
A Distributed Environment for Development and Deployment of Ontologies of Knowledge-
Based Systems

Sameh El-Ansary , Ahmed Rafea
Computer Science Deaprtment

The American University in Cairo (AUC),
113 Kasr El-Aini Street

Cairo, Egypt
sansary@sics.se, rafea@aucegypt.edu

Abstract:

Creating ontologies for scientific, natural or
business domains is a process by itself while the
development of knowledge bases that depend on those
ontologies is another important process. Nevertheless,
the research focus in the field of ontology is on the first
process, namely, creating ontologies. The aim of the
presented research is to improve the second process,
namely, building knowledge bases that depend on
well-established ontologies. Practically, the aim of the
work is to enhance the process of knowledge-based
systems construction by providing a common
integrated environment for the ontologies development
and deployment for knowledge based systems. The
environment covers many aspects related to the
content, the editing facilities and exchange of
knowledge. The eXtensible Markup Language (XML)
was chosen as the medium for persisting and
exchanging knowledge.

1 INTRODUCTION

The presented research work focuses on enhancing
the process of knowledge-based systems construction
by providing an integrated ontology development and
deployment environment for knowledge based
systems. The environment covers many aspects related
to the content, the editing facilities and exchange of
knowledge. The eXtensible Markup Language (XML)
was chosen as the medium for persisting and
exchanging knowledge, as it became a de facto
standard for information exchange in many disciplines.

An ontology provides a set of concepts and terms
for describing some domain, while a knowledge base
uses those terms to represent what is true about a real
or hypothetical world [1]. For example, a common
ontology defines a vocabulary with which queries and
assertions could be exchanged among a collection of
knowledge-based systems, which share vocabulary in a
coherent and consistent manner. Despite of that, they
do not necessarily need to share the same knowledge
base [2].

The main motivation behind the presented research
work was the problems that were faced during
constructing knowledge bases in the Central

Laboratory for Agricultural Expert Systems (CLAES).
Several agricultural expert systems have been
developed using commonKADS methodology [3],[4].
These expert systems have the same basic ontology.
However, we found difficulty in sharing or reusing this
ontology because parallel efforts were initiated to build
different expert systems and hence we ended up with
ontologies for each of these expert systems with
inconsistent terminology. So, the first problem we
were facing was what ontology we should use when we
start building a new expert system and what to do if we
want to integrate existing expert system in one
package. Another problem faced was the lack of
collaboration during developing the expert systems as
each developer is adding, modifying and/or deleting in
the ontology individually. A third problem was that we
are using several knowledge representation languages
[5] and hence how to integrate two expert systems
developed using different languages.

The presented research work concentrates on
making use of ontology repositories in contributing to
the solution of the previous problems Thus, the
research goal could be summarized as follows:
Improving the performance of Knowledge Bases
construction via an XML-based distributed
environment for Ontology development and
deployment.

2 RELATED WORK

The most relevant area of research to the presented
work is the field of ontological engineering, which is
primarily concerned with the methodology or the
process of building ontologies [6]. The ontology
editing environments and the ontology modeling in
particular are two aspects that represent the focus of
the presented work in the field of ontological
engineering. For the ontology editing environments,
there are numerous systems of varying degrees of
complexity. Some of those are: The Ontolingua system
[7] of Stanford University. It provides a repository of
ontologies and designed to allow several users to
cooperate in developing an ontology collaboratively.
Ontolinuga is also the name of an ontology modeling
language. WebOnto [8] is another collaborative tool
for browsing, creation and editing of ontologies.

Several other non-collaborative environments exist
such as Protégé [9] and ODE (Ontology Design
Environment) [10]. For the ontology modeling
languages, there are three general trends [5]: The first
trend is to used well-established knowledge
representation languages and extend them if needed
and this is the most widely used trend. Examples of
that trend include: Ontolinuga [7], KIF [11],[12],
Loom [13], [14] Cycl [15] and Flogic [16]. The
second trend is to use mark-up languages as a format
for representing knowledge. Examples of that trend
include: XOL [17], OML [18], Onto-RDF [19], OIL
[20]. The reader is referred to [6] for a survey of
existing research in the field of ontology.

3 THE PRESENTED APPROACH

The research approach in the presented work draws
a clear line between ontology development and
ontology deployment. Thus, the strategy of the
presented environment is to continue having an
ontology-editing environment like Ontolingua and
WebOnto and add to this environment a second aspect,
which is Ontology deployment. For Ontology
modelling, XML was used to encode ontological
entities.

The adopted approach solves the problems listed in
section 1. Having a common ontology for various
knowledge-based systems provides a vehicle for
constructing consistent knowledge bases in terms of
terminology and design. This also contributes in
decreasing the repeated efforts exerted to build
knowledge bases from scratch. In the proposed
research, we propose an ontology server for providing
the common ontologies in a distributed environment.
The intended form of representation for the repository
of ontologies is XML structures. Due to the structural
nature of XML and its high interchangeability,
representing ontologies in XML would provide
syntactical standardization well suited for ontologies
cross-language exchange when there is an agreement
on their intended semantics. The research work
provides a protocol based on XML also to act as an
API for any other software components that need to
work with the repository of ontologies. The protocol
supports querying the ontology and taking portions or
complete snapshots of ontologies residing on the
server.

 Ontology translation was a straightforward
outcome of the approach of adopting the XML as a
storage medium. XML parsing is achieved via the
DOM API, which is available in mostly all
programming languages , thus, translating to other
representation languages is a relatively easier process.

4 ENVIRONMENT ARCHITECTURE

As illustrated in figure 1, the environment consists
of a central server, where both ontologies and
knowledge bases reside, in addition to a number of
clients that are used by the environment users. The
central server serves two types of users: the ontology
engineers and the knowledge engineers, each working
on his corresponding side of the server. The side of the
server that the ontology engineers interact with is
called the development side. On the other hand, the
knowledge engineers interact with the deployment side.
The word “side” in that context means a group of
services offered to clients of the server.

Ontology Editor 2Ontology Editor 1

Ontologies
Reposiroty

KB1 KB2 KB4KB3

Group1

KB Editor1

KB Editor 3

KB Editor2

Group2

KB Editor1

KB Editor 3

KB Editor2

C
e

n
tr

a
l

S
e

rv
e

r

Figure 1: Architectural Overview of the Presented Environment.

4.1 Ontology & Knowledge Bases Server

The Ontology and Knowledge Bases Server
(OKBS) is the core of the presented environment. It
provides the development and deployment services to
its clients over the network. The development side is a
self-contained system that could be used independently
like Ontolingua [7] or WebOnto [8]. The advantage of
the environment is that the development side is
integrated with a deployment side in order to enhance
the process of constructing knowledge bases using the
ontologies developed on the development side. From
another perspective, the deployment of ontologies is
the first phase in developing knowledge bases.

 The OKBS comprises various subsystems that
work in coordination with each other to provide the
services offered by the OKBS. The following figure
depicts those different subsystems and lays out the
general scheme of interaction between them.

Ontology Subsystem

Dispatcher

Users &
Groups
Mgmt.

Subsystem

Knowledge
Base

Subsystem

Concepts
Manip.

Subsystem

Schemas
Manip.

Subsystem

Instances
Manip.Subs

ystem

Network Communication Subsystem

Synch.

Collab.
&

Logging
Subsytem

Figure 2: Architecture of the Ontology and Knowledge Bases Server

The users and groups management subsystem is
responsible for authenticating the clients of the OKBS
and authorizing them to the appropriate resources. It
manages its activities through a database of users and
groups. In order to standardize the data persistence
form in the OKBS, this database is also encoded in
XML. The network communication subsystem is
responsible for making the clients of the OKBS able to
communicate with the server asking for its services.
This subsystem depends on an XML-based protocol
that is inspired by the notion of XML-RPC [21]. The
design of the protocol is discussed separately in section
4.4. All the incoming requests from the client are
forwarded to the dispatcher and any targeted subsystem
could respond back via the network communication
subsystem. This subsystem keeps a list of all clients
who are working online and this list is used in
broadcasting messages to all clients. The dispatcher
subsystem is responsible for receiving incoming
requests from the network communication subsystem
and deciding which subsystem is the target of the
request. This subsystem also guarantees that all the
requests are serialized and do not interleave if
necessary. Thus, all the clients requests to access
shared resources is synchronized by this subsystem.
The ontology subsystem is the core of the
development side because it offers all the services for
editing the ontology repository. Once the OKBS is
launched, this subsystem loads the ontology repository
from the persistent format and becomes ready for
processing ontology editing requests. The knowledge
base subsystem is responsible for all the operations
that target the knowledge base. Multiple instances of
that subsystem are created for each loaded knowledge
base. This subsystem is the core of the deployment side
and an instance of it is created on-demand when the
first knowledge engineer requests creating/editing a
particular knowledge base that is not already loaded.
The collaboration & logging subsystem role is to
make all the online users of the system aware of the
other online peers of the OKBS and the transactions

taking place at the OKBS. The subsystem also serves
in transaction logging because it persists all the
transaction information that the OKBS broadcasts to
the online users in transaction logs. The transaction
logs record also unbroadcasted information such as
login failures and internal transaction errors.

4.2 Ontology Development Clients

In the development side, we find the first type of
clients for the ontology server, namely, ontology
editors. An ontology editor is a software component
used by the ontology engineer. The ontology engineer
is a knowledge engineer with a long experience in
knowledge modeling since entities in the ontology are
static facts that should be designed once and the
designer should have in mind all the aspects needed to
model the domain of discourse. The environment
provides on this side three main software components:
(1) The Concepts editor, (2) The Relation Schema
Editor, (3) The Relation Instances Editor.

4.2.1 Concepts Editor
The Concepts Editor is a facility for the ontology

engineer to edit the first component of the ontology,
namely, the hierarchy of concepts. In some
environments, where ontology is only a taxonomy of
concepts, this is considered the main ontology editing
facility. The Concept editor provides for the ontology
engineers services such as: Loading the Concepts’
hierarchy, Showing the details of a certain concept,
Showing the facets of a certain property, Adding a
concept, Deleting a concept, Adding a property,
Deleting a property, Editing a property, etc..

4.2.2 The Relation Schema editor
The relation schema editor is one of the

contributions of this research work and its goal is to
give a facility for the ontology engineer by which
he/she can define an abstraction of relations that are
then instantiated later. This server does many
transparent tasks to ensure integrity of and prevent
redundancy in the ontology. The relation schema editor
provides for the ontology engineers services such as:
Adding relation schemas, deleting relation schemas,
finding relation Schemas, etc. The idea of relation
schema is not new, KADS methodology [3] has a
similar definition for relation schema, but using it in
the ontology development environment to enhance the
redundancy checking of an ontology is a contribution
of this research.

4.2.3 The Relation Instance editor
The relation schema editor is the extension of the

relation schema editor, its goal is to give a facility for
the ontology engineer by which he/she can instantiate
relations schemas that were previously created. This
editor does many transparent tasks to ensure integrity
of and prevent redundancy in the ontology. The

relation instance editor provides the ontology services
such as: Adding relation instances, deleting relation
instances, etc.. No instance can be created if it does not
belong to a relation schema. This will increase the
efficiency of checking the redundancy in the ontology

4.3 Ontology Deployment Clients

In the deployment side, we find the second type
clients who are deploying the ontologies in building
knowledge bases. The persons responsible for
operating this side are the knowledge engineers. The
facilities provided in that side could be described more
by being “picking” facilities rather than “editing”
facilities. This side of the environment avails for the
knowledge engineer a concepts’ picker, a relation
schema picker and a knowledge-base snapshooter that
he/she can use to build knowledge bases. Before the
knowledge engineer uses the picking facilities, he
should select a knowledge base to work with that was
already created by the administrator and that he has the
privilege to edit it. This picking facility is similar to
SENSUS [22] with one exception. In SENSUS, the
developer could upload the ontology after changing it.
In our tool, it is only permitted to download the
ontology to use it in the knowledge base but it is not
allowed to upload it again. Any modification to the
ontology must be done by the ontology
administrator(s).

4.3.1 Concepts Picker
The concept picker provides the knowledge

engineer with the facility of extracting a subset of
concepts from the ontology to formulate the
foundations of a new knowledge base. The hierarchy
constructed with this concepts’ picker is not the one
that is going to be used in a final knowledge base
because a knowledge base would typically include
other non-ontological information. That is why the
concepts’ picker is used to formulate just the
“foundations” or “the nucleus ” of the knowledge base,
i.e. the ontological aspects of the concepts’ hierarchy.

4.3.2 Relation Schema Picker
The relation schema picker provides the knowledge

engineer with the facility of extracting a subset of
relation schemas from the ontology. The relation
schemas selected are restricted to concepts that were
previously picked in the knowledge base, i.e. a relation
cannot be picked in a knowledge base if one of the
concepts in its domain or range is not picked in that
knowledge base. Once a schema is picked, all of its
instances are picked with it as well.

4.3.3 Knowledge Base Snapshooter
The Knowledge Base Snapshooter is a facility for

obtaining a snapshot of a knowledge base as a physical
file. In the proposed environment, the knowledge base
is stored in a primary knowledge base information file

and then the knowledge base physical file is generated
from it. The file that is obtained from the snapshooter
could then be translated to other formats and that is
basically rendered to that it is encoded in XML so,
there are no parsing efforts in translation.

4.4 The XML-based Communication Protocol

The development and deployment environment is
collaborative and distributed. Consequently, the design
of a communication protocol is crucial to accomplish
the goals of the system. Given the different software
components in the system, certain requirements need to
be satisfied.

4.4.1 Requirements of the Protocol
Power of Expression: The used protocol should be
capable of handling complex data such as hierarchies
of concepts and relation schemas. In addition, in many
cases where knowledge is queried, a number of queries
and their results need to be passed between the
different software components. Moreover, other
administrative messages need to be sent such as: login
messages, chat messages, messages indicating the
current logged on users, and project management
messages for creating and manipulating knowledge
base projects. Thus, the communication protocol is
required to have enough expression capabilities to
convey the various functional needs of data exchange
between the server and the different clients.
Efficiency: Efficiency of communication is another
functional requirement of the protocol since many
users are collaborating on ontology/knowledge base
editing, thus, an acceptable response time should be
provided for those collaborators. Collaboration could
occur in a LAN-based environment but WAN access
also should be supported, as is the case in most of the
already-existing ontology servers.
Openness: Ontology servers have the special property
of the heterogeneity of their clients. This property
necessitates the openness of the communication
protocol. That is to say, no commitment to
implementation languages, platforms or any other
commitments that violate the heterogeneity of the
collaborating clients should be enforced.

4.4.2 Design of the protocol
Given that the ontology server uses XML to encode

different knowledge components, thus it is convenient
to adopt a protocol that is based on XML. The idea of
XML-based communication is not novel and is
implemented in many systems. The protocol
implemented in the presented work is inspired by the
idea of XML-RPC [21]. One of the most mature
implementation of that trend is the Simple Object
Access Protocol [23].

 The following summarizes the features of the
protocol:

§ All communication between the server and his
clients is abstracted as remote calls to the other party’s
procedures.

§ The calls are characterized by having variable-
length number of arguments where the arguments are
un-typed.

§ For the communicating parties, each has a
communication subsystem by which it can call the
other party’s procedure without being aware of the
encoding details. A simple function call could be
something like:
 Login(“Sameh”,”x123jk”)
Where “Login” is the name of the procedure, “sameh”
and “x123jk” are the arguments for the procedure.

§ The communication subsystem encodes (or rather
marshals) messages in an XML encoding that is ready
to be sent to the other party. The following is a
synopsis for an encoding of a simple procedure call:

<MSG>
 <CMD>Login</CMD>
 <ARG>Sameh</ARG>
 <ARG>x123jk</ARG>
 <MSG>

The <MSG> tag comprises the remote call and the first
element in it is the name of the procedure to be called
which is the content of the <CMD> tag, the following
elements represent a list of arguments each comprised
in an <ARG> tag.

The protocol is built on standard TCP/IP sockets in
a three-tiered structure:

Figure 3: Three-Tiered structure of the comm. Protocol

Despite the simplicity of the protocol, it satisfies
the functional requirements of expression, efficiency
and openness.

§ The fact that the arguments are un-typed and that
they are only textual strings may seem to contradict
with the power-of-expression requirement. To the
contrary, this fact is actually the empowering feature of
the protocol because the contents of the XML <ARG>
tag could recursively contain XML-tagged structures.
Thus, if there are any data structures that are already
encoded in XML and need to be exchanged over a
network, which is the case in the presented work, then
there is no limit to the complexity of the arguments of
the procedure call as long as they are XML-encoded.

§ Concerning efficiency, the protocol adds a very
small overhead, which is the tags for XML encoding.

§ The Openness requirement is also satisfied
because the protocol is text-based and could be
implemented easily in any implementation language on
any platform.

5 ONTOLOGY MODELLING

The presented research work adopts the broader
sense of ontology of not just being a taxonomy of
concepts but also it considers other entities. Thus, the
main three components that are used in ontology are:
The concepts’ hierarchy, the relation schemas and the
relation instances. The presented modeling for the
concepts’ hierarchy is similar to XOL [17],
nevertheless relation/function encoding is not
supported in XOL.

5.1 Concepts Hierarchy

This is a traditional hierarchy of concepts related
mostly by the “IS-A” relationship. A concept
represents a logical or physical entity in the domain of
knowledge. The analysis of each domain could change
the validity of whether a certain entity is a concept or
not. However, as mentioned earlier, ontology
comprises elements of knowledge that do not depend
on personal opinions or perspectives. Thus, deciding
whether a certain entity is a concept or not should be a
decision taken by experienced ontology engineers in
coordination with domain experts in order for a
consensus to exist on the analysis of the domain to be
represented in the hierarchy. Each Concept has the
following elements: Name, Description, Super-
Concept, Property list. Each property has some meta-
attributes that describe it and they are called facets.
The following is a list of selected facets for the
properties of the concepts: Name, Description , Type,
Cardinality, Legal Values, Minimum & Maximum.
Figure 4 depicts a snapshot of the concept editor.

5.2 Relation Schemas

Normally relations are entered directly into
ontologies without classification. In the proposed
ontology model, relation schemas are provided first.
They act as templates for creating relations. This
feature aims at providing a way for checking
redundancy of relations and ensuring more reusability
and maintenance functionalities. A relation represents a
type of interaction between concepts. It is analogous to
a mathematical relation and the terms “Domain” and
“Range” of a relation are borrowed. Thus, a relation
schema as an ontology component is composed of
three things: Name, Domain & Range, where Name
denotes an identifier describing the connection
between the concepts found in the Domain and those
in the Range.

Ontology/KB Manip. & Query

Simple XML-RPC

Standard TCP/IP Sockets

Figure 4: The Concepts Editor Main GUI Figure 5: Relation Schemas Editor

For example a relation in the agricultural domain could
have the name determine, the domain is the soil PH,
and the water salinity , and the range is the plantation
variety and plantation date .

The following points summarize the features of a
relation schema:

§ The relation schema must have a unique identifier.

§ The relation schema name is not unique and no
relation can be created without having a name.

§ Each entry in the domain and the range is of the
form “Concept.Property” and no concepts can be found
in an entry without specifying a property.

§ Each relation schema must have at least one entry
in the domain and at least one entry in the range.

§ No two-relation schemas can share both the same
domain and the same range. , e.g.:

R1:C1.P1 --> C2.P2 & R2:C1.P1--> C2.P2 is
illegal

Where C1 and C are concepts and P1 and P2 are
properties in C1 and C2 respectively

§ A “Concept.Property” entry cannot exist in both
the domain and the range of the same relation unless
“Property” is different, e.g.:

R1:C1.P1xC2.P2 --> C1.P1 is illegal
R1:C1.P1xC2.P2 --> C1.P2 is legal

§ A “Concept.Property” entry can be repeated in the
domain if “Property” is different among all entries,
e.g.:

R1:C1.P1xC1.P1 --> C3.P3 is illegal
R1:C1.P1xC1.P2--> C3.P3 is legal

§ A “Concept.Property” entry cannot be repeated in
the range unless all properties of the range belong to
the same “Concept”, e.g.:

R1:C1.P1--> C3.P1 x C3.P1 is illegal
R1:C1.P1--> C3.P1 x C3.P2 is legal

Figure 5 depicts a snapshot of the relation schema
editor.

5.3 RELATION INSTANCES

A relation instance is an element instantiated from
a certain relation schema. The actual logic of the
relation is encapsulated inside it. Thus, many instances
could be sharing the same relation schema but the
content of the relation itself is different. To illustrate
this, consider the relation schema soil PH and Water
Salinity determines Plantation Variety and
Plantation Date it can have many instances as shown
in table-1 :

Thus, the instance has the extra component of the
value for each property in the relation schema. Notice
also that there is also an operator between the property
and its value and this operator is mostly a relational
operator (=, <, >, !=,..) or a set operator (in, not in,
….), the relational operators could be combined
together to specify ranges

Relation Name: Determine
Domain Range

1st Instance
Concept Property Value Concept Property Value
Soil PH =5 Plantation Variety Orange
Water Salinity <20% Plantation Date Spring

2nd Instance
Soil PH >5 Plantation Variety Bean
Water Salinity =10% Plantation Date Winter

…
…

Table 1: Instances of a Relation schema

As illustrated in Figure 6, we have the <INSTANCE>
element that comprises the details of the instance. This
element has one attribute, which is the SCHEMA_ID
that refers to the relation schema that this instance is
instantiated from. The details of the instance contain
two types of elements: <DOMAIN> and <RANGE>
elements and those correspond in order and number to
the domain entries of the relation schema respectively.
Each one of those elements has the OPERATOR
attribute that specifies which relational or set operation
is needed In addition, they comprise the <VALUE>
element that includes the value of the property. This
element is repeated in case the property has a
cardinality of multiple.

<INSTANCE SCHEMA_ID=”3587” >
 <DOMAIN OPERATOR = ”=” >
 <VALUE>5 </VALUE>
 </DOMAIN>

<DOMAIN OPERATOR = ”<” >
 <VALUE>0.02 </VALUE>
 </RANGE>

<RANGE OPERATOR = ”=” >
 <VALUE>Orange </VALUE>
 </RANGE>

<RANGE OPERATOR = ”<” >
 <VALUE>Spring</VALUE>
 </RANGE>
 </INSTANCE>

Figure 6: Example XML Encoding of a Relation Schema Instance

6 CONCLUSION

In the presented research work, we concentrated on
improving the knowledge bases construction process
via having a common environment where ontology is
developed and then deployed to build knowledge
bases. In this environment, we introduced a new
knowledge encoding based on the eXtensible Markup
Language (XML) that was used as the medium for
knowledge persistence and exchange. The environment
was designed to allow the collaboration of knowledge
and ontology engineers in a distributed fashion.

The ontology development environment is similar
in principle to previously developed environment but is

simpler as only needed constructs in the agriculture
domain are addressed. The idea of picking an
ontological element to be included in the knowledge
base is similar to SENSUS environment, but in our
environment uploading a modified ontology on the
client side is not permitted. In SENSUS [22], it is
permitted to upload a modified environment to the
central ontology after being checked for consistency.
It should be mentioned in this regard that our main
intention was to build a common ontology for
knowledge engineers such that they can use it when
building a new knowledge based system or modify an
existing one by picking the ontology elements they
want. Once they get the required ontology elements
they can add more knowledge related to their
application. Therefore, using developed ontology tools
available on the Web was not sufficient to satisfy our
goal.

 At this stage of research we could not guarantee
a100% synchronization between the ontology contents
and the knowledge base and this was not our intention.
There is some work here for future research to
synchronize the developed knowledge base with the
ontology. For example, if changes are made to the
ontology and will affect the knowledge base, message
should be sent automatically to the registered
knowledge base and maintenance tool must be
provided on the client side to take necessary action. It
should also be mentioned that if the developed
knowledge bases are to be shared and reused a
knowledge base server is to be built. This server must
include all the developed knowledge bases in a
consistent and integral manner. This is another future
research that may use the same approach used in this
paper but to include the knowledge base primitives as
well and to permit the knowledge base developer to
upload their knowledge bases after being checked for
consistency.

The work presented here is under evaluation in the
Central Laboratory for Agricultural Expert Systems.
An ontology of the cucumber expert system [4] was
uploaded and edited to be considered the unified
ontology. Administrator of this ontology was assigned.
The new expert systems that will be built will use this
unified ontology. In the mean time the different
functionality of the developed environment was tested
especially the translators from XML to KROL [24] and
from KROL to XML and work satisfactorily [5] . The
plan of evaluation is to measure the time saving in
building new expert system by comparing the time the
new expert systems takes and the old ones. Secondly,
we will measure the integration efforts taken to
integrate subsystems of an expert system of one crop
developed using the unified ontology with the
integration effort we are doing now. The comments of

the developers will also be considered for enhancing
the environment.

7 REFERENCES

[1] Swartout, W. T., Austin (1999). “Ontologies.”
IEEE Intelligent Systems & their application 14(1): 18-
19

[2] Gruber, T. R. (1993). “A Translation Approach to
Portable Ontology Specifications.” Knowledge
Acquisition(5): 199-220

[3] Schreiber, A. T. W., B. J.; Hoog, R. de;
Akkermans, J. M.; Velde, W. Van de (1994). “A
principled approach to knowledge-based system
development.” IEEE Expert 9(6): 28-37

[4] Rafea, A. A. E.-A., Sayed; Ibrahim, Iman; Edres,
Soliman; Mahmoud, Mostafa (1995). Experience with
the Development and Deployment of Expert Systems
in Agriculture. IAAI, Canada

[5] El-Ansary, Sameh (2000). “Distibuted development
and deployment of ontologies for knowledge-based
systems” M.Sc. Thesis, The American University in
Cairo, Cairo, Egypt

[6] Gomez-Perez, A. B., V. (1999). Overview of
Knowledge Sharing and Resue Components:
Ontologies and Problem-Solving Methods. IJCAI99'
workshop on Ontologies and Problem-Solving
Methods, Stockholm

[7] Fraquhar, A. F., R.; Rice, J (1997). “The
Ontolingua Server:Tool for Collaborative Ontology
Construction.” IJHCS 46(6): 707-728

[8] Domingue, J. (1998). Tadzebao and WebOnto:
Discussing, Browsing, and Editing Ontologies On
theWeb. Eleventh Workshop on Knowledge
Acquisition, Modeling and Management, KAW'98,
Banff, Canada

[9] Eriksson, H. F., R.; Shahar, Y; Musen, M.A.
(1995). “Task modeling with reusable problem-solving
methods.” Artificial Intelligence 79: 293-326

[10] Fernandez, M. G.-P., A.; Pazos, J.; Pazos, A.
(1999). “Building a Chemical Ontology Using
Methontology and the Ontology Design
Environment,.” IEEE Intelligent Systems & their
application 14(1): 37-46

[11] Gruber, T. R. (1995). “Toward Pricnciples for the
Design of Ontologies Used for Knowledge Sharing.”
International Journal of Human-Computer Studies(43):
907-928

[12] Genesereth, M., Fikes, R (1992). Knowledge
Interchange Format. Technical Report. Computer
Science Department. Stanford University. Logic-92-1

[13] Perez, A. G. B., V. Richard (1999). Overview on
knowledge sharing and reusecomponents: Ontologies
and Problem-Solving methods. IJCAI-99 workshop on
Ontologies and Problem-Solving Methods, Sweden

[14] MacGregor, R. Inside (1991). the LOOM clasifier.
SIGART bulletin. #2(3):70-76..

[15] Cycorp (1999). Features of CycL
(http://www.cyc.com).

[16] Kifer, M., Lausen, G., Wu, J.(1995) Logical
Foundations of Object-Oriented and Frame-Based
Languages. Journal of the ACM.

[17] Karp, P. D. C., Vinay K.; Thomere, Jerome
(1993). An XML-Based Ontology Exchange
Language. Menlo Park, Pangea Systems

[18] Ontologos (1999). The Information Flow
Foundation for Conceptual Knowledge Organization.
Pullman, The Ontology Consortium
(http://www.ontologos.org).

[19] Staab, S. M., A. (2000). Ontology engineering
beyond the modeling of concepts and relations.
ECAI’2000 Workshop on Application of Ontologies
and Problem-Solving Methods, Amesterdam, IOS
Press

[20] Fensel, D. C., M.;Van Harmelen,F.;Horrocks I.
(2000). OIL & UPML: A Unifying Framework for the
Knowledge Web. ECAI’2000 Workshop on
Application of Ontologies and Problem-Solving
Methods, Berlin, IOS Press

[21] XML-RPC (1999). (http://www.xm-rpc.com)

[22] Swartout, B.; Ramesh P.; Knight, K.; Russ,
T.(1997) "Toward distributed use of large-scale
ontologies". Symposium on Ontological Engineering.
American Association for Artificial Intelligence
(AAAI). Stanford (California).Marzo

[23]MICROSOFT(2000).Simple Object Access
Protocol (SOAP)
(http://msdn.microsoft.com/workshop/soap).

[24] Shaalan, K., Rafea, M, &.Rafea, A.(1998),
"KROL: A Knowledge Representation Object
Language on Top of Prolog, Expert Systems with
Applications", An International Journal, Vol. 15, pp.
33-46, Elsevier Science Ltd,

