An approach for automating the verification of KADS-
based expert systems

Abeer El-Korany
Central Lab. For Agricultural Expert Systems (CLAES), P.O. Box: 100 Dokki, Giza, Egypt
abeer@esic.claes.sci.eg

Khaled Shaalan
Computer and Information Science Dept., Institute of Statistical Studies and Research (ISSR),
Cairo Univ., 5 Tharwat St., Orman, Giza, Egypt
shaalan@esic.claes.sci.eg

Hoda Baraka
Hbarka@idscl.gov.eg
Computer Engineering Dept., Faculty of Engineering, Cairo University, Dokki, Giza, Egypt

Ahmed Rafea
Computer and Information Science Dept., Institute of Statistical Studies and Research (ISSR),
Cairo Univ., 5 Tharwat St., Orman, Giza, Egypt
rafea@esic.claes.sci.eg

Abstract cation

plays an important role in assuring the reliability of expert systems. Expert systems verification
involves checking the knowledge base for consistency, completeness, and other errors. Our study
indicates that in order to verify an expert system, it is necessary to havsm@eptual modebf the
knowledge base. The KADS methodology lends itself to conceptual modeling of the knowledge base.
This enabled us to build an automatic verification tool. This tool is able to detect different
knowledge base error types. A novel feature of this tool is its ability to detect consistency errors that

arise due to using KADS methodology in knowledge modeling.

1. Introduction

he importance of assuring the quality of expert systems is now widely

recognized. Quality assurance is a major issue in development of expert

systems. A consensus has been reached in the literature that the
evaluation of expert systems to ensure their reliability involves two principle
activities, usually called verification and validation (V&V). Studies have shown
that verification, can lead to the early detection of errors that otherwise would

have remained even after extensive validation tests (1,2,3). Verificatharefore

is an important part of reliability assurance for these systems, and it is the interest
of all expert system builders to ensure that verification is performed on their
system prior to traditional methods of testing. Our proposed approach for verifying
knowledge bases is based on using conceptual modeling for knowledge base (KB).
Conceptual models, such as supported by KADS methodology (4,5) make it
possible to derive the structure of knowledge base systems (KBS). This enabled us
to build an automatic verification tool. This tool is able to detect different KB
error types such as consistency and completeness errors, as well as other errors. A
novel feature of this tool is its ability to detect consistency errors that arise due to
using KADS methodology in knowledge modeling.

The structure of the paper is as follows. Section 2 discusses the needs for
assuring the quality of expert systems. Section 3 presents the different approach in
verification and validation of expert systems. Section 4 briefly describes the
knowledge base development environment upon which we build our verification
tool. Section 5 examines the proposed verification tool in details. Section 6 studies
the ability of verification tool in verifying some real-world knowledge bases.

Section 7 summarizes the paper and considers some open research issues.

2. The needs for assuring the quality of expert systems

Several factors have led to need for assurances about the quality of expert
systems (6). One such factor is a new generation of expert systems which are
beginning to appear. These expert systems are embedded within another
hardware/software system in such a way that users may not even realize that an
expert system is a part of the software.

Another factor is that expert systems are being proposed for mission-
critical application. In such applications, there is a possibility of great financial
loss and/or loss of life if the expert system malfunctions.

An additional factor is the expectations and standards for quality software

which the commercial computing community has already established. The

commercial computing community is unlikely to lower its expectations or
standards of quality in order to adapt to expert systems. Expert system developers
will have to adapt to the preestablished expectations and standards of commercial

computing community.

3. Different approaches in verification and validation of
knowledge- based systems
During the first years of KBS production, researchers thought of KBS life

cycle as rapid prototype, while the V&V was handled on as-needed basis. Recently,
methods (and their support tools) were developed to detect problems in rule-based
systems, such as redundant, subsumed, or missing rules. However the field lacked
a comprehensive view of KBS validation and the role of V&V in the KBS life cycle
(7). Two approaches have been realized for them.

One approach discusses the relation of KBS V&V to tseftware
engineering methodologfor program correctness and evaluation. This discussion
dealt with the usability and usefulness of formal program specification for expert
systems. Traditional methods of software testing produce empirical measures of
reliability: they involve running test cases through the system and evaluating the
correctness of the result obtained.

A second approach is the useadnceptual modeling frameworlsuch as
KADS (8) and the Components of Expertise (9) as a new kind of specification for
KBS design. Knowledge models provide a framework in which include the V&V of
pragmatic constrains, and the progressive refinement of knowledge models

provides principled mapping to the symbol level necessary for V&V (2).

4. A brief description of the knowledge base development
environment
The major challenge for any modeling approach to KBS construction is to

find an adequate answer to the question of how to model expertise. The
requirement of the resulting model of expertise, that is of a knowledge-level

nature: independent of a particular implementation (10). KADS is a method for the

structured and systematic development of KBS, which aims to provide software
engineering support for the knowledge engineering process (11,12).

Other observed difficulties in building KBS result from the kind of
language used to build these systems, since the conceptual model must have an
explicit semantic foundation. KROL (13,14) has been successfully used in building
several KADS-based expert systems at CLAES (Central Laboratory of Agriculture
Expert System) at the Agriculture Research Center of Ministry of Agriculture and
Land Reclamation in Egypt such as: CITEX (15) and CUPTEX (16).These expert
systems are in actual use by the Egyptian extensions service. The following
sections give an overview for the knowledge base development environment upon
which we built our verification tool. However, it is not intended to constitute an
introduction to this topic, and suitable reading material will be referred to during

discussion.

4.1 KADS: A methodology for modeling knowledge-based systems

KADS (17) is a methodology that has been developed in the framework of
the Esprit program. The model-based approach according to KADS is rapidly

becoming the de facto standard in Europe.

In (18), we described our approach for building KADS-based expert systems.
Briefly, the domain knowledgeidentifies the domain in terms of concepts,
properties of these concepts, and relations. Fig 1. Shows an example of the
relation between expressionsoil _determine_soil which means that the soil
parameters are to be determined by using other soil parametersinfdrence
knowledge is a declaration of what primitive inferences can be made using the
domain knowledge. Thetask knowledgedescribes the steps that must be carried
out in order to achieve a particular goal using the inference steps of the inference

layer.

LEFT HAND SIDE

RIGHT HAND SIDE

Concept Property Value Concept Property Value
Soll Texture salt loam Soll S Status suitable
Profile Depth | >=1.2
ESP =< 15
Ph =<8
Sail Texture loam Soil Type medium
sily loam
sandy clay loam
Soil Texture sand Soll Type coarse
sandy loam

Figure 1. An Example of a relation between expressions

4.2 KROL: The language

Our

Object Language that addresses the representation of knowledge. KROL is built on

implementation

language KROL, (13) is a Knowledge Representation

top of SICStus Prolog language (19).

The applicability of KROL as a language to implemdé/ADS-based expert systems

could be described as follows.
formalism,
are uniformly handled
represented

(attributes).

and

concepts can

relation between expressions is

defined

the object.

by methods and

Attributes may have facets (value type, value source, possible values,

the following form:

if the property takes a single or

ruleid(conclusion if premise

The inference knowledge is represented by an object with inference steps as its

behavior.

Each

inference step either

Domain knowledge is

multiple value).

The

represented by a single
Objects correspond to real-world concepts or rules. Rules
in an object-oriented manner. The behavior of an object is

its characteristics are represented by properties

relation between
be represented by the methoperwithin the concept. A particular
manifested as a set of declarative rule instances

in an object. A rule instance, or simply a rule, is declared by writing it in

uses the primitive inference defined by the

built-in inference_clas®object, e.g.conclude_allprimitive which tries to prove all

rules in a given relation between expressions and recursively its descendents.

The task knowledge is represented by an object that its behavior describes
the application of inference steps that satisfies a particular goal using the
inference steps of the inference knowledge. Fig.2 illustrates a sample of each

KADS layers using KROL.

Soil_determine_soil :: { assesment_inference :: { assessment_task :: {

super(assessment_system) & super(inference_class) &

r1([s_status of soil = suitable]) if abstract:- assesment_inference:: assign
texture :: soil = 'salt loam' inference_class:: conclude_all(soil_determine_soil),
profile_depth :: soil >= 1.2, inference_class::conclude_all(water_determine_water), | }.
esp :: soil =< 15,
ph :: soil =< 8.0,
calcium_c_c :: soil =< 40.0 & assign:-

r2([s_status of soil = unsuitable]) if | inference_class::conclude_all(water_determin_conclusi)

start:-
assesment_inference::abstract,

inference_class::conclude_all(soil_determin_conclusion),

texture :: soil = 'loam' -> true
; profile_depth :: soil < 1.2 ->trug }.
; esp::soil >= 15 -> true
; ph::soil >=8.5 ->true
; calcium_c_c :: soil >40.0

Relation between expressions Inference layer Task layer

Figure 2: An example of the KADS layers implemented using KROL

5. The methodology
Verification examines the technical aspects of an expert system in order to

determine whether the expert system is built correctly. One of the major tasks in
verifying expert systems is the verification of the knowledge contained within the
KB. Verifying the KB involves examining the consistency, completeness, and
correctness of the knowledge by detecting errors such as redundancy,
contradiction, and circularity (6). Several verification criteria have been proposed.
Our approach in automating verification of the KB involves checking the KB for
commonly occurring errors. The approach indicates also that, in order to verify an
expert system, it is necessary to haveomceptual modebf the KB. The KADS
methodology lends itself to conceptual modeling of the KB. This enabled us to
build an automatic verification tool. This tool is able to detect different KB error
types as well as new error types that appear due to using KADS in knowledge

modeling.

A major design goal of our verification tool is to be generally applicable
for any KADS-based expert system. KROL is successfully used to implement
several KADS-based expert systems at CLAES. On the other hand, this
implementation faces some limitations. One of these limitations, is that there is
not a complete transformation mappindgetween the conceptual model and the
implementation language. Furthermore, the design of our verification tool depends
mainly on the conceptual modeling of the KB. Thus, KROL is extended to support
the complete transformation mapping by defining a set of KROL methods. These
methods affect the three levels of knowledge layers. Representation of each
knowledge layer after adding the KROL extensions, highlighted in bold, is
described in Fig.3. The following sections, describe our approach for automating

the verification of KADS-based expert systems.

Soil_determine_soil :: {
super(assessment_system) &

input_att(soil,texture/1)&
input_att(soil,profile_depth/1)&
input_att(soil,esp/1)&
input_att(soil,ph/1)&
input_att(soil,calcium_c_c/1)&
output_att(soil,s_status/1)&

r1([s_status of soil = suitable]) if
texture :: soil = 'salt loam'
profile_depth :: soil >= 1.2,
esp :: soil =< 15,
ph :: soil =< 8.0,
calcium_c_c :: soil =< 40.0 &

r2([s_status of soil = unsuitable]) if
texture :: soil = 'heavy clay' -> true
; profile_depth :: soil < 1.2 -> true
; esp :: soil >= 15 -> true
; ph::soil >=8.5 ->true
;calcium_c_c :: soil > 40.0

}

Abstract:: {

super(assessment_system) &

input-role ([system_description],[[soil texture],...]) & inference([abstract,assign]) &

output-role (abstracted_system_description,
[[soil,s_status],...]) &

static-role([soil_determine_soil,...]) &

assessment_task :: {

super(krol) &

start:-
assesment_inference :: abstract,
assesment_inference :: assign

}.

Relation between expressions

Inference layer

Task layer

Figure 3: Extending KADS layers using KROL

5.1 Structure of the verification tool
The verification process of KADS-based expert systems can be distinguished into

three main parts:

1.Domain knowledge verification.During this process, we are focusing on the

domain knowledge which contains concepts,

properties, relation between

concepts, and relation between expressions. Most of the KB errors will be
detected in this part.

2.Inference Layer Verification. In KADS, an inference layer inconsistency may
occur. This happens when an input/output role of any inference step has a
defined input/output data elements that are not defined in the corresponding
relation between expressions of the domain layer. Moreover, when an inference
has a defined input-role that is not produced as output-role of another inference
step.

3.KADS Layers verification. When applying KADS methodology in knowledge
modeling, new types of error are discovered. The three layers that construct the
knowledge model are interrelated, since each layer always refers to some parts
of another layer. According to this interaction, inconsistencies between layers

may arise. Fig.4 gives an overview of the structure of our proposed verification

tool.

KADS Modeling layers Verification Process

KADS Layers
Lerification

Verification
report

\4

Inference

knowledae
Domain

knowledge

Inference Lay
erification

r

Figure 4: Overall structure of the verification tool

5.2. Domain knowledge verification
The domain knowledge verification process detects most of the coded KB

errors. The verification process considered here is divided into three phases,

according to the type of errors detected in each phase. They are:

1.Consistency checker phase.
2.Check for completeness phase.

3.Path checker phase.

Fig. 5 illustrates the structure of the domain knowledge verification process.

J Consistenc;j
L errors

Relation
E—» between _ 4‘ Circular paths }
EXpressions s Redundanpaths

table

Checker errors

Compm . { Completenessj

Figure 5: The structure of verification of the domain knowledge

5.2.1 Consistency checker phase
The consistency checkeworks on the relations between expressions of the

domain layer, one relation at a time. Consistency of the KB appears as: undefined
object, undefined attribute, undefined attribute values, duplicate rule pairs,
conflict rule pairs, and subsumed rule pairs. Errors in spelling or syntax are
frequent source of consistency errors. The main function of the consistency
checker isdetecting consistency errorA secondary function is creatinghe
relation between expressions tabléo support the subsequent verification
processes.

Detecting consistency errors. For each relation between expressions, the

consistency checker checks each rule instance to find out the undefined object,

undefined attribute, and undefined attribute values. This is realized by comparing
the objects, attributes, and attribute values used in each rule against their
corresponding definitions. For example, consider the attrilswti¢ statuswith the

set {sandy, heavy, lightlas its legal values. This attribute has a defined source of
value to bederived. If a rule refers to the valugsandfor the attributesoil status

it is detected as undefined attribute value
Detecting duplicate, conflict, and subsumed rule pairs are realized by
comparing each rule against every other rule within the same relation between
expressions.
Creating the relation between expressions table.The relation between
expressions table contains the needed information about all the relations between
expressions in the KB. The basic idea behind constructing this table is to
accelerate searching for any defined attribute in the KB which is heavily used in
subsequent phases (See Fig. 5). This table consists of the following fields:
* Relation name The name of the relation between expressions as defined in the
KB.
e Input attribute : The names of object-attribute pairs given in the rules
antecedence.
e Output attribute: The names of object-attribute pairs given in the rules

consequence.

5.2.2 Completeness checker phase

As the number of rules grows large, it becomes impossible to check every
possible path through the system (20).There are four indicative situations of gaps
in the knowledge base: unused attribute values, missing rules, unfirable rules, and

unused consequence.

! KROL distinguishes between three types of value source: user when the attribute value is input by

the user, database when the value is queried from a database, derived when the value is concluded by
arule.

10

The purpose of check for completeness phade to scan the whole KB
looking for unused attribute values, missing rules, unfirable rules, and unused
consequence. For efficiency reasons, detecting such errors is divided into two main
parts: detecting unrefrenced attribute value and missing rulesnddetecting
unfirable rules and unused consequence.

Detecting unrefrenced attribute value and missing rules.The unrefrenced
attribute values are detected when we do not find any of the attribute values in any
rule antecedence. While missing rules are detected when the unused values are
derived from a rule consequence. For example, consider again the attsibiite
status If both the valudight andheavyare only used in rules antecedence part,
then the valuesandyis detected as an unused attribute value. On the other hand, if
this is the case with rules consequence part, then there is a rule missing for the
value sandy

In order to detect unrefrenced attribute values and missing rules, it is
necessary for each defined attribute to get all its given values through the relation
between expressions and compare it with its defined legal values. Using the
relation between expressions table, we are able to extract all used attribute values
in each relation and detect the unused attribute values.

Detecting unfirable rules and unused consequencelhe unfirable rule is detected
when one of the given attributes in the rule antecedence part has a defined source
of value to be derived and the attribute does not appear in any rule consequence
part. This means that the attribute value that would have determined by the missed
rule would never fire. For example, consider the derived values of the
aforementioned attributesoil status that is used in rules antecedence part of the
relation between expressions®il_determine_soilMoreover, these attribute values

are not derived from any other relations of the system. In this setting, rules of this
relation will never fire.

On the other hand, if the rule consequence is neither one of the final goals,

nor it appears in any rules antecedence then it is unused consequence.

11

5.2.3 Path checker phase

The last phase of the domain knowledge verification process concerns
detecting circular and redundant paths. These paths will be detected from a graph
data structure. This graph links the input attributes to the output attributes for
each defined relation between expressions using the relation between expressions
table. Detecting these errors is divided into two main padetecting redundant
paths and detecting circular pathsThe following describes how to traverse this
graph to detect each of these errors.

Detecting redundant paths. A redundant path is found when it is possible to
reach the same conclusion from the same inputs through different paths. For
example, consider the attributeaterial qty of the irrigation subsystem which
could be reached through two different paths that originate from the same objects.
The following notational conventions are used: an arrow indicate an arc, a comma
separates concepts, and a colon separates an object/attribute pair. The first path is
obtained from rules of the relation:

plantation,irrigation_system. [irr_op:material_qty]

Whereas, the second path is obtained from rules of more than one relation:
plantation,irrigation_system. [plant:ad]

[irrigation:I]

[irrigation:lr]

[irrigation:wr]
[irr_op:material_qty]

1

1

1

1

This process is repeated to obtain all possible paths that connect each
output attribute to other attributes for all the relations between expressions. If
edges of any two paths are identical, a redundant path is reported.

Detecting circular paths. Circular paths are detected when an attribute appears as
an input attribute of one relation and as an output attribute of another relation and
a path between the other edges of these relations can be reached. For example, if
we have the following two paths:

pathl: [plant:rd] - [plant:rdf]

12

path2: [plant:rdf] - plantation,irrigation_system- [plant:rd]

A circular path is reported because it is possible to reach the attrriduoé

the plant concept from the same input through followipgthlthenpath2

5.3 Inference Layer Verification
The verification process considered here is divided into two phases:

1.Step checker phase.
2.Inference checker phase.

Fig. 6 illustrates the structure of the inference knowledge verification

5.3.1 Step checker phase

The step checker works on the inference steps of the inference layer. The
main functions of the step checker are detectinfgrence step consistency error,

andcreating the inference table.

nference laye
Input rxe\r\

) T R
— Static role

Output rcy N Step Check [Inconsistency]
error

| !

. Inference

. Table

#mut role\
Static role

Output rcy

Inference
Checker

. erification of the inference knowledge verification
process.

13

Inference step consistency errorsThe inference layer consists of inference steps.
Each inference step operates over data elements corresponding to the domain
layer. The input-role refers to a list of input data elements of the inference step.
These elements correspond to a combination of the input-attributes of the relation
between expressions which this inference uses. Also, the output-role refers to a
list of output data elements of the inference step. These elements correspond to a
combination of the output-attributes of the relation between expressions which this
inference uses. Inconsistency arises when the input- or output-role refers to data
element that is not defined in any relation between expressions of this inference.
This is best clarified by an example. Consider the input-relestem_description
of the inference steppecifyshown in Fig.7 that has the following defined input
data:
[soil:texture], [soil:ec], [soil:ph], and [water:boron]
This role works on following relations between expressions:
soil_determine_soiandwater_determine_water.
These relations have the following input-attributes:
[soil:texture], [soil:ec], [soil:ph], [water:boron], [water:sar], and [water:rsc].
Obviously, inconsistency is reported because the input attribsdesandrsc of the
conceptwater are defined by the relations between expressiami$_determine_soil
and water_determine_water while missed in the input attributes of the input role
for the same inference stegpecify.
Creating the inference table.The step checker creates an inference table in order
to detect KADS-based errors. This table is created in order tidiface the
detection of these inconsistency errors. The table consists of the following fields:
e Inference name The name of the inference step as define in the KB.
e Input role: The input-role name(s) of the inference step.
e Output role: The output-role name of the inference step.
» static role: The list of the relation between expressions that are used by this

inference.

14

5.3.2 Inference checker phase
The inference checkerworks on the input/output roles of the inference

layer. Since each inference has a defined input-role and output-role, each output-
role should either be an input-role to the following inference step or the last
output. Fig. 7 depicts the inference layer of an agriculture expert system. As
shown in this figure, the inference steppecify has an input-rolesystem
description and an output-rolespecified case descriptiowhich in turn is an input

to the next inferencetepcompute.The last inference step is the only one that its
output-role is not input to any other inference steps. Thus, another type of
inconsistency of the inference layer may arise when one of the inference steps has
a defined output-role that does not satisfy either of the above cases. In order to
detect such inconsistency the inference table is used to ensure that each defined

output-rolematches one of the definadput-rolesfor another inference step.

5.4 KADS layers Verification
The layers of the KADS modeling methodology always haveéindted

interaction. This interaction could introduce new types of inconsistency errors.
The verification process considered here concerns consistency of the KADS layers.
Fig.8 illustrates the structure of theADS layer verification process.

Detecting layers consistency errors. Each knowledge layer of the KADS
modeling methodology always refers to some parts of another layer. For example,
in the task layer, tasks apply the inference steps defined in the inference layer.
Each inference step uses one or more relation between expressions of the domain

layer. This relationship is depicted in Fig.8

System Description

@acify

. A . .
| Qnerified cace Dncnrmhnr|

Figure 7: An inference structure for irrigation in a crop management system.
Rectangles represent roles; ovals represent inference steps. Arrows are used to

indicate input-output dependen

KADS Layers Relationship

cies.

Task Knowledge I

—_—

applies

Inference Knowledgi

uses I

Domain KnowledgeIJct

Inference
Table

Consistency

Layers
—*| inconsistencie

ure of verification of the KADS Layers

When one of the knowlg

dge layers refers to undefined or erroneous parts of

another layer, inconsistency

between layers occurs. As an example, consider the

16

task Asssment b task of theassessmentask layer, that applies an inference step
specfy which is not found in the inference layer of this subsystem. The inference
would have applied the inference steppecify.Furthermore, the inference step
abstract uses a defined relation between expressisndetermine_svhich also is
not found in the domain layer. The domain layer would have useddhsdion
soil_determine_soil.

The consistency checker uses the inference table to detect such
inconsistency. For example, each inference step has its defined relation between
expressions via the static role. By scanning the relation between expressions table

we can determine whether these relations are already defined in the domain layer.

6. Examples of utilization and testing

This section presents the results of running our verification tool on a
sample of real-world knowledge bases systems. Several examples covering a wide
range of KB error types were used. These examples demonstrate the capability of
our tool to discover these errors. The examples presented here were taken from an
expert system for citrus crop management in open fields (CITEX) (15) which is
developed by CLAES. CITEX consists of five subsystems, namely: assessment,
irrigation, fertilization, diagnosis, and treatment. Each subsystem, which is
considered an expert system in its own, is verified in isolation from the rest of the
system and the results obtained are its local verification. As mentioned before, it
was modeled usingKADS methodology. The system contains 160 objects, 145
attributes, and 369 possible values. Moreover, it contains 632 rules and 468

factual knowledge comprising 1100 relations.

6.1 Results of Domain knowledge verificat ion process

The results of running our tool on a sample of real-world knowledge bases
show that completed knowledge bases were checked by our verification tool, that is

the system was considered to have been tested satisfactorily by other means

17

(typically running a large number of actual test cases on the system, and
evaluating the output produced).
Table 1 summarizes the results of running our verification tool on each
subsystem of CITEX. It should be noted that the number of errors presented in this
table are the detected errors by the verification tool. These errors are alerted to
the knowledge engineer who decide whether or not they indicate an actual error.
In each cell of the table there are two numbers separated by a slash. The number of
errors detected by the tool is recorded to the left of the slash and the number of

errors accepted by the knowledge engineer is recorded to the right of the slash.

Assessment| Diagnosis | Treatment [Irrigation
Consistency errors
Illegal values 5/5 20/20 33/33 1/1
Out of range 4/4 0 0 6/6
Undefined attribute 4/4 0 1/1 0
Conflict rules 0 1/1 0 0
Completeness errors
Unused attribute 6/6 43/24 29/22 1/1
value
Unfirable rule 0 1/0 2/0 5/0
Missing rule 3/3 1/0 0 0
unused consequence 1/0 1/0 1/0 1/0
Detect wrong paths
redundant paths 9/0 3/0 0 6/0

Tablel: Number of errors detected by the verification tool in four subsystems

From the table we can note that the number of the detected unused attribute

values differs from the actual number of errors for

both the diagnosis and the
treatment subsystems. Due to the design of CITEX, the attributes legal values are
defined in a sharable knowledge base which is common to all its subsystems. Since
the tool is able to locally verify each subsystem, the detected unused attribute
values in these subsystems are covered by others. This is best explained by an
example. Consider the attribusmil typewhich has the following set as its legal

values: {fine, medium, coarse}In the diagnosis subsystem, the used values are
only fine and coarse.Therefore, the tool detected the valmediumas an unused

value, while the valuemediumis used in other subsystems. Actually, this can be

18

treated as a warning produced by many programming languages compilers. The

same situation also applies when detecting the missing rules.

detected unused consequence were final goals.

The redundant paths are detected when the output attribute could be
reached from the same input attribute through different paths. The detected paths
connect two object-attribute nodes. These nodes were alerted to the knowledge
engineer who checked whether or not the attributes take the same values. That is
why the detected errors were not considered to be actual errors.

An important point to note here is that, the actual errors detected for these
real-world knowledge bases are always due to typographical errors or wrong value
initialization. However, running a set of test cases is not sufficient to detect these
errors. Therefore, a provision an automatic verification tool, would save much

time and efforts while developing large and complex system.

6.2 Results of inference and KADS layers verification
process

The result of running our tool to verify inference and KADS layers showed
that only one type of inconsistency. The step checker phase found inconsistency
between input-data of input-role and input attributes of the relations between
expressions of this role. Regardless of this result, the goal of those verification
processes were to discover errors while developing expert systems. However, the
tool was applied on a developed expert system, and consequently its output has
such an error. By means of contrived examples while developing our tool, we
expect more errors to be reported to the developer at the developing of their expert

systems.

19

7. Conclusions

We developed an automatic verification tool. The evolution of this tool
came about because of the urgent need to verify KADS-based expert systems
developed at CLAES. Our approach for designing the automatic verification tool
is based on conceptual modelindor knowledge bases. The verification tool have
been implemented on PC platform using SICStus Prolog.

We showed several examples that cover a wide range of knowledge base
error types. These examples demonstrate the capability of our tool to discover
these errors that could otherwise remain even after conventional testing. They

were taken from CITEX, an expert system for citrus production in open field.

The authors would like to acknowledge the Central Laboratory
of Agricultural Expert Systems (CLAES) at the Agriculture Research Center of
Ministry of Agriculture and Land Reclamation in Egypt leaded by Prof. Dr. Ahmed

Rafea for their support while conducting the research described in this paper.

REFERENCES

1.Nazareth, D.L., Issues In The Verification Of Knowledge In Rule-Based Systeersational

journal of Man Machine studie80(3), pp. 255-271, 1989.

2.Plaza. E., KBS Validation: From Tools to Methodold®EE, pp. 66-77, June 1993.

3.Preece A. D, Shinghal R., Foation And Application Of Knowledge Base Verification,

International Journal of Intelligent systerohn Wiely & Sons Inc., 9 (8), pp. 683-701, 1994.

4.Preece A. D., A New Approach To Detecting Missing Knowledge In Expert System Rule Bases,
International Journal of. Man Machine Studiggademic Press Limited, Vol. 38, pp. 661-688,

1993.

5.Preece A. D.,Verification Of Rule-Based Expert Systems In Wide DgnraiN. Shadbolt (Ed.),
Researcher and development in expert system VI: Proc. Expert systems 89, Cambridge University

Press, pp. 66-77, 1989.

20

6.Smith S., Kandel A., Verification and Validation of Rule Based Expert System, CRC Press Inc.,

1993.

7.Lopez B., Meseguer P., and Plaza E., Validation of knowledge based systems: A stat&lof Art,
Communication3 (2), pp. 56-72, 1990.

8. Wielinga B., Schreiber A., and Breuker J., KADS: A Modeling Approach To Knowledge
Engineering, Knowledge acquisitiorEsprit project, Report No. 5248 KADS-II, Vol. 4, Np. 1

1992.

9. Steels, L.,The Al Magazine Vol. 11, No 3, 1990.

10.Schreiber. G, Wielinga. B, Breuker. KADS: A Principle Approach To Knowledge-Based

System Developmemicademic Press, London, 1993.

11.Shadbolt N., Wielinga B. J., Knowledge Based Knowledge Acquisition: The Next Generation Of
Support Tools. In Wielinga, B. JBoose, J., Gaines, B., Schrieber, G., and Someren V. (Eds),

Current Trends in Knowledge Acquisition, Amsterdam, The Netherlands, 1990.

12.V@3 A., Karbach W., ImplementatidhADS Expertise Models with Model-KEEE Expertpp.

74-82, 1993.

13.ESICM, A Knowledge Representation Object Language (KRD&ghnical report, No. TR-88-

024-27, 1993.

14 .ESICM, Guide To KADS Implementation Using The Knowledge Representation Object

Language KROLTechnical report, No. TR-88-024-31, 1993.

15.Salah A., Hassan H., Tawfik K., Ibrahim I., Farahat
In Proceeding of the 2nd National Expert Systems and Development

Workshop (ESADW-93MOLAR, Cairo, Egypt, May, pp. 63-72, 1993.

16.El-Dossouki A., Edrees S., El _Azhary S., CUPTEX: An Expert System For Crop Management
Of Cucumber, In Proceeding of the 2nd National Expert Systems and Development Workshop

(ESADW-93)MOLAR, Cairo, Egypt, May, pp. 31-42, 1993.

21

17.Wielinga B., Akkermans H., Hassen H. Olsson O., Orsvan K., Schrieber G., Terpstra P., Van de
Velde W., and Wells S.,Expertise Model Definition DocumerESPRIT Project P5248, Report

No. KADS-1I/M2/UvA/026/5.0, University of Amsterdam, The Netherlands.

18.Rafea A., Edrees S., El-Azhari S., Mahmoud M., A Development Methodology For Agricultural
Expert System Based On KAD® Proceeding of the 2nd world congress on Expert System

Cognizant Communication Corporation, pp. 442-450, Jan., 1994.

19.SICStus Prolog Us‘esr Manual, Swedish Institute of Computer Science, S-164 2, KISTA, Sweden,

1995.

20.Nguyen T.A, Perkins W.A, Laffey T.J and Pecora D., Knowledge Base VerificAtiMagazine

8(2), pp. 69-75, 1987.

22

