
An Agent Based Approach to Expert System Explanation

Samhaa R. El-Beltagy & Ahmed Rafea
Central Lab for Agricultural Expert Systems

Agricultural Research Center
Ministry of Agriculture and Land Reclamation.

El-Nour St. Dokki 12311,Giza Egypt
Cairo, Egypt

{samhaa, rafea,}@esic.claes.sci.eg

Ahmed Sameh
Department of Computer Science
The American University in Cairo

113 Kasr Al Aini Street,
P.O.Box 2511,
Cairo, Egypt

sameh@acs.auc.eun.eg

Abstract*

During the last few years, expert system explanation has
become an active research area after recognizing that its role
goes beyond expert system verification as assumed by early
systems. After examining current systems, it has been found
that only a few of these meet the requirements of an end user
interested in learning more about the domain being addressed
by an expert system and understanding why it has reached a
certain conclusion. It was also found that systems that
address these requirements, do so at a very high cost, since
they embed immense amounts of knowledge in a system
without providing any means for accessing this knowledge
except by the system for which it was built. The primary goal
of this paper is to investigate the use of an agent based
approach for the explanation problem, such that knowledge
re-usability would be promoted and high quality explanations
generated. Through the implementation of an experimental
prototype, the approach presented was found to show great
promise since it satisfied the addressed explanation goals,
achieved knowledge re-usability, and modularity. The
devised architecture was also found to be scaleable and
open, and to promote parallelism.

Introduction
Ever since the inception of expert systems, explanation
has played a significant role in their construction and
usage. However, developments in the expert system field
has resulted in greater interest in explanation. The result
is that explanation acquired new dimensions and roles and
thus came to mean different things to different people.
One of the new roles identified for explanation is that of
a tool capable of addressing the needs of an end user
interested in learning more about the domain being
addressed and obtaining explanations using straight to
the point, understandable domain oriented knowledge
rather than lengthy, uninformative problem solving
knowledge. Very few exiting explanation models address
these requirements (Swartout, Paris, and Moore, 1992;
Ford et al 1996). Such systems either embed immense

Copyright  1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

amounts of knowledge into an expert system without
providing means for sharing or re-using that knowledge,
or build a separate explanation system that can only be
used by a given expert system. This makes the process of
building an explanation module, rather expensive.

The motivation behind this work lies in the realization
that the required level of explanation signifies a clear
deviation from an expert system’s goal. Explanation on
that level, requires deep knowledge and hence knowledge
representation forms and reasoning strategies that are
different than those required by the expert system. By
distributing the explanation problem among a number of
independent agents various advantages are capitalized
among which is knowledge shareability and reuse. Thus,
through a focus on diagnostic types of problems, this
work will show that the use of an agent based approach
offers a "natural" solution to the explanation problem.

Agent Task distribution
Explanation is generally needed in two different phases.
The first of these is the dialogue phase, in which the
system interacts with the user in order to collect
observations/symptoms regarding a problem. During that
phase, the system is in total control of the dialog and the
user must fully understand the meaning of questions
presented to him/her, otherwise, he/she might answer
questions incorrectly and hence the system might reach an
incorrect conclusion. Thus, understandability in this
phase directly affects problem solving. Explanation that
can provide definitions and illustrate the relevance of a
question, must be provided in this phase. The capability of
going in depth such that the user can continue to probe
related items in the explanation, until he/she is satisfied,
must also be supported. In that way, the user fully
understands the question, and at the same time learns
more about the domain for which the expert system was
constructed. The second phase is the one that follows
problem solving. In this phase, the user may want to
understand the domain justification for the given

conclusion. Just as with the first phase, the user might
need more clarification on aspects of the explanation.

Through the analysis of the problem at hand, the
identification of logical groupings of knowledge and tasks
is possible. The first of these tasks is a simple one and
consists of providing knowledge about domain
terminology and abstractions, as well as global domain
information on the various terms such that queries in the
form of "Tell me more about X" can be satisfied. The
second task, is one that involves maintaining knowledge
about how different domain concepts contribute to the
diagnostic problem solving process such that questions
in the form of: “Why are you asking me about X?" could
be answered. The third task, involves the intelligent
management of various media types. The fourth and final
task entails the construction of a justification “story” after
a diagnosis has been reached. Together, these four tasks
solve the explanation problem from a domain oriented
perspective. Each of these tasks could be assigned a
separate agent due to their independence in terms of
problem solving and knowledge representation. The
agents will thus be named as follows: a terminology
server, a “Why” agent, a media management agent and a
domain justification agent. In addition to the explanation
agents, there are a number of other agents that must exit
within this architecture. Among these, is of course the
expert system “agent” which is responsible for producing
diagnosis based on a set of input observations. Another, is
the a facilitator with which the other agents register and
advertise their capabilities. Finally, there is user interface

agent which plays a central role within this architecture.
In the proposed framework, the user interface agent, with
collaboration with the facilitator, acts as a communication
coordinator between the various agents, as well as an
intelligent data collector. Figure 1 shows a simplified
diagram of overall system interaction.

Another important issue in the design of the proposed
architecture, is that of achieving agent interoperability.
For that purpose the use of the Knowledge query and
manipulation language(KQML) is suggested (Finin et al,
1994)

The User Interface Agent
The UI agent is composed of three different components:
the expert system communication model, the presentation
component, and the coordination component. The expert
system communication model is based on the Common-
KADS communication model. In the Common-KADS
methodology to KBS development, it has been realized
that there should be a separation of concerns between the
actual KBS problem solving component, and human
computer interaction(HCI) activities (Schreiber, Wielinga,
and Breuker 1993). Thus, the communication model
was suggested as an entity that would handle all HCI.
The underlying assumption behind this architecture is
that many expert systems could be separated into two
parts: the problem solving component and an interface
or a front end component. Since this architecture
addresses diagnostic types of problems, a communication
model based on hierarchical classification(HC) is

The Terminology
Server

The Domain
Justification Agent

The Media
ManagerThe "Why" Agent

The Expert System

The Expert
System Agent

The Expert System Mediator

Data Diagnosis

The Expert System
Communication Model

The UI Agent

The Coordination
Commponent

The Presentation
Commponent

Formulate Message Display

Dispatch Data

Request

(current Observation + current sate)

why justification image list

a term

definition

diagnosis + instantiated data

domain justification
instantiated data

diagnosis

Figure 1: A simplified Diagram of Overall Agent Interaction

suggested (Chandrasekran 1996). Hierarchical
classification, is a problem solving method identified for
solving diagnostic types of problems as part of the Generic
Task approach to expert system development. Within the
proposed framework, knowledge components for which
input is desired, should be classified, grouped and
organized just as in hierarchical classification. However,
in this case, no actual problem solving should take place.
Since nodes(hypotheses) in this hierarchy are composed
of a number of observations, the evaluation of the tree
nodes, will only serve to intelligently handle the dialog
between the user and the system by deducing observations
for which to ask the user based on knowledge of the
problem addressed. The process of building this hierarchy
is a fairly simple one, given that dependencies and
relations between data input items, are known.

The presentation component is that concerned with the
display of the interface components.

The coordination component acts as the interface
between the UI and the other agents. Basically, it is
responsible for structuring messages using the agreed
upon agent communication language(ACL) and
interchange protocol, and handling message exchange.
The coordination component is not specific to the user
interface agent, but is a constituent of all agents to be
described.

The Terminology Server
The main responsibilities of the terminology server, are
providing terminology definitions and abstractions, as
well as detailed term knowledge within a given
predefined domain. Descriptors for this agent include the
ontology that it uses, as well as the domain that it
addresses.

The “Why” Agent
The “Why” agent is responsible for justifying the question
asking strategies using familiar domain oriented
knowledge. From observations of human behavior during
a diagnostic process, it was noticed that the questions they
ask fall under two classes: general questions that serve to
eliminate or indicate the possibility of certain disorders or
disorder classes, or very specific questions that relate to
particular disorders. When explaining why a given
question is being asked, a human expert might also
indicate a dependency relationship between an already
asked observation and the current one. This indicates that
for each observation it is possible to understand the reason
it is being questioned in light of questions/observations
already asked and knowledge of the strategy employed.
Further more, it means that the reason a certain

observation X is being questioned, can not be separated
from the overall context of the system which includes its
state, and the followed problem solving approach. One
approach to this problem would entail following a similar
technique to that adopted by participatory explanation
(Ford el al. 1996). In this approach, a knowledge
engineer uses knowledge obtained during knowledge
acquisition sessions about “why” a given question is to be
asked on an abstract and detailed level, and knowledge
about dependencies between the various observations to
build the “why” agent’s knowledge base(KB). In this
case, the KB represents a documentation of knowledge
that is implicit within the expert system and that would
otherwise be lost. When answering a ‘why’ type of
question, the “Why” agent must receive a complete
account of the system’s state in the form of instantiated
data as well as the observation that is being questioned.

The Media Manager
Most current knowledge based systems(KBS) provide
facilitates for handling media elements such as images,
sound, and graphics. There are two approaches for
handling media elements, the first of these integrates the
elements into the KBS, while the second, builds a separate
system to handle all media elements. Unfortunately, the
majority of the systems that integrate media elements into
a KBS, fail to do so intelligently. These systems use
techniques that augment observations or data items, with
media types without taking into account previous inputs to
the system. For example, for the question “Are there any
pustules on the leaves?”, a KBS might simply present an
image that contains a sample of pustules irrespective of
the information a user had previously entered such as the
growth stage, the leaf color, the leaf state etc. In many
cases, this confuses the user more than it clarifies a
question. Since an explanation system must present media
items that serve to clarify observations, the proposed
architecture employs the technique that handles media
elements separately from the KBS through the
employment of a media manager component. The media
manager takes as input the current state of the system. It
then returns URLs of media elements that best match the
state. It also returns a complete list of features that
accurately describe each of the returned media elements.
In case the returned media element does not completely
match the user’s inputs, the user is made aware of the
differences.

Although media items will be described by a set of
features, it is important to note that not all these features
will be available as input at a given point of time. To
clarify, consider the question about pustules presented
above. Within the image database, some of the images

that satisfy this category are described by pustule
variations (brown pustules, orange pustules, etc.) as well
as other features. So, there will be no exact match to the
user’s query. The system should be intelligent enough to
specialize from generalizations (yellow pustules are a
specialization of pustules) and return a complete list of
specializations. This could be done in one of two ways, the
first of these is explicitly building a specialization
hierarchy and indicating where each observation fits
within this hierarchy, keeping in mind that an observation
could fall under multiple generalizations. In case an exact
match is not found, this hierarchy could then be used to
specialize the query. Another more simplistic way, is
filling unknown values with don’t care conditions before
sending the image query to the server. The media
manager then should attempt to find images that best fit
this input using a relatively simple search engine.

The Domain Oriented Justification agent
The process of problem solving in diagnostic systems
involves attempting to reduce the search space by
questioning general observations in order to determine
which disorders might exist and hence which specific
observations to ask about. When a user asks for a
justification of a conclusion in terms of domain facts,
he/she is usually not interested in the details employed by
the problem solver to reduce the search space, but rather
how a conclusion is justified in light of inputs directly
related to that conclusion. So, within the proposed
architecture, justifications generated, represent "straight
to the point" explanations based on knowledge of the
various disorders, their primary symptoms and supporting
symptoms. The domain oriented justification agent is
assigned the task of justifying a conclusion in terms of the
user’s inputs and the expert system’s conclusion. The
main issue of concern in the construction of this agent is
devising a method for generating a "plausible story" from
the given inputs that justify the conclusion. Since the goal
and the audience addressed do not require fidelity, the
explanation story does not necessarily have to follow the
expert system’s line of reasoning. For the purpose of
problem solving justifications, this issue has been handled
in re-constructive explanation through the use of directed
graphs depicting problem states where the process of
“problem solving” constitutes of finding a path from an
initial state to the solution state using the user inputs.
Data labels associated with the edges of the path, are then
used to generate the explanation text (Wick el al. 1995).
This method or any other that can support the
construction of an explanation story, could be used within
this architecture.

The Expert System Agent
The underlying premise behind this work, is that the
specified architecture could be applied to expert systems
that are yet to be constructed, as well as already built ones.
However, in the second case, special consideration must
be taken for the agentification of such a system.
Agentification of the expert system could be achieved in
cases where it is possible to separate the HCI component
from the problem solving component, and build a wrapper
that takes as input the KQML messages then translates
them to commands understandable by the expert system.
To prevent semantic mismatches across the various
agents and the expert system it is important to adhere to
ontological specifications or to implement an ontological
server .

The Architectural Testbed
In order to test the applicability and effectiveness of the
proposed framework, some development tools that
provide a simplified, experimental architecture, were
implemented in Java and Prolog. Network communication
was achieved through the use of TCP/IP sockets. Due to
the experimental nature of the implemented architecture,
actual KQML messages were not implemented, but
instead, very simple protocols were used. Modifying the
prototype to communicate using KQML should not be a
problem since it only involves modification of the
communication parsers and message senders.

For the development of an interface agent, a complete
Java template which defines the agent's behavior and
essential functionality, was constructed. To facilitate the
construction of the expert’s system communication model,
a Java HC library with a data types dialog interface
support, was also implemented. For integrating an
existing expert system with the system, a Prolog mediator
was built for expert systems developed in KROL (Rafea
and Shaalan, 1998). Two components were developed to
support the development of the terminology server. The
first is a Prolog inference engine that accepts quires for
terms, and using a simple KB, returns a pointer to an
HTML file that explains that terms. The second is a Java
tool, that allows a knowledge engineer to enter terms and
their definitions. It then generates HTML files for each of
the terms, while automatically adding links and cross
references to other terms. This way, as the terms expand
within the application, the developer does not have to
worry about manually maintaining links. The tool also
generates the Prolog representation of terms and their
HTML mapping.

For the development of a “why” agent, a KB template
and an inference engine that is capable of processing that
KB, were developed in Prolog. For the media

management agent, an image manager agent was
implemented in Prolog. It, consists of a reusable search
engine, a domain specific image database mapping
observations to images, and a reusable controller. In
order to support the development of this type of an agent,
an image tool was constructed in Java. For the
construction of a domain justification agent, a KB
template and a "How" inference engine were implemented
in Prolog. The input to the domain oriented justification
agent is a conclusion and instantiated data that led to
that conclusion. This agent tries to create a story in terms
of the inputs. If it succeeds, it returns the explanation text.
If on the other hand it fails, a contradiction is logged.
Since a contradiction will only arise if the expert system’s
knowledge or the explanation knowledge is incorrect, this
duplication of knowledge in two different ways serves to
verify both systems.

Applying the Concepts
In order to demonstrate the applicability of the presented
architecture, it was applied to an expert system for wheat
disease diagnosis. The wheat diseases identification expert
system was built a hierarchical classification problem
solver using KROL(Rafea and Shaalan, 1998).

Examples of entered definitions include long, detailed
versions (Figure 2) or short ones(Figure 3). The
underlined words in both examples indicate that there is a
hyper-link to a definition for the underlined term.

Fungal Diseases
Fungal disease are those caused by fungi. Fungi differ from other
plants in that they have no chlorophyll and thus lack photosynthetic
capability. Instead of manufacturing their own food, fungi absorb
nutrients from either living or dead host tissue. Fungi are dispersed in
many ways: they may be seed borne or soil borne, or they may be
spread by way of wind, water (rain, irrigation water), insects, animals,
and man. Infection by fungal pathogens depends on several factors:
free water on the host plant surface is usually required, the
susceptibility of the host, the density of inoculum, and surrounding
temperature, as well as other environmental factors. While some
fungi attack only one or a few host species, others attack many.
Symptoms and disease development are a function of the host-
parasite interaction. Symptoms may be similar or distinct, depending
on the fungi involved. Positive identification of fungi should therefore
be based on their morphology. Wheat fungal diseases include: Leaf
Rust, Stem Rust, Yellow Rust, Powdery Mildew, Loose Smut and
Common Root Rot.

Figure 2: A detailed definition of a term

It is important to note that why explanations presented
are classified into two classes. First there is the general
class that gives a rather abstract view of why a question is
being asked(Figure 4). Then, there is a specific class of
explanations that clearly states why a question is being
asked in terms of disorders to which the given question
contributes in either confirming or ruling out(Figure 5)

Figure 3: An example of a short definition of a term

Question: Are there any pustule on the leaves?
By knowing whether or not you have pustules, I will be able to
investigate the presence of rust diseases, or rule them out
completely.

Figure 4: An example of a general Why explanation

For either of these classes, dependencies between the
current observation and already questioned observations,
may exist. Figure 6, shows an example of a dependency
between a root and leaf observation.

Question: Has the entire inflorescence except the rachis, been
replaced by smut spores?
Since you have stated that the spikes are abnormal, I am trying to see
whether or not this abnormality is caused by loose smut which is
characterized by the observation presented in this question.

Figure 5: An example of a specific Why explanation

Question: Did the root, and basal culm tissues change to dark
brown or black ?
You have stated that the leaves are yellow in color. I am trying to see
whether this discoloration is caused by a root related
disorder(common root rot) which stops nutrition from reaching the
leaves thus causing the observed discoloration.

Figure 6: An example of a Why dependency

As stated, the main aim of the justification agent is to
construct a plausible domain oriented justification story
given the expert system’s conclusion and its inputs. In the
implementation prototype, cases where an explanation
was possible for each disorder, were prepared and
represented in a KB as specified. In order to show the
quality of generated justifications as compared to those
that would be generated by some of the other explanation
systems, possible justifications for a disorder called loose
smut are presented. Figure 7, Figure 8, and , Figure 9
show the justifications that would have been produced by
Mycin like Systems (Buchanan and Shortliffe 1984), the
generic task approach (Chandrasekran 1996) and the
implemented justification agent, respectively.

User: How was the diagnosis "Loose smut" reached?
System: This follows from Rule n:
 IF growth_stage = Post Ear Emergence AND
 IF Abn_plant_part = Spike AND
 IF inflorscenceRelpacedBySmut AND ….

THEN Loose smut
 growth_stage = Post Ear Emergence was given by the user.
 Abn_plant_part = Spike was given by the user.
 inflorescenceRelpacedBySmut was given by the user

Figure 7: Justification from a Mycin Like System

The agent’s generated justification shows considerable
improvements in terms of understandability compared to
Mycin like systems and Generic task generated

Hypha
A tubular, threadlike filament of fungal mycelium.
(pl. hyphae)

explanations. Compared to reconstructive explanation
(Wick el al, 1995), the generated explanations are quite
similar, but in addition, in the proposed system’s
explanation, hyperlinks from within the explanation text
appears which farther adds to the enhancement of
understandability of the generated text. It is important to
note that for both this agent and the why agent, hyper-
links in the generated HTML change automatically as the
system’s knowledge about new terms increases.

User: How was the diagnosis "Loose Smut" reached ?
System:
 • Post Ear Emergence is true because

 • growth_stage is Post Ear Emergence
 • Spike is Abnormal because,

 • Abn_plant_part is Spike
 • LoosDis is true because,

 • inflorescenceRelpacedBySmut is true
Loose Smut has plausibility value +3 because,
 • Post Ear Emergence is true
 • Spike is Abnormal
 • LoosDis is true

Figure 8: Justification from a Generic task System

User: How was the diagnosis “Loose Smut” reached ?
System: I attempted to find out the cause of the spike’s abnormality.
Based on the fact that the entire inflorescence, except the rachis, is
replaced by masses of smut I was able to deduce immediately that
you have Loose Smut which causes this unique observation. You
see, loose smut is a seed borne disease. The loose smut fungus
survives as a dormant mycelium within the embryo of the seed. When
the infected seed germinates, the fungus is activated and grows as
the plant grows eventually reaching the head where it causes all the
head tissue except the rachis, to be converted into fungus spores.

Figure 9: justification from the implemented System

Evaluation
Three major characteristics were identified for the
analysis of an explanation module. These are fidelity,
understandability, sufficiency (Swartout, and Moore
1993). We add to these, the factor of reusability. Fidelity,
in the case of “why” explanations, will be maintained as
long as the knowledge engineer's documentation of the
experts system's behavior is accurate. However, this is not
the case with conclusion justifications since they do not
necessarily convey a reflection of actual expert system's
actions nor are they a true representation of it’s line of
reasoning. Since fidelity is more important to knowledge
engineers and domain experts than to end users, lack of
fidelity is not a major limitation given that the proposed
system is targeted at end users. Understandability within
the proposed system is enhanced in a number of ways.
First the user is given the facility to inquire about any
term he does not understand. Second, the use of hypertext
within the generated explanations for justifications or
"why" type explanations, allows a user to get into deeper

levels of details without having to be concerned with his
actual knowledge level, since he is capable of
determining and guiding his own explanation
requirements. Finally, the provision of a facility that
retrieves images while taking into account the user's
inputs history, eliminates the confusion factor associated
with presenting a user with images that do not completely
represent his inputs and serves a clarification aid in cases
where textual descriptions are not enough.

The sufficiency requirement was satisfied on two levels.
The first of these is illustrated by the ability to present
conclusion justifications based on domain knowledge
rather than on a simple trace of the system's reasoning.
This implies that the system had sufficient extra domain
knowledge which enabled it to justify a conclusion. The
second, is embodied by the system’s ability to provide the
user with means by which he/she could ask about any
subject in the problem domain regardless to its relevancy
to problem solving, at any point in time.

Re-usability of explanation on the knowledge level was
achieved in several of the implemented agents. The most
obvious of these, are the terminology server and media
manager agents. Either of these agents could be used by
applications that address wheat management aspects.
These could be other expert systems, tutoring systems, or
standalone applications that provide an interface for these
agent services. The re-use of the justification agent is
more restrictive since the services it provides confirm to
special requirements usually needed by expert system like
applications. However, it could be reused across expert
systems that diagnose the same disorders regardless of the
internal representation of these systems provided that
these systems use the same ontology. Since the “why”
agent is usually built specifically for a certain expert
system, the possibility of reusing it with different
applications is significantly low.

Overall Results and Future Work
By adopting, the presented model, various advantages
capitalized:
• The user can navigate through rich domain knowledge

and is offered justifications that clarify the expert
system’s conclusion in clear arguments obtained from
knowledge about the addressed domain.

• Because, the proposed architecture does not constrain
the development of the explanation system to the
development phase of the expert system, explanation
systems could be constructed ad hoc for legacy systems.

• Re-usability on the knowledge level is achieved among a
number of agents.

• Through the distribution of responsibilities, modularity
is achieved and complexity is reduced. Also, because

each of the agents views the others as black boxes with a
well defined communication interface, agents can evolve
over time without there being a need to make any
changes to their client agents/applications.

• By distributing the different agents, bottlenecks arising
from a number of client applications attempting to
communicate with a single server that provides an
aggregate of these services, are reduced and parallelism
is enhanced.

• Due to the openness and scalability of the presented
architecture, new services, such as “why not”, “what if”,
etc., could continue to be added. Also, the followed
explanation strategy, could be completely altered with
absolutely no change to the different agents except the
UI agent.

Another byproduct of the experiments conducted to carry
out this research was a development of a methodology for
making legacy expert systems available on the Internet.
The methodology is applicable to any expert system
provided the observations it uses in its reasoning process
are stored in a database that could be modified to allow
assertion of data values before the initiation of a
reasoning process.

The work presented in this paper opens up lots of
avenues for future research. The following are some of the
points that the authors thinks are worth investigating:
• The development of justification modules that could be

used for planning/design, scheduling, and other types of
problems. Further work should also be conducted for
enhancing the diagnostic explanation agent introduced.

• The enlargement of the explanation scope such that it
would encompass the needs of knowledge engineers and
domain expert. In that case, further research should be
conducted to configure explanation presentation
according to the type of user and his/her explanation
interests.

• Investigation of means of adding other explanation
components to cover “why not”, and “what if”, types of
questions, would further contribute to the enhancement
and effect of explanation

• Carrying out experiments to show how much users learn
from the provided explanations, would further clarify
the impact of the adopted strategy for the purpose of
education.

• A long standing argument against the use of
connectionist approaches such as neural networks, for
developing expert systems, is the inability of these
systems to explain their behavior. Using the explanation
architecture presented in this thesis could make such
systems explainable to end users. Also, since the
justification agent presented can use as little as just the
essential observations for the establishment of a given

conclusion, the agent could act as a verification layer for
the conclusions of such a system. An investigation of the
validity of this argument might prove to be worth while.

Acknowledgments
The authors wish to thank Dr. Mahmoud Rafea for his
significant contribution to this work.

References
Buchanan B. G., and Shortliffe E. H. eds. 1984. Rule-
Based Expert Systems. Reading, Mass: Addison-Wesley.

Chandrasekran, B. 1986. Generic Tasks in Knowledge-
Based Reasoning: High-Level Building Blocks for Expert
System Design. IEEE Expert 1(3) 1986, pp. 23-30.

Finin, T., Fritzson, R., Mckay, D., and McEntire, R.
1994. KQML- A Language and Protocol for Knowledge
and Information Exchange. University of Maryland,
UMBC, Technical Report CS-94-02.

Ford, K. M., Coffey, J. W., Cañas A., and Turner C., W.
1996. Diagnosis and Explanation by a Nuclear Cardiology
Expert System. International Journal of Experts Systems,
9(4): 499-506.

J. M. Prescott el al. Wheat Diseases and Pests: a guide
for field identification. International Maize And Wheat
Improvement Center, Lisboa, Mexico.

Rafea, M. and Shaalan, K. 1998. KROL: A Knowledge
Representation Language on Top of Prolog. Expert
Systems with Applications 14 4).

Schreiber, A. T., Wielinga, B. J., and Breuker, J. A. 1993.
KADS: A Principled Approach to Knowledge-Based
System Development. London: Academic Press.

Swartout, W. R and Moore J. D. 1993. Explanation in
Second Generation Expert Systems. In Second Generation
Expert Systems. Eds J. M David, J. P. Krivine, and R.
Simmons, pp. 543-585.

Swartout, W. R., Paris C. L., and Moore J. D. 1992.
Design For Explainable Expert Systems. IEEE Expert
6(3): 57-64.

Wick M. R., Dutta, P., Wineinger, T., and Conner, J.
1995. Reconstructive Explanation: A Case Study in
Integral Calculus, Expert Systems with Applications, 8(4):
527-531.

