
TR/CLAES/260/2003.2 1

Design of Verification Tool

For

MiniKSR

By

Dr. Abeer El_Korany

February 2003

TR/CLAES/260/2003.2 2

Table of Contents

Table of Contents ___ 1

1 Structure of the Verification Tool ______________________________________ 3

2 Domain knowledge verification__ 3

2.1 Syntax checker phase ___ 4

2.2 Consistency checker phase_______________________________________ 4

2.2.1 Rule checker module___ 4

2.2.1.1 Algorithm ___ 4

2.2.2 Table checker module__ 5

2.2.2.1 Algorithm ___ 6

2.2.3 Function checker module _____________________________________ 6

2.2.3.1 Algorithm ___ 6

2.2.4 Creating the Domain Layer Table_______________________________ 7

2.2.4.1 Algorithm ___ 7

2.3 Completeness Checker Phase_____________________________________ 8

2.3.1.1 Algorithm ___ 8

2.4 Path checker Phase ___ 9

2.4.1.1 Algorithm __ 10

3 Inference Layer Verification ___ 12

3.1 Creating the inference table. ____________________________________ 12

3.2 Step checker module___ 13

4 KADS layers Verification ___ 14

TR/CLAES/260/2003.2 3

Structure of the Verification Tool

The verification process of KADS-based expert systems can be distinguished into three

main parts:

1.Domain knowledge verification.

During this process, we are focusing on the domain knowledge which contains concepts,

properties, relation between concepts, rule clusters, tables, and mathematical functions.

Most of knowledge base errors will be detected in this part.

2.Inference Layer Verification.

In KADS, an inference layer inconsistency may occur. This happens when an

input/output role of any inference step has a defined input/output knowledge base

components that are not defined in the domain layer. Another inconsistency error occurs

when an inference has a defined input-role that is not produced as output-role of another

inference step.

3.KADS Layers verification.

When applying KADS methodology in knowledge modeling, new types of error are

discovered. Since the three layers that construct the knowledge model are interrelated,

each layer always refers to some parts of another layer. Accordingly, inconsistencies

between layers may arise.

1 Domain knowledge verification

The domain knowledge verification process detects most of the coded KB errors. The

verification process considered here is divided into four phases, according to the type of

errors detected in each phase. They are:

1. Syntax checker phase

2. Consistency checker phase.

3. Check for completeness phase.

4. Path checker phase.

TR/CLAES/260/2003.2 4

1.1 Syntax checker phase

For each of the domain knowledge type (rule clusters, tables, and functions), we have to

detect the syntax error due to typographical mistakes. A parser works on different domain

knowledge components according to its internal representation to ensure that it is written

correctly.

1.2 Consistency checker phase

The consistency checker works on different type of the domain knowledge: rule clusters,

tables, and mathematical functions. For each of these knowledge types, we design

different verification module.

1.2.1 Rule checker module

The main function of the rule checker is detecting consistency error of the rule cluster.

Consistency in the rule cluster of the KB appears as: undefined concept, undefined

property, undefined property values, duplicate rule pairs, conflict rule pairs, and

subsumed rule pairs.

Syntax errors are frequent source of consistency errors. Detecting undefined concept,

undefined property, undefined property values is realized by comparing each concept,

property, and property value used in every rule against their corresponding definitions.

Detecting duplicate, conflict, and subsumed rule pairs are realized by comparing each

rule against every other rule within the same rule cluster.

1.2.1.1 Algorithm

Begin
Get rule cluster R of the KB;
I:=1; N:= number of rules of R;
Con:= get all defined concept in the KB;
While I <= N do
Begin

Get rulei of R;
Ci = get used concept of rulei;
Diff:= Get difference between Ci and Con;
If Diff ≠ Ǿ then

Output error message

TR/CLAES/260/2003.2 5

J:=I+1;
Begin

While j<=n do
Get rulej of R;
Compare rulei with rulej;
J:=j+1;

End
I:=I+1;

End
End

Hint to the implementer:

The comparison process is done be comparing each premise of the rule rulei with the

premises of rulej in both the condition and action part. Three different flags are used to

identify the result of the comparison. Same (S) is assigned to 1 when we found the same

concept-property-value of rulei in rulej . If we found the same concept-property of rulei

but with different values in rulej then check whether this pair of type multiple then set D

(different=1) or single set C(conflict=1). When this pair is not found set D(different=1).

The result of the comparison process is calculated according to the following table:

Premise Action

S C D S C D

Result

1 0 0 1 0 0 Duplicate

1 0 1 1 0 0 Subsumed

1 0 0 1 0 1 subsumed

1 1 0 1 0 0 subsumed

1 0 0 1 1 0 subsumed

1 0 0 1 1 0 conflict

1 0 0 0 1 0 conflict

1.2.2 Table checker module

The main function of the table checker is detecting consistency error of the table.

Consistency in the table of the KB appears as: undefined concept, undefined property,

undefined property values, duplicate table rows, and conflict table rows.

TR/CLAES/260/2003.2 6

1.2.2.1 Algorithm

Begin
Get table T of the KB;
H:= get table header;
I:=1; N:= number of concept-property of H;
J:=1; Len:= Number of rows of T;
Con:= get all defined concept in the KB;
While I <= n do
Begin
 Ci =concept-property of H

Get difference between Ci and Con;
i:=I+1;

End
While j <= Len do
Begin
 rowj =get row of T;

check possible values of rowj;
k:=J+1;
Begin

While k<=n do
get rowk of T
Compare rowj with rowk;
k:=k+1;

End
j:=j+1;

End
End

1.2.3 Function checker module

The main function of the function checker is detecting consistency error of the function.

Consistency in the function of the KB appears as: undefined concept, undefined property.

Moreover, the function input/output concept-property should be only of type integer or

real.

1.2.3.1 Algorithm

Begin
Get Function F of the KB;
Con:= get all defined concept in the KB;
CF = get used concept of F;
N:= Number of Input/output concept of F;
While I <= n do

TR/CLAES/260/2003.2 7

Begin
Find out if CF[i] is defined in KB;
Get type of CF[i];
If type of CF[i] # real or integer then

Output error message “ incorrect concept-property type”;
I:=I+1;

End
End

1.2.4 Creating the Domain Layer Table

Another function of the consistency checker phase is to create the domain table that is

used to support the subsequent verification processes. This table contains the needed

information about the use of every concept-property pairs in the domain layer. The basic

idea behind constructing this table is to accelerate searching for any defined concept-

property pair used in the domain layer which is heavily used in subsequent phases. This

table consists of the following fields:

Relation name: The name of the domain layer component defined in the KB.

Relation type: The type of the domain layer component (rule cluster, table, and

function).

Input property: The names of concept-property pairs used in the input part of the

domain layer component.

Output property: The names of concept-property pairs used in the output part of domain

layer component.

1.2.4.1 Algorithm

Begin

Get all defined rule clusters Rs of the system;
Get all defined Functions Fs of the system;
Get all defined tables Ts of the system;
For I=0 to I= number of Rs do
Begin

In=Get input concept-property pairs of Rs[i];
Out=Get output concept-property pairs of Rs[i];
Store name of Rs[i]in the domain knowledge name field of table;
Store “rule” in the type field of the table;
Store In in the input field of table;

TR/CLAES/260/2003.2 8

Store Out in the output field of table;
End
For I=0 to I= number of Ts do
Begin

In=Get input concept-property pairs of Ts[i];
Out=Get output concept-property pairs of Ts[i];
Store name of Ts[i] in the domain knowledge name field of table;
Store “table” in the type field of the table;
Store In in the input field of table;
Store Out in the output field of table;

End
For I=0 to I= number of Fs do
Begin

In=Get input concept-property pairs of Fs[i];
Out=Get output concept-property pairs of Fs[i];
Store name of Fs[i] in the domain knowledge name field of table;
Store function in the type field of the table;
Store In in the input field of table;
Store Out in the output field of table;

End
End

1.3 Completeness Checker Phase

The purpose of the check for completeness phase is to scan the whole knowledge base

looking for unfirable domain relation, and unused consequence. At CLAES we

distinguishes between three types of value source: user when the property value is input

by the user, database when the value is queried from a database, derived when the value

is concluded by a domain knowledge component. The unfirable domain relation is

detected when one of the used property in the input part of the domain relation has a

defined source of value to be derived and the property does not appear in the output part

of any other domain knowledge component. On the other hand, if the output part of any

domain knowledge component is neither one of the final goals, nor it is used to fire other

domain knowledge component then it is unused consequence.

1.3.1.1 Algorithm

Begin

Tab:= Get domain layer table;
Con:= get all defined concept in the KB;
I:=1; N:= Number of rows of T;

TR/CLAES/260/2003.2 9

While I <= n do
Begin

In := input column of Tab[i];
Out:= output column of Tab[i];
J:=1; Len:= length of In;
k:=1; Len1:= length of Out;
flag,flag1:=Boolean, initially=0;
While j <= len do
begin

if source of value of In[j] == drived then
begin

Flag= find In[j] in the all output filed of tab;
 If Flag == 0 then
 begin
 Get name and type of tab[i];

Output message “ unfirable domain knowledge
component”

 End
end
j:=j+1

end

While k <= len1 do
begin

if out[k] != goal then
begin

 Flag1 = find out[k] in the all input filed of tab;
 If Flag1 == 0 then

begin
 Get name and type of tab[i];

Output message “ unusable consequence of that
domain knowledge component”;

end
end

K:=k+1;
end

End
End

1.4 Path checker Phase

The last phase of the domain knowledge verification process concerns

detecting circular and redundant paths. These paths will be detected from

a graph data structure. This graph links the input concept-property pairs

TR/CLAES/260/2003.2 10

to the output concept-property pairs of each defined domain knowledge

component using the domain layer table.

Two main errors are detected during this phase: redundant paths, and

circular paths. A redundant path is found when it is possible to reach the

same conclusion from the same inputs through different paths. Circular

paths are detected when a concept-property pair appears as an input of one

domain knowledge component and as output concept-property pair of

another domain knowledge component and a path between the other edges

of these domain knowledge components can be reached.

1.4.1.1 Algorithm

Step1: create the domain knowledge graph

G:= empty graph
Tab:= domain knowledge table;
I:=1; N:= length of the domain knowledge table;
While I<=N do
Begin

In := input column of Tab[i];
Out:= output column of Tab[i];
J:=1; Len:= length of In;
k:=1; Len1:= length of Out;
 while j<= len do

begin
add node (g, In[j]);
k:=1;
while k<= len1 do
 begin

 if !(node(g, out[k])) then
add node (g, out[k]);

 add edge(g,In[j],out[k]);
 k++;

 end
j++;

end
I++;

end

TR/CLAES/260/2003.2 11

Step2: detect circular paths

G:= domain knowledge graph;
L:= list containing all goal concept-property pairs;
N:= length of L; Len:= length of G;I:=1;j:=1;
While I<=N do
begin

Y== L[i]
Begin

While j<= Len do
Begin

If Y == node (G, J) then
begin

SG==Get all edges (G,J);
K:=1; Len1:=length of SG;
While adjac (SG,k) != Ø do
Begin

Adj:= = adjac (SG,k);
If node(SG,Adj) == Y then
 Output circular path for node(G,J);
K++;

End
End

J++;
End

End
I++;

end

Step3: detect redundant paths

G:= domain knowledge graph;
L:= list containing all goal concept-property pairs;
N:= length of L; Len:= length of G;I:=1;j:=1;
While I<=N do
begin

Y== L[i]
Begin

While j<= Len do
Begin

If Y == node (G, J) then
begin

SG==Get all edges (G,J);
 Compare edges of SG to get redundant paths
End

TR/CLAES/260/2003.2 12

J++;
End

End
I++;

end

2 Inference Layer Verification

The main functions of the inference layer verification are:

1.Create the inference table

2. Inference checker module.

2.1 Creating the inference table.

The step checker creates an inference table that is used to facilitate the detection of

inference layer inconsistency errors. The table consists of the following fields:

Inference name: The name of the inference step as define in the KB.

Input role: The input-role name (s) of the inference step.

Output role: The output-role name (s) of the inference step.

static role: The list of the domain knowledge comonents that are used by this inference.

2.1.1 Algorithm

Begin
ISTab:= Inference table;
Get all defined inference step ISs of the system;
For I=0 to I= number of ISs do
Begin

N=get name of the inference step;
I= get defined input role of N;
O= get defined output role of N;
S= get defined static role of N;
Store N in the inference name field of ISTab;
Store I in the input role field of the ISTab;
Store O in the output role field of ISTab;
Store S in the static role field of ISTab;

End
End

TR/CLAES/260/2003.2 13

2.2 Step checker module

The main function of the step checker is detecting inference steps consistency error. Each

inference step operates over data elements corresponding to the domain knowledge

components. The input-role refers to a list of input data elements of the inference step.

These elements correspond to a combination of the input-property of the domain

knowledge components which this inference uses. Also, the output-role refers to a list of

output data elements of the inference step. These elements correspond to a combination

of the output-property of the domain knowledge components which this inference uses.

Inconsistency arises when the input/output-role refers to data element that is not defined

in any domain layer component

Each inference step has a defined input-role and output-role, each output- role should

either be an input-role to the following inference step or the last output. Inconsistency of

the inference layer may arise when one of the inference steps has a defined output-role

that does not satisfy either of the above cases. In order to detect such inconsistency, the

inference table is used to ensure that each defined output-role matches one of the defined

input-roles for another inference step or be the final goal.

2.2.2 Algorithm

/*This algorithm is used to ensure that all used domain relation by each inference step are

already defined in the domain layer*/

ISTab:= Inference table;

Tab:= domain knowledge table; N:= length of the inference table;
begin

For I=1: I<=n do
begin

S:= static role field of ISTab[i]
Len := number of relation in S;
For j:=1 ;j<= Len do
begin

If S[j] not appear in the relation name field of Tab then
Output message” undefined domain relation S[j] used in ISTab[j]”
J++;

End

I++

TR/CLAES/260/2003.2 14

End

end

2.2.3 Algorithm

/* this algorithm is used to detect inference layer inconsistency*/

ISTab:= Inference table;

 N:= length of the inference table;
begin

For I=1: I<=n do
Begin

Out:= output role field of ISTab[i]
Len := number of relation in Out;
For j:=1; j<= Len do
Begin

If out[j] not appear in the inpu role field of ISTab or not final output then
Output message” unused output role Out [j]”
J++

End
I++

End
end

3 KADS layers Verification

This verification activity aims at elimination of inconsistency errors arise due to the

interactions between different knowledge layers. This happens when any of the three

layers refers to undefined parts of another layer. Each knowledge layer of the KADS

modeling methodology always refers to some parts of another layer. For example, in the

task layer, tasks apply the inference steps defined in the inference layer. Each inference

step uses one or more domain knowledge component of the domain layer. When one of

the knowledge layers refers to undefined or erroneous parts of another layer,

inconsistency between layers occurs.

