of the KB. Th is enabled us to

bui ld an automat ic ver i ficat ion tool . Th is tool is able to detect di fferen t KB er ror

types as wel l as new er ror types that appear due to using KADS in knowledge

model ing.

7

A major design goal of our ver i ficat ion tool is to be general ly appl icable

for any KADS-based exper t system. KROL is successful ly used to implement

several KADS-based exper t systems at CLAES. On the other hand, th is

implementat ion faces some l imi tat ions. One of these l imi tat ions, is that there is

not a complete t ransformat ion mapping between the conceptual model and the

implementat ion language. Fur thermore, the design of our ver i ficat ion tool depends

main ly on the conceptual model ing of the KB. Thus, KROL is extended to suppor t

the complete t ransformat ion mapping by defin ing a set of KROL methods. These

methods affect the th ree levels of knowledge layers. Representat ion of each

knowledge layer after adding the KROL extensions, h igh l igh ted in bold, is

descr ibed in Fig.3. The fol lowing sect ions, descr ibe our approach for automat ing

the ver i ficat ion of KADS-based exper t systems.

Soil_determine_soil :: {

super(assessment_system) &

input_att (soil,texture/1)&
input_att (soil,profile_depth/1)&
input_att (soil,esp/1)&
input_att (soil,ph/1)&
input_att (soil,calcium_c_c/1)&
output_att(soil,s_status/1)&

r1([s_status of soil = suitable]) if
texture :: soil = 'salt loam'
profile_depth :: soil >= 1.2,
esp :: soil =< 15,
ph :: soil =< 8.0,
calcium_c_c :: soil =< 40.0 &

r2([s_status of soil = unsuitable]) if
texture :: soil = 'heavy clay' -> true
; profile_depth :: soil < 1.2 -> true
; esp :: soil >= 15 -> true
; ph :: soil >= 8.5 -> true
;calcium_c_c :: soil > 40.0

}.

Abstract:: {

super(assessment_system) &

input-role ([system_description],[[soil,texture],...]) &

output-role(abstracted_system_description,
[[soil,s_status],...]) &

static-role([soil_determine_soil,...]) &

. . .

}.

assessment_task :: {

super(krol) &

inference([abstract,assign]) &

start:-
assesment_inference :: abstract,
assesment_inference :: assign

}.

Re lat ion be tween express ions Infe rence laye r Task laye r

Figure 3: Extending KADS layers using KROL

5.1 Structure of the verif ication tool
The ver i ficat ion process of KADS-based exper t systems can be dist inguished in to

three main par ts:

 1. Domain knowledge veri f icat ion. Dur ing th is process, we are focusing on the

domain knowledge wh ich contains concepts, proper t ies, relat ion between

8

concepts, and relat ion between expressions. Most of the KB er rors wi l l be

detected in th is par t .

 2. Inference Layer Veri f icat ion. In KADS, an in ference layer inconsistency may

occur . Th is happens when an input /output role of any in ference step has a

defined input /output data elements that are not defined in the cor responding

relat ion between expressions of the domain layer . Moreover , when an in ference

has a defined input-role that is not produced as output-role of another in ference

step.

 3. KADS Layers veri f icat ion. When applying KADS methodology in knowledge

model ing, new types of er ror are discovered. The th ree layers that construct the

knowledge model are in ter related, since each layer a lways refers to some par ts

of another layer . According to th is in teract ion , inconsistencies between layers

may ar ise. Fig.4 gives an overview of the structure of our proposed ver i ficat ion

tool .

Figure 4: Overal l st ructure of the ver i ficat ion tool

5.2. Domain knowledge verif ication
The domain knowledge ver i ficat ion process detects most of the coded KB

er rors. The ver i ficat ion process considered here is divided in to th ree phases,

according to the type of er rors detected in each phase. They are:

Task
knowledge

Inference
knowledge

Domain
knowledge

Domain Layer
Verification

Inference Layer
Verification

KADS Layers
Verification Verification

report

KADS Modeling layers Verification Process

9

 1. Consistency checker phase.

 2. Check for completeness phase.

 3. Path checker phase.

Fig. 5 i l lustrates the structure of the domain knowledge ver i ficat ion process.

Figure 5: The structure of ver i ficat ion of the domain knowledge

5.2.1 Consistency checker phase
The consistency checker works on the relat ions between expressions of the

domain layer , one relat ion at a t ime. Consistency of the KB appears as: undefined

object , undefined at t r ibute, undefined at t r ibute values, dupl icate rule pairs,

confl ict rule pairs, and subsumed rule pairs. Er rors in spel l ing or syn tax are

frequent source of consistency er rors. The main funct ion of the consistency

checker is detect ing consistency error. A secondary funct ion is creat ing the

relat ion between expressions table to suppor t the subsequent ver i ficat ion

processes.

Detect ing consistency errors. For each relat ion between expressions, the

consistency checker checks each rule instance to find out the undefined object ,

KB
Relation
between

expressions
table

 Consistency
 errors

 Circular paths
 Redundant paths

 Completeness
 errors

Consistency
Checker

Path
 Checker

Completeness
Checker

10

undefined at t r ibute, and undefined at t r ibute values. Th is is real ized by compar ing

the objects, at t r ibutes, and at t r ibute values used in each rule against thei r

cor responding defin i t ions. For example, consider the at t r ibute soi l status wi th the

set {sandy, heavy, l ight} as i ts legal values. Th is at t r ibute has a defined source of

value to be derived1. I f a rule refers to the value sand for the at t r ibute soi l status,

i t is detected as undefined at t r ibute value.

Detect ing dupl icate, confl ict , and subsumed rule pairs are real ized by

compar ing each rule against every other rule wi th in the same relat ion between

expressions.

Creat ing the re lat ion between expressions table. The relat ion between

expressions table contains the needed in format ion about a l l the relat ions between

expressions in the KB. The basic idea beh ind construct ing th is table is to

accelerate search ing for any defined at t r ibute in the KB wh ich is heavi ly used in

subsequent phases (See Fig. 5). Th is table consists of the fol lowing fields:

 • Relat ion name: The name of the relat ion between expressions as defined in the

KB.

 • Input attr ibute : The names of object-at t r ibute pairs given in the rules

antecedence.

 • Output attr ibute : The names of object-at t r ibute pairs given in the rules

consequence.

5.2.2 Completeness checker phase

As the number of rules grows large, i t becomes impossible to check every

possible path th rough the system (20).There are four indicat ive si tuat ions of gaps

in the knowledge base: unused at t r ibute values, missing rules, un fi rable rules, and

unused consequence.

1 KROL distinguishes between three types of value source: user when the attribute value is input by

the user, database when the value is queried from a database, derived when the value is concluded by
a rule.

11

The purpose of check for completeness phase is to scan the whole KB

looking for unused at t r ibute values, missing rules, un fi rable rules, and unused

consequence. For efficiency reasons, detect ing such er rors is divided in to two main

par ts: detect ing unrefrenced at t r ibute value and missing rules, and detect ing

unf i rable rules and unused consequence.

Detect ing unrefrenced attr ibute value and missing rules. The unrefrenced

at t r ibute values are detected when we do not find any of the at t r ibute values in any

rule an tecedence. Whi le missing rules are detected when the unused values are

der ived from a rule consequence. For example, consider again the at t r ibute soi l

status. I f both the value l ight and heavy are on ly used in rules an tecedence par t ,

then the value sandy is detected as an unused at t r ibute value. On the other hand, i f

th is is the case wi th rules consequence par t , then there is a rule missing for the

value sandy.

In order to detect unrefrenced at t r ibute values and missing rules, i t is

necessary for each defined at t r ibute to get a l l i ts given values th rough the relat ion

between expressions and compare i t wi th i ts defined legal values. Using the

relat ion between expressions table, we are able to extract a l l used at t r ibute values

in each relat ion and detect the unused at t r ibute values.

Detect ing unf i rable rules and unused consequence. The unfi rable rule is detected

when one of the given at t r ibutes in the rule an tecedence par t has a defined source

of value to be der ived and the at t r ibute does not appear in any rule consequence

par t . Th is means that the at t r ibute value that would have determined by the missed

rule would never fi re. For example, consider the der ived values of the

aforement ioned at t r ibute soi l status that is used in rules an tecedence par t of the

relat ion between expressions soi l_determine_soi l. Moreover , these at t r ibute values

are not der ived from any other relat ions of the system. In th is set t ing, rules of th is

relat ion wi l l never fi re.

On the other hand, i f the rule consequence is nei ther one of the final goals,

nor i t appears in any rules an tecedence then i t is unused consequence.

12

5.2.3 Path checker phase

The last phase of the domain knowledge ver i ficat ion process concerns

detect ing ci rcular and redundant paths. These paths wi l l be detected from a graph

data structure. Th is graph l inks the input at t r ibutes to the output at t r ibutes for

each defined relat ion between expressions using the relat ion between expressions

table. Detect ing these er rors is divided in to two main par ts: detect ing redundant

paths, and detect ing c i rcular paths. The fol lowing descr ibes how to t raverse th is

graph to detect each of these er rors.

Detect ing redundant paths. A redundant path is found when i t is possible to

reach the same conclusion from the same inputs th rough di fferen t paths. For

example, consider the at t r ibute material qty of the i r r igat ion subsystem which

could be reached th rough two di fferent paths that or iginate from the same objects.

The fol lowing notat ional convent ions are used: an ar row indicate an arc, a comma

separates concepts, and a colon separates an object /at t r ibute pair . The fi rst path is

obtained from rules of the relat ion :

plantat ion, i rr igat ion_system→ [i rr_op:material_qty]

Whereas, the second path is obtained from rules of more than one relat ion :

plantat ion, i rr igat ion_system→ [plant :ad]
→ [i rr igat ion:I]
→ [i rr igat ion: l r]
→ [i rr igat ion:wr]
→ [i rr_op:material_qty]

This process is repeated to obtain a l l possible paths that connect each

output at t r ibute to other at t r ibutes for a l l the relat ions between expressions. I f

edges of any two paths are ident ical , a redundant path is repor ted.

Detect ing c i rcular paths. Circular paths are detected when an at t r ibute appears as

an input at t r ibute of one relat ion and as an output at t r ibute of another relat ion and

a path between the other edges of these relat ions can be reached. For example, i f

we have the fol lowing two paths:

path1: [plant :rd] → [plant :rdf]

13

 •
 •
 •

Inference layer

Step Checker

Inference
 Checker

 Undefined role

Inference
Table

Inconsistency
error

path2: [plant :rdf] → plantat ion, i rr igat ion_system → [plant :rd]

A circular path is repor ted because i t is possible to reach the at t r ibute rd of

the plant concept from the same input th rough fol lowing path1 then path2.

5.3 Inference Layer Verification
The ver i ficat ion process considered here is divided in to two phases:

 1. Step checker phase.

 2. In ference checker phase.

Fig. 6 i l lustrates the structure of the in ference knowledge ver i ficat ion

5.3.1 Step checker phase

The step checker works on the in ference steps of the in ference layer . The

main funct ions of the step checker are detect ing inference step consistency error,

and creat ing the inference table.

Input role

Static role

Output role

Input role

Static role

Output role

Figure 6: The structure of ver i ficat ion of the in ference knowledge ver i ficat ion
process.

14

Inference step consistency errors. The in ference layer consists of in ference steps.

Each in ference step operates over data elements cor responding to the domain

layer . The input-role refers to a l ist of input data elements of the in ference step.

These elements cor respond to a combinat ion of the input-at t r ibutes of the relat ion

between expressions wh ich th is in ference uses. Also, the output-role refers to a

l ist of output data elements of the in ference step. These elements cor respond to a

combinat ion of the output-at t r ibutes of the relat ion between expressions wh ich th is

in ference uses. Inconsistency ar ises when the input- or output-role refers to data

element that is not defined in any relat ion between expressions of th is in ference.

Th is is best clar i fied by an example. Consider the input-role: system_descript ion

of the in ference step speci fy shown in Fig.7 that has the fol lowing defined input

data:

[soi l : texture] , [soi l :ec] , [soi l :ph] , and [water:boron]

This role works on fol lowing relat ions between expressions:

soi l_determine_soi l and water_determine_water.

These relat ions have the fol lowing input-at t r ibutes:

[soi l : texture] , [soi l :ec] , [soi l :ph] , [water:boron] , [water:sar] , and [water:rsc] .

Obviously, inconsistency is repor ted because the input at t r ibutes sar and rsc of the

concept water are defined by the relat ions between expressions soi l_determine_soi l

and water_determine_water whi le missed in the input at t r ibutes of the input role

for the same in ference step speci fy.

Creat ing the inference table. The step checker creates an in ference table in order

to detect KADS-based er rors. Th is table is created in order to faci l i ta te the

detect ion of these inconsistency er rors. The table consists of the fol lowing fields:

 • Inference name: The name of the in ference step as define in the KB.

 • Input role : The input-role name(s) of the in ference step.

 • Output role : The output-role name of the in ference step.

 • stat ic role: The l ist of the relat ion between expressions that are used by th is

in ference.

15

5.3.2 Inference checker phase
The inference checker works on the input /output roles of the in ference

layer . Since each in ference has a defined input-role and output-role, each output-

role should ei ther be an input-role to the fol lowing in ference step or the last

output . Fig. 7 depicts the in ference layer of an agr icul ture exper t system. As

shown in th is figure, the in ference step speci fy has an input-role system

descript ion and an output-role speci f ied case descript ion wh ich in turn is an input

to the next in ference step compute. The last in ference step is the on ly one that i ts

output-role is not input to any other in ference steps. Thus, another type of

inconsistency of the in ference layer may ar ise when one of the in ference steps has

a defined output-role that does not sat isfy ei ther of the above cases. In order to

detect such inconsistency the in ference table is used to ensure that each defined

output-role matches one of the defined input-roles for another in ference step.

5.4 KADS layers Verif ication
The layers of the KADS model ing methodology always have a l imi ted

in teract ion . Th is in teract ion could in t roduce new types of inconsistency er rors.

The ver i ficat ion process considered here concerns consistency of the KADS layers.

Fig.8 i l lustrates the structure of the KADS layer ver i ficat ion process.

Detect ing layers consistency errors. Each knowledge layer of the KADS

model ing methodology always refers to some par ts of another layer . For example,

in the task layer , tasks apply the in ference steps defined in the in ference layer .

Each in ference step uses one or more relat ion between expressions of the domain

layer . Th is relat ionsh ip is depicted in Fig.8

System Description

Specified case Description

Specify

16

Figure 7: An in ference structure for i r r igat ion in a crop management system.
Rectangles represent roles; ovals represent in ference steps. Ar rows are used to
indicate input-output dependencies.

Figure 8: The structure of ver i ficat ion of the KADS Layers

When one of the knowledge layers refers to undefined or er roneous par ts of

another layer , inconsistency between layers occurs. As an example, consider the

Layers
inconsistencies

Task Knowledge

Inference Knowledge

Domain Knowledge

appliesapplies

uses

Inference
Table

Consistency

KADS Layers Relationship

17

task Asssment_t,a task of the assessment task layer , that appl ies an in ference step

specfy which is not found in the in ference layer of th is subsystem. The in ference

would have appl ied the in ference step speci fy . Fur thermore, the in ference step

abstract uses a defined relat ion between expressions s_determine_s wh ich also is

not found in the domain layer . The domain layer would have used the re lat ion

soi l_determine_soi l .

The consistency checker uses the in ference table to detect such

inconsistency. For example, each in ference step has i ts defined relat ion between

expressions via the stat ic role. By scann ing the relat ion between expressions table

we can determine whether these relat ions are a l ready defined in the domain layer .

6. Examples of uti l ization and testing

This sect ion presents the resul ts of runn ing our ver i ficat ion tool on a

sample of real-wor ld knowledge bases systems. Several examples cover ing a wide

range of KB er ror types were used. These examples demonstrate the capabi l i ty of

our tool to discover these er rors. The examples presented here were taken from an

exper t system for ci t rus crop management in open fields (CITEX) (15) wh ich is

developed by CLAES. CITEX consists of five subsystems, namely: assessment,

i r r igat ion , fer t i l izat ion , diagnosis, and t reatment. Each subsystem, wh ich is

considered an exper t system in i ts own, is ver i fied in isolat ion from the rest of the

system and the resul ts obtained are i ts local ver i ficat ion . As ment ioned before, i t

was modeled using KADS methodology. The system contains 160 objects, 145

att r ibutes, and 369 possible values. Moreover , i t con tains 632 rules and 468

factual knowledge compr ising 1100 relat ions.

6.1 Resul ts of Domain knowledge veri f icat ion process

The resul ts of runn ing our tool on a sample of real-wor ld knowledge bases

show that completed knowledge bases were checked by our ver i ficat ion tool , that is

the system was considered to have been tested sat isfactor i ly by other means

18

(typical ly runn ing a large number of actual test cases on the system, and

evaluat ing the output produced).

Table 1 summar izes the resul ts of runn ing our ver i ficat ion tool on each

subsystem of CITEX. I t should be noted that the number of er rors presented in th is

table are the detected er rors by the ver i ficat ion tool . These er rors are a ler ted to

the knowledge engineer who decide whether or not they indicate an actual er ror .

In each cel l of the table there are two numbers separated by a slash . The number of

er rors detected by the tool is recorded to the left of the slash and the number of

er rors accepted by the knowledge engineer is recorded to the r igh t of the slash .

Assessment Diagnosis Treatment Ir r igat ion
Consistency errors
I l legal values 5/5 20/20 33/33 1/1
Out of range 4/4 0 0 6/6
Undefined at t r ibute 4/4 0 1/1 0
Confl ict rules 0 1/1 0 0
Completeness errors
Unused at t r ibute
value

6/6 43/24 29/22 1/1

Unfi rable rule 0 1/0 2/0 5/0
Missing rule 3/3 1/0 0 0
unused consequence 1/0 1/0 1/0 1/0
Detect wrong paths
redundant paths 9/0 3/0 0 6/0

Table1: Number of er rors detected by the ver i ficat ion tool in four subsystems

From the table we can note that the number of the detected unused at t r ibute

values di ffers from the actual number of er rors for both the diagnosis and the

treatment subsystems. Due to the design of CITEX, the at t r ibutes legal values are

defined in a sharable knowledge base wh ich is common to a l l i ts subsystems. Since

the tool is able to local ly ver i fy each subsystem, the detected unused at t r ibute

values in these subsystems are covered by others. Th is is best expla ined by an

example. Consider the at t r ibute soi l type wh ich has the fol lowing set as i ts legal

values: { f ine, medium, coarse}. In the diagnosis subsystem, the used values are

on ly f ine and coarse. Therefore, the tool detected the value medium as an unused

value, wh i le the value medium is used in other subsystems. Actual ly, th is can be

19

treated as a warn ing produced by many programming languages compi lers. The

same si tuat ion a lso appl ies when detect ing the missing rules.

detected unused consequence were final goals.

The redundant paths are detected when the output at t r ibute could be

reached from the same input at t r ibute th rough di fferen t paths. The detected paths

connect two object-at t r ibute nodes. These nodes were aler ted to the knowledge

engineer who checked whether or not the at t r ibutes take the same values. That is

why the detected er rors were not considered to be actual er rors.

An impor tan t poin t to note here is that , the actual er rors detected for these

real-wor ld knowledge bases are a lways due to typograph ical er rors or wrong value

in i t ia l izat ion . However , runn ing a set of test cases is not sufficien t to detect these

er rors. Therefore, a provision an automat ic ver i ficat ion tool , would save much

t ime and effor ts wh i le developing large and complex system.

6.2 Results of inference and KADS layers verif ication

process

The resul t of runn ing our tool to ver i fy in ference and KADS layers showed

that on ly one type of inconsistency. The step checker phase found inconsistency

between input-data of input-role and input at t r ibutes of the relat ions between

expressions of th is role. Regardless of th is resul t , the goal of those ver i ficat ion

processes were to discover er rors wh i le developing exper t systems. However , the

tool was appl ied on a developed exper t system, and consequent ly i ts output has

such an er ror . By means of contr ived examples wh i le developing our tool , we

expect more er rors to be repor ted to the developer at the developing of their exper t

systems.

20

7. Conclusions

We developed an automat ic ver i ficat ion tool . The evolut ion of th is tool

came about because of the urgent need to ver i fy KADS-based exper t systems

developed at CLAES. Our approach for design ing the automat ic ver i ficat ion tool

is based on conceptual model ing for knowledge bases. The ver i ficat ion tool have

been implemented on PC plat form using SICStus Prolog.

We showed several examples that cover a wide range of knowledge base

er ror types. These examples demonstrate the capabi l i ty of our tool to discover

these er rors that could otherwise remain even after convent ional test ing. They

were taken from CITEX, an exper t system for ci t rus product ion in open field.

The authors would l ike to acknowledge the Centra l Laboratory

of Agr icul tura l Exper t Systems (CLAES) at the Agr icul ture Research Center of

Min ist ry of Agr icul ture and Land Reclamat ion in Egypt leaded by Prof. Dr . Ahmed

Rafea for their suppor t wh i le conduct ing the research descr ibed in th is paper .

REFERENCES

 1. Nazareth, D.L., Issues In The Verification Of Knowledge In Rule-Based Systems, International

journal of Man Machine studies, 30(3), pp. 255-271, 1989.

 2. Plaza. E., KBS Validation: From Tools to Methodology, IEEE, pp. 66-77, June 1993.

 3. Preece A. D, Shinghal R., Foundation And Application Of Knowledge Base Verification,

International Journal of Intelligent system, John Wiely & Sons Inc., 9 (8), pp. 683-701, 1994.

 4. Preece A. D., A New Approach To Detecting Missing Knowledge In Expert System Rule Bases,

International Journal of. Man Machine Studies, Academic Press Limited, Vol. 38, pp. 661-688,

1993.

 5. Preece A. D., Verification Of Rule-Based Expert Systems In Wide Domain, in N. Shadbolt (Ed.),

Researcher and development in expert system VI: Proc. Expert systems 89, Cambridge University

Press, pp. 66-77, 1989.

21

 6. Smith S., Kandel A., Verification and Validation of Rule Based Expert System, CRC Press Inc.,

1993.

 7. Lopez B., Meseguer P., and Plaza E., Validation of knowledge based systems: A state of Art, AI

Communication, 3 (2), pp. 56-72, 1990.

 8. Wielinga B., Schreiber A., and Breuker J., KADS: A Modeling Approach To Knowledge

Engineering, Knowledge acquisition, Esprit project, Report No. 5248 KADS-II, Vol. 4, No. 1,

1992.

 9. Steels, L.,The AI Magazine, Vol. 11, No 3, 1990.

 10. Schreiber. G, Wielinga. B, Breuker. J., KADS: A Principle Approach To Knowledge-Based

System Development, Academic Press, London, 1993.

 11. Shadbolt N., Wielinga B. J., Knowledge Based Knowledge Acquisition: The Next Generation Of

Support Tools. In Wielinga, B. J., Boose, J., Gaines, B., Schrieber, G., and Someren V. (Eds),

Current Trends in Knowledge Acquisition, Amsterdam, The Netherlands, 1990.

 12. Voβ A., Karbach W., Implementation KADS Expertise Models with Model-K, IEEE Expert, pp.

74-82, 1993.

 13. ESICM, A Knowledge Representation Object Language (KROL), Technical report, No. TR-88-

024-27, 1993.

 14. ESICM, Guide To KADS Implementation Using The Knowledge Representation Object

Language KROL, Technical report, No. TR-88-024-31, 1993.

 15. Salah A., Hassan H., Tawfik K., Ibrahim I., Farahat

In Proceeding of the 2nd National Expert Systems and Development

Workshop (ESADW-93), MOLAR, Cairo, Egypt, May, pp. 63-72, 1993.

 16. El-Dossouki A., Edrees S., El_Azhary S., CUPTEX: An Expert System For Crop Management

Of Cucumber, In Proceeding of the 2nd National Expert Systems and Development Workshop

(ESADW-93), MOLAR, Cairo, Egypt, May, pp. 31-42, 1993.

22

 17. Wielinga B., Akkermans H., Hassen H. Olsson O., Orsvan K., Schrieber G., Terpstra P., Van de

Velde W., and Wells S., Expertise Model Definition Document, ESPRIT Project P5248, Report

No. KADS-II/M2/UvA/026/5.0, University of Amsterdam, The Netherlands.

 18. Rafea A., Edrees S., El-Azhari S., Mahmoud M., A Development Methodology For Agricultural

Expert System Based On KADS, In Proceeding of the 2nd world congress on Expert System,

Cognizant Communication Corporation, pp. 442-450, Jan., 1994.

 19. SICStus Prolog Userõs Manual, Swedish Institute of Computer Science, S-164 2, KISTA, Sweden,

1995.

 20. Nguyen T.A, Perkins W.A, Laffey T.J and Pecora D., Knowledge Base Verification, AI Magazine,

8(2), pp. 69-75, 1987.

