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Abs t rac t ca t ion

plays an impor tant  ro le in  assu r ing the rel iabi l i t y  of exper t  systems.  Exper t  systems ver i f i ca t ion

involves check ing the knowledge base for  consistency,  completeness,  and other  er rors.  Ou r  study

indica tes tha t  in  order  to ver i fy  an exper t  system,  i t  i s necessa ry to have a  concep tua l  mode l  of the

knowledge base.  T he KADS methodology lends i tse l f  to  conceptua l  model ing of  the knowledge base.

T his enabled us to bu i ld  an au tomat ic ver i f i ca t ion tool .  T his tool  i s able to detect   d i f ferent

knowledge base er ror  types.  A novel  fea tu re of th is too l  is i ts abi l i ty  to  detect  consistency er rors tha t

a r ise due to using KADS methodology in knowledge model ing.

1. Introduction

he impor tance of assur ing the qual i ty of exper t  systems is now widely

recogn ized.  Qual i ty assurance is a major  issue in  development of exper t

systems.  A consensus has been reached in  the l i terature that  the

evaluat ion  of exper t  systems to ensure their  rel iabi l i ty involves two pr inciple

act ivi t ies,  usual ly cal led ver i ficat ion  and val idat ion  (V&V).  Studies have shown

that  veri f icat ion,  can  lead to the ear ly detect ion  of er rors that  otherwise would

have remained even after  extensive val idat ion  tests (1,2,3).   Ver i ficat ion , therefore  
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is an  impor tan t  par t  of rel iabi l i ty assurance for  these systems,  and i t  is the in terest

of a l l  exper t  system bui lders to ensure that  ver i ficat ion  is per formed on their

system pr ior  to t radi t ional  methods of test ing.  Our  proposed approach for  ver i fying

knowledge bases is based on using conceptual  model ing for  knowledge base (KB).

Conceptual  models,  such as suppor ted by KADS methodology (4,5) make i t

possible to der ive the structure of knowledge base systems (KBS).  Th is enabled us

to bui ld an  automat ic ver i ficat ion  tool .  Th is tool  is able to detect   di fferen t  KB

er ror  types such as consistency and completeness er rors,  as wel l  as  other  er rors.  A

novel  feature of th is tool  is i ts abi l i ty to detect  consistency er rors that  ar ise due to

using KADS methodology in  knowledge model ing.

The structure of the paper  is as fol lows.  Sect ion  2 discusses the needs for

assur ing the qual i ty of exper t  systems.  Sect ion  3 presents the di fferen t  approach in

ver i ficat ion  and val idat ion  of exper t  systems.  Sect ion  4 br iefly descr ibes the

knowledge base development environment upon wh ich  we bui ld our  ver i ficat ion

tool .  Sect ion  5 examines the proposed ver i ficat ion  tool  in  detai ls.  Sect ion  6 studies

the abi l i ty of ver i ficat ion  tool  in  ver i fying some real-wor ld knowledge bases.

Sect ion  7 summar izes the paper  and considers some open research  issues.

2. The needs for assuring the quality of expert systems

Several  factors have led to need for  assurances about  the qual i ty of exper t

systems (6).  One such factor  is a new generat ion   of exper t  systems wh ich  are

beginn ing to appear .  These exper t  systems are embedded wi th in  another

hardware/software system in  such a way that  users may not  even real ize that  an

exper t  system is a par t  of the software.

Another  factor  is that  exper t  systems are being proposed for  mission-

cr i t ica l  appl icat ion .  In  such appl icat ions,  there is a possibi l i ty of great  financia l

loss and/or  loss of l i fe i f the exper t  system mal funct ions.  

An addi t ional  factor  is the expectat ions and standards for  qual i ty software

which  the commercia l  comput ing communi ty has al ready establ ished.  The
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commercia l  comput ing community is un l ikely to lower  i ts expectat ions or

standards of qual i ty in  order  to adapt to exper t  systems.  Exper t  system developers

wi l l  have to adapt to the preestabl ished expectat ions and standards of commercia l

comput ing community.

3. Different approaches in verif ication and validation of
knowledge- based systems

Dur ing the fi rst  years of KBS product ion ,  researchers thought  of KBS l i fe

cycle as rapid prototype,  wh i le the V&V was handled on as-needed basis.  Recent ly,

methods (and their  suppor t  tools) were developed to detect  problems in  rule-based

systems,  such as redundant,  subsumed,  or  missing rules.  However  the field lacked

a comprehensive view of KBS val idat ion  and the role of V&V in  the KBS l i fe cycle

(7).  Two approaches have been real ized for  them.

One approach discusses the relat ion  of KBS V&V to the sof tware

engineering methodology for  program cor rectness and evaluat ion .  Th is discussion

deal t  wi th  the usabi l i ty and usefulness of formal  program speci ficat ion  for  exper t

systems.  Tradi t ional  methods of software test ing produce empir ica l  measures of

rel iabi l i ty:  they involve runn ing test  cases th rough the system and evaluat ing the

cor rectness of the resul t  obta ined.

A second approach is the use of conceptual  model ing f rameworks such as

KADS (8) and the Components of Exper t ise (9) as a new kind of speci ficat ion  for

KBS design .  Knowledge models provide a framework in  wh ich  include the V&V of

pragmat ic constra ins,  and the progressive refinement of knowledge models

provides  pr incipled mapping to the symbol  level  necessary for  V&V (2).

4. A brief description of the knowledge base development
environment

The major  chal lenge for  any model ing approach to KBS construct ion  is to

find an  adequate answer  to the quest ion  of how to model  exper t ise.  The

requirement of the resul t ing model  of exper t ise,  that  is of a knowledge-level

nature:  independent of a par t icular  implementat ion  (10).  KADS is a method for  the
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structured and systemat ic development of KBS, wh ich  aims to provide software

engineer ing suppor t  for  the knowledge engineer ing process (11,12).

Other  observed di fficul t ies in  bui lding KBS resul t  from the kind of

language used to bui ld these systems,  since the conceptual  model  must have an

expl ici t  semant ic foundat ion .  KROL (13,14) has been successful ly used in  bui lding

several  KADS-based exper t  systems at  CLAES (Centra l  Laboratory of Agr icul ture

Exper t  System) at  the Agr icul ture Research  Center  of Min ist ry of Agr icul ture and

Land Reclamat ion  in  Egypt  such as:  CITEX (15) and CUPTEX (16).These exper t

systems are in  actual  use by the Egypt ian  extensions service.  The fol lowing

sect ions give an  overview for  the knowledge base development environment upon

which  we bui l t  our  ver i ficat ion  tool .  However ,  i t  is not  in tended to const i tute an

in troduct ion  to th is topic,  and sui table reading mater ia l  wi l l  be refer red to dur ing

discussion .

4.1 KADS: A methodology for modeling knowledge-based systems

KADS (17) is a methodology that  has been developed in  the framework of

the Espr i t  program. The model-based approach according to KADS is rapidly

becoming the de facto standard in  Europe.

In  (18),  we descr ibed our  approach for  bui lding KADS-based exper t  systems.

Br iefly,  the domain knowledge ident i fies the domain  in  terms of concepts,

proper t ies of these concepts,  and relat ions.  Fig 1.  Shows an example of the

relat ion  between expressions soi l_determine_soi l,  wh ich  means that  the soi l

parameters are to be determined by using other  soi l  parameters.  The inference

knowledge is a declarat ion  of what  pr imi t ive in ferences can be made using the

domain  knowledge.  The task knowledge descr ibes the steps that  must  be car r ied

out  in  order  to ach ieve a par t icular   goal  using the in ference steps of the in ference

layer .
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LEFT  HAND SIDE RIGHT  HAND SIDE
Concept Property Value Concept Property Value

 Soil Texture salt loam Soil S_Status suitable
Profile Depth >= 1.2
ESP =< 15
Ph =< 8

Soil Texture loam Soil Type medium
sily loam
sandy clay loam

 Soil Texture sand Soil Type coarse
sandy loam

Figure 1: An Example of a relation between expressions

4.2 KROL: The language
Our  implementat ion  language KROL, (13) is a Knowledge Representat ion

Object  Language that  addresses the representat ion  of knowledge.  KROL is bui l t  on

top of SICStus Prolog language (19).

The appl icabi l i ty of KROL as a language to implement KADS-based exper t  systems

could be descr ibed as fol lows.   Domain  knowledge is represented by a single

formal ism, the object .  Objects cor respond to real-wor ld concepts or  rules.  Rules

are un i formly handled in  an  object-or ien ted manner .  The behavior  of an  object  is

represented by methods and i ts character ist ics are represented by proper t ies

(at t r ibutes).  At t r ibutes may have facets (value type,  value source,  possible values,

and i f the proper ty takes a single or  mul t iple value).  The relat ion  between

concepts can be represented by the method super wi th in  the concept .  A par t icular

relat ion  between expressions is man i fested as a set  of declarat ive rule instances

defined in  an  object .  A rule instance,  or  simply a rule,  is declared by wr i t ing i t  in

the fol lowing form:

rule id(conclusion)  i f  premise

The in ference knowledge is represented by an  object  wi th  in ference steps as i ts

behavior .  Each in ference step ei ther  uses the pr imi t ive in ference defined by the

bui l t - in  inference_class object ,  e.g.  conclude_al l pr imi t ive wh ich  t r ies to prove al l

rules in  a given relat ion  between expressions and recursively i ts descendents.
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The task knowledge is represented by an  object  that  i ts behavior  descr ibes

the appl icat ion  of in ference steps that  sat isfies a par t icular  goal  using the

in ference steps of the in ference knowledge.  Fig.2 i l lustrates a sample of each

KADS layers using KROL.

Soil_determine_soil :: {

super(assessment_system) &

r1([s_status of soil = suitable]) if
       texture :: soil = 'salt loam'

profile_depth :: soil >= 1.2,
esp :: soil =< 15,
ph :: soil =< 8.0,
calcium_c_c :: soil =< 40.0 &

r2([s_status of soil = unsuitable])  if
    texture :: soil = 'loam' -> true
;   profile_depth :: soil < 1.2  -> true
;   esp :: soil >= 15 -> true
;   ph :: soil >= 8.5  -> true
;   calcium_c_c :: soil > 40.0

assesment_inference :: {

super(inference_class) &

abstract:-
inference_class:: conclude_all(soil_determine_soil),
inference_class::conclude_all(water_determine_water),
...

assign:-
inference_class::conclude_all(soil_determin_conclusion),
inference_class::conclude_all(water_determin_conclusi),
...
}.

assessment_task :: {
...

start:-
assesment_inference::abstract,
assesment_inference:: assign

}.

Rela t ion between expressions Inference layer T ask  layer

Figure 2:  An  example of the KADS layers implemented using KROL

5. The methodology
Ver i ficat ion  examines the techn ical  aspects of an  exper t  system  in  order  to

determine whether  the exper t  system is bui l t  cor rect ly.  One of the major  tasks in

ver i fying exper t  systems is the ver i ficat ion  of the knowledge contained wi th in  the

KB. Ver i fying the KB involves examin ing the consistency,  completeness,  and

cor rectness of the knowledge by detect ing er rors such as redundancy,

contradict ion ,  and ci rcular i ty (6).  Several  ver i ficat ion  cr i ter ia have been proposed.

Our  approach in  automat ing ver i ficat ion  of the KB involves checking the KB for

commonly occur r ing er rors.  The approach  indicates a lso that ,  in  order  to ver i fy an

exper t  system, i t  is necessary to have a conceptual  model  of the KB. The KADS

methodology lends i tsel f to conceptual  model ing of  the KB. Th is enabled us to

bui ld an  automat ic ver i ficat ion  tool .  Th is tool  is able to detect   di fferen t  KB er ror

types as wel l  as new er ror  types that  appear  due to using KADS in  knowledge

model ing.
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A major  design  goal  of our  ver i ficat ion  tool  is to be general ly appl icable

for  any KADS-based exper t  system. KROL is successful ly used to implement

several  KADS-based exper t  systems at  CLAES. On the other  hand,  th is

implementat ion  faces some l imi tat ions.  One of these l imi tat ions,  is that  there is

not  a complete t ransformat ion mapping between the conceptual  model  and the

implementat ion  language.  Fur thermore,  the design  of our  ver i ficat ion  tool  depends

main ly on  the conceptual  model ing of the KB. Thus,  KROL is  extended to suppor t

the complete t ransformat ion  mapping by defin ing a set  of KROL methods.  These

methods affect  the th ree levels of knowledge layers.  Representat ion  of each

knowledge layer  after  adding the KROL extensions,  h igh l igh ted in  bold,  is

descr ibed in  Fig.3.  The fol lowing sect ions,  descr ibe our  approach for  automat ing

the ver i ficat ion  of KADS-based exper t  systems.

Soil_determine_soil :: {

super(assessment_system) &

input_att (soil,texture/1)&
input_att (soil,profile_depth/1)&
input_att (soil,esp/1)&
input_att (soil,ph/1)&
input_att (soil,calcium_c_c/1)&
output_att(soil,s_status/1)&

r1([s_status of soil = suitable]) if
texture :: soil = 'salt loam'
profile_depth :: soil >= 1.2,
esp :: soil =< 15,
ph :: soil =< 8.0,
calcium_c_c :: soil =< 40.0 &

r2([s_status of soil = unsuitable])  if
texture :: soil = 'heavy clay' -> true
;  profile_depth :: soil < 1.2  -> true
;  esp :: soil >= 15 -> true
;  ph :: soil >= 8.5  -> true
;calcium_c_c :: soil > 40.0

}.

Abstract:: {

super(assessment_system) &

input-role ([system_description],[[soil,texture],...]) &

output-role(abstracted_system_description,
[[soil,s_status],...]) &

static-role([soil_determine_soil,...])  &

. . .

}.

assessment_task :: {

super(krol) &

inference([abstract,assign]) &

start:-
assesment_inference :: abstract,
assesment_inference :: assign

}.

Re lat ion be tween express ions Infe rence  laye r Task laye r

Figure 3:  Extending KADS layers using KROL

5.1 Structure of  the verif ication tool
The ver i ficat ion  process of KADS-based exper t  systems can be dist inguished in to

three main  par ts:

 1.  Domain knowledge veri f icat ion.  Dur ing th is process,  we are focusing on  the

domain  knowledge wh ich  contains concepts,  proper t ies,  relat ion  between
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concepts,  and relat ion  between expressions.  Most  of the KB er rors wi l l  be

detected in  th is par t .

 2.  Inference Layer Veri f icat ion.  In  KADS, an  in ference layer  inconsistency may

occur .  Th is happens when an input /output  role of any in ference step has a

defined input /output  data elements that  are not  defined in  the cor responding

relat ion  between expressions of the domain  layer .  Moreover ,  when an in ference

has a defined input-role that  is not  produced as output-role of another  in ference

step.

 3.  KADS Layers veri f icat ion.  When applying KADS methodology in  knowledge

model ing,  new types of er ror  are discovered.  The th ree layers that  construct  the

knowledge model  are in ter related,  since each layer  a lways refers to some par ts

of another  layer .  According to th is in teract ion ,  inconsistencies between layers

may ar ise.  Fig.4 gives an  overview of the structure of  our  proposed ver i ficat ion

tool .

                    

                       

Figure 4: Overal l  st ructure of the ver i ficat ion  tool

5.2. Domain knowledge verif ication
The domain  knowledge ver i ficat ion  process detects most  of the coded KB

er rors.  The ver i ficat ion  process considered here is divided in to th ree phases,

according to the type of er rors detected in  each phase.  They are:

Task
knowledge

Inference
knowledge

Domain
knowledge

Domain Layer
Verification

Inference Layer
Verification

KADS Layers
Verification Verification

report

KADS Modeling layers Verification Process
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 1.  Consistency checker  phase.

 2.  Check for  completeness phase.

 3.  Path  checker  phase.

Fig.  5 i l lustrates the structure of the domain  knowledge ver i ficat ion  process.

Figure 5:  The structure of ver i ficat ion  of the domain  knowledge

5.2.1 Consistency checker phase
The consistency checker works on the relat ions between expressions of the

domain  layer ,  one relat ion  at  a t ime. Consistency of the KB appears as:  undefined

object ,  undefined at t r ibute,  undefined at t r ibute values,  dupl icate rule pairs,

confl ict  rule pairs,  and subsumed rule pairs.  Er rors in  spel l ing or  syn tax are

frequent source of consistency er rors.   The main  funct ion  of  the consistency

checker  is detect ing consistency error.  A secondary funct ion  is creat ing the

relat ion between expressions table to suppor t  the subsequent ver i ficat ion

processes.

Detect ing consistency errors.  For  each relat ion  between expressions,  the

consistency checker  checks each rule instance to find out  the undefined object ,

KB
Relation
between

expressions
table

 Consistency
   errors

  Circular paths
  Redundant paths

 Completeness
    errors

Consistency
Checker

Path
 Checker

Completeness
Checker
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undefined at t r ibute,  and undefined at t r ibute values.  Th is is real ized by compar ing

the objects,  at t r ibutes,  and at t r ibute values used in  each rule against  thei r

cor responding defin i t ions.  For  example,  consider  the at t r ibute soi l  status wi th  the

set  {sandy,  heavy,  l ight} as i ts legal  values.  Th is at t r ibute has a defined source of

value to be derived1.  I f a  rule refers to the value sand for  the at t r ibute soi l  status,

i t  is detected as undefined at t r ibute value.

Detect ing dupl icate,  confl ict ,  and subsumed rule pairs are real ized by

compar ing each rule against  every other  rule wi th in  the same relat ion  between

expressions.

Creat ing the re lat ion between expressions table. The relat ion  between

expressions table contains the needed in format ion  about  a l l  the relat ions between

expressions in  the KB. The basic idea beh ind construct ing th is table is to

accelerate search ing for  any defined at t r ibute in  the KB wh ich  is heavi ly used in

subsequent phases (See Fig.  5).  Th is table consists of the fol lowing fields:

 • Relat ion name:   The name of the relat ion  between expressions as defined in  the

KB.

 • Input attr ibute :    The names of object-at t r ibute pairs given in  the rules

antecedence.

 • Output attr ibute :   The names of object-at t r ibute pairs given in  the rules

consequence.

5.2.2 Completeness checker phase

As the number  of rules grows large,  i t  becomes impossible to check every

possible path  th rough the system (20).There are four  indicat ive si tuat ions of gaps

in  the knowledge base:  unused at t r ibute values,  missing rules,  un fi rable rules,  and

unused consequence.

                                                       
1 KROL distinguishes between three types of value source: user when the attribute value is input  by

the user, database when the value is queried from a database, derived when the value is concluded by
a rule.
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The purpose of  check for completeness phase is to scan the whole KB

looking for  unused at t r ibute values,  missing rules,  un fi rable rules,  and unused

consequence.  For  efficiency reasons,  detect ing such er rors is divided in to two main

par ts:  detect ing unrefrenced at t r ibute value and missing rules,  and detect ing

unf i rable rules and unused consequence.

Detect ing unrefrenced attr ibute value and missing rules.  The unrefrenced

at t r ibute values are detected when we do not  find any of the at t r ibute values in  any

rule an tecedence.  Whi le missing rules are detected when the unused values are

der ived from a rule consequence.  For  example,  consider  again  the at t r ibute soi l

status.  I f both  the value l ight  and heavy are on ly used in  rules an tecedence par t ,

then the value sandy is detected as an  unused at t r ibute value.  On the other  hand,  i f

th is is the case wi th  rules consequence par t ,  then there is a rule missing for  the

value sandy.

In  order  to detect  unrefrenced at t r ibute values and missing rules,  i t  is

necessary for  each defined at t r ibute to get  a l l  i ts given values th rough the relat ion

between expressions and compare i t  wi th  i ts defined legal  values.  Using the

relat ion  between expressions table,  we are able to extract  a l l  used at t r ibute values

in  each relat ion  and detect  the unused at t r ibute values.

Detect ing unf i rable rules and unused consequence. The unfi rable rule is detected

when one of the given at t r ibutes in  the rule an tecedence par t  has a defined source

of value to be der ived and the at t r ibute does not  appear  in  any rule consequence

par t .  Th is means that  the at t r ibute value that  would have determined by the missed

rule would never  fi re.  For  example,  consider  the der ived values of the

aforement ioned at t r ibute soi l  status  that  is used in  rules an tecedence par t  of the

relat ion  between expressions soi l_determine_soi l.  Moreover ,  these at t r ibute values

are not  der ived from any other  relat ions of the system. In  th is set t ing,  rules of th is

relat ion  wi l l  never  fi re.

On the other  hand,  i f the rule consequence is nei ther  one of the final  goals,

nor  i t  appears in  any rules an tecedence then i t  is unused consequence. 
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5.2.3 Path checker phase

The last  phase of the domain  knowledge ver i ficat ion  process concerns

detect ing ci rcular  and redundant paths.  These paths wi l l  be detected from a graph

data structure.  Th is graph l inks the input  at t r ibutes to the output  at t r ibutes for

each defined relat ion  between expressions using the relat ion  between expressions

table.  Detect ing these er rors is divided in to two main  par ts:  detect ing redundant

paths,  and detect ing c i rcular paths.  The fol lowing descr ibes how to t raverse th is

graph to detect  each of these er rors.

Detect ing redundant paths. A redundant path  is found when i t  is possible to

reach the same conclusion  from the same inputs th rough di fferen t  paths.  For

example,  consider  the at t r ibute material  qty of the i r r igat ion  subsystem which

could be reached th rough two di fferent  paths that  or iginate from the same objects.

The fol lowing notat ional  convent ions are used:  an  ar row indicate an arc,  a comma

separates concepts,  and a colon  separates an object /at t r ibute pair .  The fi rst  path  is

obtained from rules of the relat ion :

plantat ion, i rr igat ion_system→  [ i rr_op:material_qty]

Whereas,  the second path  is obtained from rules of more than one relat ion :

plantat ion, i rr igat ion_system→  [plant :ad]
→  [ i rr igat ion:I ]
→  [ i rr igat ion: l r]
→  [ i rr igat ion:wr]
→  [ i rr_op:material_qty]

This process is repeated to obtain  a l l  possible paths that  connect  each

output  at t r ibute to other  at t r ibutes for  a l l  the relat ions between expressions.  I f

edges of any two paths are ident ical ,  a redundant path  is repor ted.

Detect ing c i rcular  paths.  Circular  paths are detected when an at t r ibute appears as

an input  at t r ibute of one relat ion  and as an  output  at t r ibute of another  relat ion  and

a path  between the other  edges of these relat ions can be reached.  For  example,  i f

we have the fol lowing two paths:

path1:  [plant :rd] →  [plant :rdf ]
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 • 
 • 
 • 

Inference layer

Step Checker

Inference
 Checker

   Undefined  role

Inference
Table

Inconsistency
error

path2:  [plant :rdf ] →  plantat ion, i rr igat ion_system →  [plant :rd]

A circular  path  is repor ted because i t  is possible to reach the at t r ibute rd  of

the plant concept  from the same input  th rough fol lowing path1 then path2.

5.3 Inference Layer Verification
The ver i ficat ion  process considered here is divided in to two phases:

 1.  Step checker  phase.

 2.  In ference checker  phase.

Fig.  6 i l lustrates the structure of the in ference knowledge ver i ficat ion

5.3.1 Step checker phase

The step checker works on  the in ference steps of the in ference layer .  The

main  funct ions of the step checker  are detect ing inference step consistency error,

and creat ing the inference table.

     

Input role

Static role

Output  role

     

Input role

Static role

Output  role

Figure 6:  The structure of ver i ficat ion  of the in ference knowledge ver i ficat ion
process.
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Inference step consistency errors.  The in ference layer  consists of in ference steps.

Each in ference step operates over  data elements cor responding to the domain

layer .  The input-role refers to a l ist  of input  data elements of the in ference step.

These elements cor respond to a combinat ion  of the input-at t r ibutes of the relat ion

between expressions wh ich  th is in ference uses.  Also,  the output-role refers to a

l ist  of output  data elements of the in ference step.  These elements cor respond to a

combinat ion  of the output-at t r ibutes of the relat ion  between expressions wh ich  th is

in ference uses.  Inconsistency ar ises when the input- or  output-role refers to data

element that  is not  defined in  any relat ion  between expressions of th is  in ference.

Th is is best  clar i fied by an  example.  Consider  the  input-role:  system_descript ion

of the in ference step speci fy  shown in  Fig.7 that  has the fol lowing defined input

data:

[soi l : texture] ,  [soi l :ec] ,  [soi l :ph] ,  and [water:boron]

This role works on  fol lowing relat ions between expressions:

soi l_determine_soi l and water_determine_water.

These relat ions have the fol lowing input-at t r ibutes:

[soi l : texture] ,  [soi l :ec] ,  [soi l :ph] ,  [water:boron] ,  [water:sar] ,  and [water:rsc] .

Obviously,  inconsistency is repor ted because the input  at t r ibutes sar and rsc of the

concept water are defined by the relat ions between expressions soi l_determine_soi l

and water_determine_water  whi le missed in  the input  at t r ibutes of the input  role

for  the same in ference step speci fy.

Creat ing the inference table.  The step checker  creates an  in ference table in  order

to detect  KADS-based er rors.  Th is table is  created in  order  to faci l i ta te the

detect ion  of these inconsistency er rors.  The table consists of the fol lowing fields:

 • Inference name:  The name of the in ference step as define in  the KB.

 • Input  role :  The input-role name(s) of the in ference step.

 • Output role :  The output-role name of the in ference step.

 • stat ic  role:  The l ist  of the relat ion  between expressions that   are used by th is

in ference.
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5.3.2 Inference checker phase
The inference checker works on the input /output  roles of the  in ference

layer .  Since each in ference has a defined input-role and output-role,  each output-

role should ei ther  be an  input-role to the fol lowing  in ference step or  the last

output .  Fig.  7 depicts the in ference layer  of an  agr icul ture exper t  system. As

shown in  th is figure,  the in ference step speci fy has an  input-role system

descript ion and an output-role speci f ied case descript ion wh ich  in  turn  is an  input

to the next  in ference step compute. The last  in ference step is the on ly one that  i ts

output-role is not  input  to any other  in ference steps.  Thus,  another  type of

inconsistency of the in ference layer  may ar ise when one of the in ference steps has

a defined output-role that  does not  sat isfy ei ther  of the above cases.  In  order  to

detect  such inconsistency the in ference table is used to ensure that  each defined

output-role matches one of the  defined input-roles for  another  in ference step.

5.4 KADS layers Verif ication
The layers of the KADS model ing methodology always have a l imi ted

in teract ion .  Th is in teract ion  could in t roduce new types of inconsistency er rors.

The ver i ficat ion  process considered here concerns consistency of the KADS layers.

Fig.8 i l lustrates the structure of the KADS layer  ver i ficat ion  process.

Detect ing layers consistency errors.  Each knowledge layer  of the KADS

model ing methodology always refers to some par ts of another  layer .  For  example,

in  the task layer ,  tasks apply the in ference steps defined in  the in ference layer .

Each in ference step uses one or  more  relat ion  between expressions of the domain

layer .  Th is relat ionsh ip is depicted in  Fig.8

System Description

Specified case Description

Specify
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Figure 7:  An  in ference structure for  i r r igat ion  in  a crop management system.
Rectangles represent roles;  ovals represent in ference steps.  Ar rows are used to
indicate input-output  dependencies.

Figure 8: The structure of ver i ficat ion  of the KADS Layers

When one of the knowledge layers refers to undefined or  er roneous par ts of

another  layer ,  inconsistency between layers occurs.  As an  example,  consider  the

Layers
inconsistencies

Task Knowledge

Inference Knowledge

Domain Knowledge

appliesapplies

uses

Inference
Table

Consistency

KADS Layers Relationship
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task Asssment_t,a  task of the assessment task layer ,  that  appl ies an  in ference step

specfy which  is not  found in  the in ference layer  of th is subsystem. The in ference

would have appl ied the in ference step speci fy . Fur thermore,  the in ference step

abstract uses a defined relat ion  between expressions s_determine_s wh ich  also is

not  found in  the domain  layer .  The domain  layer  would have used the re lat ion

soi l_determine_soi l .

The consistency checker  uses the in ference table to detect  such

inconsistency.  For  example,  each in ference step  has i ts defined relat ion  between

expressions via the stat ic role.  By scann ing the relat ion  between expressions table

we can determine whether  these relat ions are a l ready defined in  the domain  layer .

6. Examples of uti l ization and testing

This sect ion  presents the resul ts of runn ing our  ver i ficat ion  tool  on  a

sample of real-wor ld knowledge bases systems.  Several  examples cover ing a wide

range of KB er ror  types were used.  These examples demonstrate the capabi l i ty of

our  tool  to discover  these er rors.  The examples presented here were taken from an

exper t  system for  ci t rus crop management in  open fields (CITEX) (15) wh ich  is

developed by CLAES. CITEX consists of five subsystems, namely:  assessment,

i r r igat ion ,  fer t i l izat ion ,  diagnosis,  and t reatment.  Each subsystem, wh ich  is

considered an exper t  system in  i ts own,  is ver i fied in  isolat ion  from the rest  of the

system and the resul ts obtained are i ts local  ver i ficat ion .  As ment ioned before,  i t

was modeled using KADS methodology.  The system contains 160 objects,  145

att r ibutes,  and 369 possible values.  Moreover ,  i t  con tains 632 rules and 468

factual  knowledge compr ising 1100 relat ions.

6.1 Resul ts of Domain knowledge veri f icat ion process

The resul ts of  runn ing our  tool  on  a sample of real-wor ld knowledge bases

show that  completed knowledge bases were checked by our  ver i ficat ion  tool ,  that  is

the system was considered to have been tested sat isfactor i ly by other  means
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(typical ly runn ing a large number  of actual  test  cases on the system, and

evaluat ing the output  produced).

Table 1 summar izes the resul ts of runn ing our  ver i ficat ion  tool  on  each

subsystem of CITEX. I t  should be noted that  the number  of er rors presented in  th is

table are the detected er rors by the ver i ficat ion  tool .  These er rors are a ler ted to

the knowledge engineer  who decide whether  or  not  they indicate an  actual  er ror .

In  each cel l  of the table there are two numbers separated by a slash .  The number  of

er rors detected by the tool  is recorded to the left  of the slash  and the number  of

er rors accepted by the knowledge engineer  is recorded to the r igh t  of the slash .

Assessment Diagnosis Treatment Ir r igat ion
Consistency errors
I l legal  values 5/5 20/20 33/33 1/1
Out of range 4/4 0 0 6/6
Undefined at t r ibute 4/4 0 1/1 0
Confl ict  rules 0 1/1 0 0
Completeness errors
Unused at t r ibute
value

6/6 43/24 29/22 1/1

Unfi rable rule 0 1/0 2/0 5/0
Missing rule 3/3 1/0 0 0
unused consequence 1/0 1/0 1/0 1/0
Detect  wrong paths
redundant paths 9/0 3/0 0 6/0

Table1: Number  of er rors detected by the ver i ficat ion  tool  in  four  subsystems

From the table we can note that  the number  of the detected unused at t r ibute

values di ffers from the actual  number  of er rors for   both  the diagnosis and the

treatment subsystems. Due to the design  of CITEX, the at t r ibutes legal  values are

defined in  a sharable knowledge base wh ich  is common to a l l  i ts subsystems. Since

the tool  is able to local ly ver i fy each subsystem, the detected unused at t r ibute

values in  these subsystems are covered by others.  Th is is best  expla ined by an

example.  Consider  the at t r ibute soi l  type wh ich  has the fol lowing set  as i ts legal

values:  { f ine,  medium, coarse}.  In  the diagnosis subsystem, the used values are

on ly f ine and coarse. Therefore,  the tool  detected the value medium as an  unused

value,  wh i le the value medium is used in  other  subsystems. Actual ly,  th is can be
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treated as a warn ing produced by many programming languages compi lers.  The

same si tuat ion  a lso appl ies when detect ing the missing rules.

detected unused consequence were final  goals.

The redundant paths are detected when the output  at t r ibute could be

reached from the same input  at t r ibute  th rough di fferen t  paths.  The detected paths

connect  two object-at t r ibute nodes.  These nodes were aler ted to the knowledge

engineer  who checked whether  or  not  the at t r ibutes take the same values.  That  is

why the detected er rors were not  considered to be actual  er rors.

An impor tan t  poin t  to note here is that ,  the actual  er rors detected for  these

real-wor ld knowledge bases are a lways due to typograph ical  er rors or  wrong value

in i t ia l izat ion .  However ,  runn ing a set  of test  cases is not  sufficien t  to detect  these

er rors.  Therefore,  a provision  an  automat ic ver i ficat ion  tool ,  would save much

t ime and effor ts wh i le developing large and complex system.

6.2  Results of inference and KADS layers  verif ication

process

The resul t  of runn ing our  tool  to ver i fy in ference and KADS layers showed

that  on ly one type of inconsistency.  The step checker  phase found inconsistency

between input-data of input-role and input  at t r ibutes of the relat ions between

expressions of th is role.  Regardless of th is resul t ,  the goal  of those ver i ficat ion

processes were to discover  er rors wh i le developing exper t  systems.  However ,  the

tool  was appl ied on  a developed exper t  system, and consequent ly i ts output  has

such an er ror .  By means of contr ived examples wh i le developing our  tool ,  we

expect  more er rors to be repor ted to the developer  at  the developing of their  exper t

systems.
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7. Conclusions

We developed an automat ic ver i ficat ion  tool .  The evolut ion  of th is tool

came about because of the urgent  need to ver i fy KADS-based exper t  systems

developed at  CLAES. Our  approach for  design ing  the automat ic ver i ficat ion  tool

is based on conceptual  model ing for  knowledge bases.  The ver i ficat ion  tool  have

been implemented on PC plat form using SICStus Prolog.

We showed several  examples that  cover  a wide range of knowledge base

er ror  types.  These examples demonstrate the capabi l i ty of our  tool  to discover

these er rors that  could otherwise remain  even after  convent ional  test ing.  They

were taken from CITEX, an  exper t  system for  ci t rus product ion  in  open field.

The authors would l ike to acknowledge the Centra l  Laboratory

of Agr icul tura l  Exper t  Systems (CLAES) at  the Agr icul ture Research  Center  of

Min ist ry of Agr icul ture and Land Reclamat ion  in  Egypt  leaded by Prof.  Dr .  Ahmed

Rafea for  their  suppor t  wh i le conduct ing the research  descr ibed in  th is paper .
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