
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(6), 567–588 (JUNE 1993)

Lexical Analysis of Inflected Arabic Words
using Exhaustive Search of an Augmented

Transition Network

ahmed a. rafea*
Computer Science Department, American University in Cairo, 113 Kasr El-Aini Street,

Cairo, Egypt

and

khaled f. shaalan
Computer Science Department, Institute of Statistical Studies and Research, Cairo

University, 5 Tharwat Street, Orman, Giza, Egypt

SUMMARY

This paper presents a lexical analyser for inflected Arabic words. An augmented transition network
(ATN) technique was used to represent the context-sensitive knowledge about the relation between
a stem and inflectional additions. An exhaustive-search algorithm is developed to traverse the ATN,
generating all possible interpretations of an inflected Arabic word. The arcs of the ATN are aug-
mented with rules containing conditions and actions. More than one rule is associated with some
arcs. The states of the ATN are represented by Pascal procedures.

key words: Arabic Natural-language processing Lexical analysis Morphological analysis Heuristic sear-
ch Automatic translation Augmented transition networks

BACKGROUND

Arabic linguistics came into being in the eighth century with the beginning of the
expansion of Islam.1 This early start can be explained in terms of the tremendous need
felt by the members of the new community to know the language of theKoran, the
holy book of Islam, which had become the official language of the young Islamic state.
The modern linguistic revolution has stimulated a number of scholars to apply existing
theories as descriptive models for Arabic language. Transformational grammar is
reflected in References2–5, lexical function grammar in Reference6, functional gram-
mar in Reference7, case grammar in Reference8, and definite-clause grammars in
References9 and 10.

The first attempts at the automatic processing of Arabic were devoted to the solution
of theoretical and practical problems such as root and pattern description,11

alphabetization,12 lemmatization,13 morphological analysis and indexing,14 and lexical,

* On leave of absence from I.S.S.R., Cairo University.

0038–0644/93/060567–22$17.00 Received 12 June 1990
 1993 by John Wiley & Sons, Ltd. Revised 11 March and 15 July 1992

568 a. a. rafea and k. f. shaalan

syntactic and idiomatic concordancing.15 More recently, with the trend towards Arabiz-
ation of computer usage in Arabic-speaking countries, the automatic analysis and syn-
thesis of Arabic-language data has begun to focus on components of syntax, i.e. from
the phonological level it has moved to the morphological and the syntactic levels. Even
so, most of the contemporary work in the field has been at the word level or below.
Examples of such research have been on character recognition,16 phonological
synthesis,17 morphological generation18 and analysis.19–21

MATERIAL RELEVANT TO WORD MORPHOLOGY
We consider the following methods to be relevant in solving the Arabic morphology
problem:

(a) finite-state machines22,23 or FSMs
(b) affix grammars24–26

(c) augmented transition networks (ATN)27

(d) heuristic algorithms.1,28

Linguists in general, and computational linguists in particular, do well to employ FSMs
whenever possible. They are theoretically appealing because they are computationally
straightforward and best understood from a mathematical point of view. Hence they
make for simple, elegant and highly efficient implementations. Lately, so-called finite-
state morphology in general, and two-level morphology in particular, have become
widely accepted as paradigms for the computational treatment of morphology.22,23

Finite-state morphology appeals to the notion of a finite-state transducer, which is sim-
ply a classical finite-state automaton. The term two-level morphology, however, is used
in a more restricted way, to apply to a system in which no intermediate forms are
posited, even in the original grammatical formalism. The writer of a grammar using a
two-level formalism never needs to think in terms of any representations other than the
lexical and surface ones. However, the levels of morphology is an important issue in
natural-language-processing systems. The two-level morphology was first devised by
Koskenniemi29 for the Finnish language. For Arabic, Farghaly30 has suggested that three
levels of morphology are needed: root, stem and word. Jaccarini23 succeeded in
developing a morphological parser for unvocalized written Arabic. The main object
was to get the root out of the word without using a lexicon. However, this approach
may not be suitable if understanding is considered. The word ‘ ’ when it appears
in unvocalized text can have more than one meaning; if morphology only is considered,
without a lexicon, problems may be encountered. Kay22 has demonstrated a theoretical
framework for non-concatenative finite state morphology, but problems with the full
range of Arabic roots are not considered.

Ditters26 has introduced a morpho-syntactic analyser called AIMS. The formalism
used is that of a two-level grammar, the extended affix grammar (EAG), whose first
level describes non-terminal names. The second level describes the attributes, the fea-
tures attached to non-terminal names. The formalism itself has been described by
Koster24 and Meijer.25 However, the backtracking and register capabilities of the two-
level formalism do not seem to be supported adequately by current hardware and
software developments. The addition of 30-odd affix variables with a limited (even
binary) domain of values makes the real-time analysis of large set of data a rather
frustrating and technically unacceptable waste of CPU time. A solution may possibly be
to extend the formalism with another level which contains the semantic information.31

569analysis of inflected arabic words

Gheith27,32 and Selim33 have introduced a morphological analyser that represents mor-
phological rules (grammar) as an augmented transition network (ATN). This work does
not suggest any solutions for one-to-many mapping of words, nor has it raised the
problem of erroneous breakdown of an inflected word.

Rafea28 has produced another morphological analysis to be used in automatic under-
standing of inflected Arabic words. The morphological analyser is supported by an
algorithm to remove the additions joined to the word and check whether the end-result
makes sense. The process is repeated if necessary. Stems are stored in their different
forms, if any, in a lexicon, which includes entries that cannot stand alone and have no
meaning without additions. Even with the size of a lexicon that contains such additional
material, this approach is much better than storing the inflected words, which is imprac-
ticable for a non-trivial (i.e. realistic) natural language.

The work presented here assumes a three-level morphology, namely the inflected
word, the stem and the root, as already mentioned.30 In place of the root itself, our
approach is to extract the stem from the inflected word. This is because the stem is the
meaningful entity for word understanding.

In a comparison of the work reviewed above with our own work, the following points
can be noted:

1. Our basic technique is to use ATNs to analyse an inflected word, and to break it
down into a stem and an addition. It is similar to the approach of Gheith,27 with
the difference that one-to-many mappings of words are avoided and erroneous
breakdown of an inflected word is minimized.

2. Our main goal is to understand the inflected word as it appears in Arabic written
text and to resolve ambiguity.

3. We regard the meaning of the stem and its additions as being central to the unam-
biguous understanding of inflected words as they appear in Arabic written text.

4. Rules relating a stem to its additions are built by induction and used to resolve
ambiguities.

THE PROBLEM OF BUILDING A LEXICAL ANALYSER FOR ARABIC

Nature of Arabic words

Word formation in Arabic involves three concepts: root, pattern and form.34 Word
forms (e.g. verbs, verbal nouns, agent nouns, etc.) are obtained from roots by applying
derivational rules to obtain corresponding patterns.Generally, each pattern carries a
meaning which, when combined with the meaning inherent in the root, gives the goal
meaning of the lexical form. For example, the meaning of the word form ‘ ’
(writer) is the combination of the meaning inherent in the root ‘ ’ (write) and the
meaning carried by the pattern ‘faal’ () which is the pattern of the doer of
the root. The set of lexical forms constructed from the same root constitutes what is
traditionally called a ‘morpho-semantic field’. All the members of this field share the
same basic meaning that is inherent in the root, and are semantically distinguished
according to the meaning carried by the patterns by which they are constructed. Thus,
Arabic has the characteristics that from one root the derivational and inflectional sys-
tems are able to produce a large number of words (lexical forms) each having specific
patterns and semantics.

570 a. a. rafea and k. f. shaalan

Lexical-analysis functions
The main function of a lexical analyser is to break down the input stream, which is

the inflected word, into lexical items or morphemes. A morpheme is the minimal mean-
ingful unit in a language. If the morpheme can function alone, such as the word
‘ ’ (engineer), it is called a free morpheme. Other morphemes cannot be used
by themselves, such as the general plural ending ‘’ and the letters ‘ ’ in
‘ ’ (engineers). Such morphemes are called ‘bound’. Bound morphemes, in
Arabic, serve as additions at the beginning or ending of a stem. Using the definitions
of free and bound morphemes, a word can be defined as a single free morpheme, and
an inflected word can be defined as a complex form which is a single free morpheme
combined with one or more bound morphemes.

Technical difficulties
An Arabic word can be represented as follows:28

[Begin 1 l Begin 2] + Stem + [Last 1] + [Last 2] + [Last 3]

where any term between the square brackets may be absent or occur once, and ‘l’ stands
for alternatives. The word is scanned for different additions, and what remains is the
stem. Unfortunately, the process is not as simple as it may seem. One cannot simply
look up the additions in a list and compare them with the beginning and ending charac-
ters of an inflected word. The sources of difficulties can be summarized as follows:

1. There may be overlapping characters within the additions that occur before a stem,
and this may also happen in the additions following the stem. For example, the
overlap between the ending additions ‘’ and ‘ ’ in the stem ‘ ’ (took) can
be found in its inflected form ‘ ’ where the agent is a singular first person
(I took), and ’ which is the inflected form where the agents are dual
second person.

2. There may be overlapping characters between the additions and a stem.
3. The stem itself may be modified due to the addition of the inflectional symbols.

Consequently, some modification actions may be required, after the removal of
the additions, and before searching the stem in the lexicon. For example, in the
stem ‘ ‘ (said), its middle letter can be converted in the inflected word ‘ ’
(saying—says).

4. More than one interpretation may arise for a stem and its additions.

METHODOLOGY

A very simple methodology, which is used in small-scale natural-language-processing
systems, is to storeall the inflected words in the lexicon.35 This solution is not efficient,
e.g. because the stems of many variant forms of words can be derived by simple spelling
rules such as removing the ‘s’ of a noun in the plural form (as in English) or by
removing the Arabic characters ‘’ (waw) and ‘ ’ (noun) from a noun in the plural
form in Arabic.

The motivation of the work presented here was to find the most efficient approach
to designing and implementing a system of software to solve the problems introduced
in the previous section. To arrive at this approach, we have to answer these questions:

571analysis of inflected arabic words

1. Is it better to store different forms of stems, if it is necessary, or just store one
form? The following example can clarify this point: the stem ‘ ’ (desert)
can be stored under ‘«19»’ and ‘ ’ because the latter form will appear as
a result of removing the addition ‘’ from the dual form ‘ ’. If the
lexical analyser is to be kept simple, the form ‘ ’ must be stored.

2. How can context-sensitive knowledge about the syntax of building an inflected
Arabic word be represented in an efficient way?

3. How can ambiguities (different interpretations of an inflected word) be resolved?
4. what is the appropriate algorithm for the lexical analyser?

The answers to these questions are presented in the following section.

Lexicon entry

To answer the first question, a methodology is adopted to satisfy some constraints,
which we find very important, on the entries in the lexicon. These constraints are

1. The word, at any entry, must be meaningful. (If we store the stem ‘ ’ in
the above example, the stem form ‘ ’ is meaningful but the stem form
‘ ’ is not).

2. Retrieval of the form of the stem stored in the lexicon from an inflected word
using this stem must be governed by rules that can be applied in an efficient way.
This leads to storing the broken plural form, as there are no regular rules to trans-
form a word in plural form into its singular form. Even if artificial rules can be
used to obtain the singular form easily from a plural form in some cases, this
may be very difficult in other cases. Consequently we take the decision to store
all the broken plural forms for homogeneity and consistency.

3. As Arabic is a language that allows many words to be constructed by derivation
from others, most researchers in Arabic morphology use a lexicon in which roots
are the only entries.36 This leads to substantial processing effort to obtain the root
from a derived word. For example, the words such as ‘ ’ (to use),
‘ ’ (worker—factor), ‘ ’ (to deal with), ‘ ’ (laboratory),
‘ ’ (the use), ‘ ’ (customer), ‘ ’ (currency—coin), ‘ ’
(labour force), ‘ ’ (jobs—business), ‘ ’ (commission), ‘ ’
(treatment) and ‘ ’ (practical) are all looked up under the root ‘ ’. If
the goal of the language-processing exercise is understanding, another lexicon
may be created that contains derived nouns because the relation between deri-
vational rules and the semantic change may be very deep and difficult for coding,
as shown in the above example. Therefore, we have decided to store the derived
nouns as separate entries in the lexicon. This will serve two purposes:

(a) less processing will be needed to reach the stem, which is a derived noun, as it
is stored explicitly in the lexicon

(b) only one lexicon will be used for lexical analysis and understanding the meaning
of the derived noun. Consequently, there will be no need for another lexicon to
be used for understanding after morphological analysis. This is likely to lead to
an overall saving in the storage needed for lexical material.

572 a. a. rafea and k. f. shaalan

Context-sensitive knowledge representation

The second question addresses the method used to represent context-sensitive knowl-
edge about an inflected word. We choose to use the ATN37,38 as the basic structure for
representing syntactic knowledge for building inflected Arabic words. This has enabled
us to implement the following:

(a) placing the context-sensitive knowledge as rules associated with the arcs of the
ATN. The rules have both condition and action parts. More than one rule may
be associated with one arc. One of these rules is to be selected whenever the
arc is traversed.

(b) getting all possible interpretations of an inflected word by searching the ATN
exhaustively along different possible arcs.

Resolving ambiguity

After obtaining all possible interpretations of an inflected word, one has to face the
problem of how selection of the right one may take place. One solution of the ambiguity
problem is to defer it to the sentence-analysis phase. Here we have found that the
ambiguity can be resolved to some extent by a following phase that checks the attributes
of the stem, the omitted additions, and the modifications that have occurred in the stem.
This checking is done through a set of rules. The rules are formulated by combining
the stem attributes, omitted additions and/or stem modification. For example, the follow-
ing rule relates a verb stem to its last additions:

IF The stem is a verbAND
Last 2 = ‘ ’ (tea) AND
the ending letter is doubled

THEN fill out the attributes values:
Singular, Feminine, Third Person for the agent.

To show how the above rule can be used to resolve ambiguity, the inflected word
‘ ’ (started) can be taken as an example. The output of the lexical analyser for
the inflected word ‘ ’ is:

1. Stem: ‘ ’
2. Last 2: ‘ ’

In the lexicon there are three entries for the stem ‘ ’. One is a verb (to start) in
which the ending ‘’ is doubled. A second is a noun (affliction). The third is a pronoun
(they). This multiple-entry phenomenon is called polysemy. Applying the above rule
to the output of the lexical analyser, only one interpretation is reached (conclusion of
the rule). The other two interpretations of the stem will be rejected because no rule
will be fired for those interpretations.

The algorithm of the lexical analyser

The lexical analyser traverses the ATN in a depth-first manner and backtracks to
search exhaustively for all possible solutions. We have found that this is the best way
to implement an Arabic lexical analyser. In effect, the conditions associated with the

573analysis of inflected arabic words

arcs are placed in such a way that the arc to be traversed first is the one that leads to
the most probable solution. This ordering is done using intuitive and heuristic measures.
As shown inFigure 1, the arcs emitted from stateS0 are ordered such that a solution
is sought by omitting ‘begin’ (the first recognizable prefix part of a word) and repeating
this process on the rest of the word in case of failure. We use this order of search
because the occurrence of nouns is more frequent than the occurrence of verbs. To
clarify the method, the word ‘ ’ (dawn) will be taken as an example to show how
the order of traversing the ATN will affect the output of the lexical analyser. If the arc
labelled ‘omit begin’ is traversed first, the following is the output:

1. Stem: ‘ ’ (which is a verb that means ‘draw’ or ‘drag’)
2. Begin 2: ‘ ’ (which is a particle indicating coupling).

However, if the arc labelled ‘match’ is traversed first, the following is the output of
the lexical analyser:

1. Stem ‘ ’ (one possible entry for this stem in the lexicon is a noun which
means dawn).

This example shows the importance of ordering in a deterministic processing of the
ATN. However, non-determinism is a feature of natural-language processing. Therefore,
we have to ensure that generating all solutions remains possible in our system.

IMPLEMENTATION
We have written our system in Pascal, running in the VM/CMS operating environment
for an IBM/370 4361. In the following sections, we discuss the implementation of the
lexical analyser.

Figure 1. ATN representing the relation between the additions and stem of an inflected Arabic word

574 a. a. rafea and k. f. shaalan

The representation of Arabic characters

The writing system for Arabic allows words to be written as linear strings of charac-
ters from right to left. Usually there are separators between words. However, in some
situations two words may be written without any separation. Analysing all types of
words that are not separated by any special character, we have found that some of their
particles cannot be separated from the following word, such as ‘’; ‘ ’; ‘ ’;
‘ ’, . . . (bound morpheme), while some others can be written separately without
violating Arabic writing rules, e.g. ‘’; ‘ ’, . . . (free morpheme), although it is common
to write them without any separation from the following word. Although our approach
can handle both types of particles by including all of them in the set of possible prefixes
for stems, a decision has been made not to include any particle that can be written as
separated from the following word. This decision is made because some of these par-
ticles, such as the coupling particle ‘’, are used extensively, so that their addition to
the set is likely to lead to an unacceptable increase in the time needed for the analysis
of any word that begins with the letters of such particles. This decision leads to the
following assumption: ‘While scanning the input text, any group of characters that
represent a word and can stand alone must be written as separated from the follow-
ing one’.

A character in Arabic is generated relative to its context in a word (beginning, stem
part, or ending). Context-sensitive rules for writing an Arabic word may make the
pattern-matching difficult since the character may have more than one form. A character
like ‘ ’, has one form, while two forms (‘ ’; ‘ ’), three forms (‘ ’; ‘ ’; ‘ ’)
or four forms (‘ ’; ‘ ’; ‘ ’; ‘ ’) can also occur.

For the computer that we have used, Arabic letters are available on the keyboards
of terminals, and an internal representation of the Arabic character-set is provided.
Pascal programs can express Arabic characters as string constants, which can be stored
in variables of type character. Internal representations of some single characters vary
according to the different possible forms in Arabic usage, e.g. the internal representation
of ‘ ’ is different from the internal representation of ‘’. To solve this machine-
dependent problem, we write a special routine that converts any form of a character
into a standard form, which is the isolated-character one. The lexical analyser uses this
routine while reading any inflected Arabic word.

The lexicon is represented as a lexically-ordered binary tree on a file, and is used
by the matching routine that searches for the existence of a given stem in the lexicon.
The stem is searched for in its Arabic-script (i.e. Arabic-orthography) version.

The augmented transition network

An augmented transition network (ATN), which describes the relation of an Arabic
stem and additions, is built according toFigure 1. Every state of the ATN is
implemented by a Pascal procedure. A transition from a stateSi to an adjacent stateSj

is implemented by calling the procedure corresponding toSj from the procedure rep-
resentingSi. The condition on an arc is implemented by a Boolean function called from
a procedure representing a state to decide if a transition to an adjacent state is possible
or not. The action associated with this arc, if any, is called from the function rep-
resenting the condition. If an arc has more than one rule associated with it, the Boolean
function representing the condition will scan the conditions of the rules associated with

575analysis of inflected arabic words

the arc in a fixed order. If one of the conditions is satisfied, the corresponding action
is activated. Actions associated with arcs are implemented as procedures.

Data structure associated with the ATN

The conditions and actions associated with the arcs use global registers and a set of
status flags. Five registers correspond to the additions as classified in the section on
methodology above. Each of these five registers corresponds to one of the classes of
additions inFigure 1: Begin 1, Begin 2, Last 1, Last 2 and Last 3. The sixth register
is reserved for storage of the current assumed stem. The initial value stored in this
register is the whole inflected word. The status flags indicate the modifications made
to the stem. Any such modification can be described by four parameters:

(a) the action taken (addition, conversion, omission)
(b) the position of the added, converted or omitted letter(s)
(c) the letter to be converted (held currently in the stem register)
(d) the letter to replace the one to be converted in a conversion process or the letter

to be added in an addition process.

The combination of these parameters requires 17 flags. The registers and the flags are
represented as a record in Pascal. A possible solution of the inflected word will fill the
registers and set the flags according to the interpretation made by the lexical analysis.
In order to keep all interpretations, an array of this record type is declared, and then
used as the interface between the lexical-analysis phase and the subsequent phases.

Rules associated with the arcs of the ATN

These rules can be classified into six types. The first type contains only one rule,
while each of the other types contains a set of rules.

1. The rule associated with the arcs leading to the final state. This rule is to match
a stem against the stems stored in the lexicon.

An example of this rule is:
IF The stem is matched with a lexicon entry
THEN Retain this situation as a possible solution

2. The action part of a rule of this type is to omit an addition from the stem register
(containing the inflected word), and fill the appropriate addition registers. The
condition of any such rule matches the first or last letters of the inflected word
against one of the addition sets. All rules associated with arcs labelled with omis-
sion actions are of this type (seeFigure 1).

Instances of these rules are:

IF Initial characters of the inflected word are inBegin1 set
THEN Omit these characters and keep them inbegin1 register;
IF Last characters of the inflected word are inLast2 set
THEN Omit these characters and keep them inlast2 register.

For example, the application of these two rules to the inflected word ‘ ’ yields:

576 a. a. rafea and k. f. shaalan

(a) begin1 register :‘ ’
(b) last2 register : ’
(c) stem register : ’

3. The action part of a rule of the third type is to convert one of the stem letters to
its original form (as stored in the lexicon), and set the appropriate status flag. The
condition of such a rule depends on finding a specific letter at a certain position
and the value of the omitted addition. This set of rules is associated with the arc
labelled with the ‘conversion’ action (seeFigure 1). An instance of this kind of
rule is:

IF Last letter stored instem register is ‘ ’ AND
((last2 register = ‘ ’ OR (last2 register = ‘ ’) OR
((last2 register = ‘ ’))

THEN Convert ‘ ’ to ‘ ’

For example, the application of this rule to the inflected word ‘ ’ yields:

(a) last2 register :‘ ’
(b) stem register :‘ ’
(c) Status Flags :‘ ’ is converted to ‘’, at the last letter of the stem.

(Note that the inflected word ‘ ’ has to be broken down into ‘ ’ and
‘ ’ before satisfying the condition of the above rule).

4. The action part of a rule of this type is to add letters to the unrecognized stem
at a certain position to substitute for the omission of these letters due to the inflec-
tional process. The condition of such a rule can be testing the length of the
unrecognized stem, or testing that the omitted addition has a certain value. A very
special action takes place if all other conditions fail. This action is to add a specific
letter ‘yell’ which is sometimes omitted from a class of Arabic nouns (defective
nouns) if the noun appears at a certain position in the sentence without being
inflected. This set of rules is associated with the arc labelled with adding actions
(seeFigure 1). In this class, we have three types of rules:

(i) rules to add one or more of the following letters depending on the length
of the unrecognized stem: ‘’; ‘ ’; ‘ ’; ‘ ’. An example of this rule is:

IF The length of the unrecognized stem stored inStem register is two
letters

THEN Add ‘ ’ at the beginning of the stem.

As an illustration, the application of this rule to the inflected word ‘’ produces:

(a) stem register :‘ ’
(b) Status Flags :‘ ’ is added, at the first letter of the stem.

(ii) rules to test the omitted addition before adding any letter. An example of
this rule is:

IF ((last1 register = ‘ ’) OR (last1 register = ‘ ’) OR (last2 register =
‘ ’) OR (last2 register = ‘ ’) OR (last3 register = ‘ ’))

THEN

577analysis of inflected arabic words
Add ‘ ’ last.

As an illustration, the application of this rule to the inflected word ‘ ’ pro-
duces:

(a) last register :‘ ’
(b) stem register :‘ ’
(c) Status Flags :‘ ’ is added, at the last letter of the stem.

(Note that the inflected word ‘ ’ has to be broken down into
‘ ’ and ‘ ’ before satisfying the condition of the above rule).

(iii) rules to add ‘ ’ in a heuristic manner to recognize that the last ‘’ of a
defective noun is omitted in some situations. These arise when all possi-
bilities are investigated and the stem is still not recognized; e.g. if the
inflected word is ‘ ’, then adding ‘ ’ at the end of the stem will pro-
duce:

(a) stem register :‘ ’
(b) Status Flags :‘ ’ is added, at the last letter of the stem.

5. The action part of a rule of this type is to convert one of the stem letters and to
add a letter to an unrecognized stem at a certain position. The condition of a such
rule depends on finding a certain letter at a certain position and the value of the
omitted addition. This set of rules is associated with the arc labelled with the
addition/conversion action inFigure 1. An example of this rule is:

IF Middle letter stored instem register is ‘ ’ AND
((begin2 register = ‘ ’) OR (begin2 register = ‘ ’) OR
(begin2 register = ‘ ’) OR (begin2 register = ‘ ’) OR
(begin2 register = ‘ ’) OR (begin2 register = ‘ ’) OR
(begin2 register = ‘ ’) OR (begin2 register = ‘ ’) OR
(begin2 register = ‘ ’) OR (begin2 register = ‘ ’) OR
(begin2 register = ‘ ’) OR (begin2 register = ‘ ’) OR
(begin2 register = ‘ ’) OR(begin2 register = ‘ ’) OR
(begin2 register = ‘ ’))

THEN Convert ‘ ’ to ‘ ’, middle AND add ‘’, first.

For example, the application of this rule to the inflected word ‘ ’ produces:

(a) begin2 register :‘ ’
(b) stem register :‘ ’
(c) Status Flags :‘ ’ Middle converted to ‘’ AND ‘ ’ is added, at the first

letter of the stem.

(Note that the inflected word ‘ ’ has to be broken down into ‘ ’ and
‘ ’ before satisfying the condition of the above rule).

6. A rule of the sixth type takes care of the letter ‘hams’. This letter has different
forms and requires very special treatment. The action part of such a rule handles
this special letter in the different situations that are distinguished in the rule’s
condition part. This set of rules is associated with the arc labelled as ‘adjust
hamza’ (inFigure 1). An example of a rule of this class is:

578 a. a. rafea and k. f. shaalan

IF The first letter stored instem register belongs to thehamza set AND
the second letter in thestem register is ‘ ’ alpha

THEN Replace the hamza and the ‘’ (aleph) by ‘ ’

For example, the application of this rule to the inflected word ‘ ’ gives:

(a) begin register:‘ ’
(b) stem register:‘ ’

(Note that the inflected word ‘ ’ has to be broken down into ‘ ’ and ‘ ’
before satisfying the condition of the above rule).

The rules associated with one arc are grouped into a single boolean function. Such
a function will select one of these rules according to its premise, and activate its corre-
sponding action. The rules are deterministic, i.e. no more than one rule will be fired at
a time. Four common conditions are implemented as boolean functions with appropriate
parameters to generalize their usage. Three actions are implemented, as procedures:
omissions, conversions and additions.

Recognition of the stem and its additions

The recognition of the stem is made by traversing the ATN searching for a possible
path from the initial state to the goal state. The searching algorithm is implemented by
representing each state as a procedure. The procedure representing the initial stateS0

can be considered as the main procedure of the search. The order in which the arcs are
examined will affect the order of the generated solution. We have tried to arrange this
order in such a way that most probable interpretations (as noted by examination of
substantial samples of Arabic text) are generated first. This ordering is not important
in our present work, where all possible interpretations are generated. However, if limi-
tations of time in some application mean that only one solution is to be generated, the
ordering becomes important.

A transition from a state to an adjacent state is achieved by calling the procedure
that represents this adjacent state if the condition associated with the linking arc is
satisfied. The series of procedure calls forms a path from the initial state to the final
state.

As all possible solutions are searched, simply reaching the goal state will not termin-
ate the search. Backtracking takes place to the most recent activated procedure rep-
resenting a state in order to look for another path through the different arcs emanating
from this state, i.e. the search is depth-first. This process will be repeated for all states
until all possibilities are exhausted. The registers associated with the ATN are retained
before a transition from a current state to any other state, by the using value-parameter-
passing mechanism of Pascal. Keeping the value of the registers unchanged after
returning from a called procedure is managed by passing each relevant register as an
actual parameter to the called procedure. This enables the called procedure to start with
the value of the register (actual parameter), but any change to this register will not
affect the contents of the register in the calling procedure.

Having returned toS0 after exhausting all possible arcs, all possible solutions are
found on a list containing the values of the registers corresponding to each solution.

579analysis of inflected arabic words

RESULTS AND CONCLUSION

The lexical analysis as described here was tested using different texts from different
sources. It has demonstrated its capability to get all possible interpretations of an
inflected Arabic word (see the Appendix). This does not guarantee that the method
works on all conceivable occasions, but the samples of text used have been representa-
tive and substantial.

Although we are aware that Pascal is not the perfect choice as a programming langu-
age for such problems, the availability of its compiler on a machine easily accessible
to us and that supports Arabic characters was the major factor influencing our decision
to use it. The overall performance of the lexical analysis has been satisfactory: on the
computer that we have used, the effective average rate of processing is 1·8 inflected
Arabic words per second.

The rules created to represent context-sensitive knowledge concerning the relation
between additions and a stem are a novel combination of the grammatical rules of the
Arabic language and heuristics.

The work presented here should be helpful for any project that uses Arabic natural
language, e.g. for automatic translation, user interfacing to a database or any other
computer system or computing-aided learning of the Arabic language.

APPENDIX: AN EXAMPLE USED FOR TESTING THE LEXICAL ANALYSER

580 a. a. rafea and k. f. shaalan

Textual input

(An Article published inAl-Ahram Newspaper, 18 March 1988, and written by Anis
Mansour.)

Output from the lexical analyser

581analysis of inflected arabic words

582 a. a. rafea and k. f. shaalan

583analysis of inflected arabic words

584 a. a. rafea and k. f. shaalan

585analysis of inflected arabic words

586 a. a. rafea and k. f. shaalan

587analysis of inflected arabic words

REFERENCES

1. Y Hlal, ‘Information systems and Arabic: the use of Arabic in information systems’, inLinguistics and
Signal & Information Processing, Harper & Row Inc., 1987, pp. 191–197.

2. F. Anshen and P. Scriber, ‘A focus transformation of modern standard arabic’,Language,44, 792–797
(1968).

3. Y. Aoun, ‘Structure Interne du groupe nominal en Arabe:l l‘idaˆfa’, Analyses/The´ories, 1–40 (1978-1); 1–
25 (1978-2).

4. R. Hartman,Understanding zur Syntax der Arabischen Schriftsprache, eine Generative-transformationelle
Darstellung, Harrassowitz, Wiesbaden, 1976.

5. M. AL-khuli, A Contrastive Transformational Grammar, Arabic and English, E.J. Brill. N.V., Leiden, 1970.
6. A Fassi Fehri, ‘al-lisāniyyāt wa- 'lugatu” l-arabiyya: namad̄iǧ tarkip̄iyy a wa-dataliyya’, Dār al-Baydā, Dar

Tūbqāl li-‘l- našr, 1985.
7. A. Moutaouakil,Pragmatic Functions in a Functional Grammar of Arabic, Faris Publications, Dord-

recht, 1989.
8. M. Al-Waer, ‘Toward a modern and realistic sentential theory of basic structures in standard Arabic’,Proc.

Conference on Applied Arabic Linguistics and Signal & Information Processing, Rabat, Morocco, 1983,
pp. 195–202.

9. A. Fahmy, M. Fakhry and M. Mohammed, ‘Application of logic programming to Arabic language pro-
cessing’, 13th International Conference of Statistics, Computer Science, Social and Demographical
Research, Cairo, Egypt, 1988, pp. 113–128.

10. S. Mehdi, ‘Arabic language parser’,International Journal of Man–Machine Studies,25, 593–611 (1986).
11. D. Cohen, ‘Essai d’une analyse automatique de l’Arabe’,Etudes des linguistique Se´mitique et Arabe, Mou-

ton, The Hague, 1970, pp. 48–78.
12. R. Bathurst, ‘Automatic alphabetization of Arabic words: a problem of graphic morphology and combina-

torial logic, in R. Wisbey (ed.),Papers from a Cambridge Symposium, Cambridge University Press, 1971,
pp. 185–190.

13. G. Bohas and Y. Hlal, ‘Un syste`me informatique pour la me´trique Arabe, reconnaissance du me´tre: emploi
des deux he´mistiches’,Bulletin d’Etudes Orientales, Institut Francais de Damas, Damascus, 1984, pp. 7–31.

14. B. Schubert, ‘Ein automatisches Verfahren zur Morphologischen Analyse and zur Herstellung von Indices
für arabische Texte’,ZDMG, 1973, pp. 283–251.

15. A. Jones, ‘Some Oxford projects in oriental languages’, in R. Wisbey (ed.)Papers from a Cambridge
Symposium, Cambridge University Press, 1971, pp. 191–197.

16. A. Amin, ‘Un syste`me pour la reconnaissance et pour la comprehension de l’Arabe e´crit et imprimé’, Thèse
de Doctorat d’Etat, Universitéde Nancy, 1988.

17. H. Abaad, ‘Un transducteur phonologique de l’Arabe’,Compte Rendu du Colloque sur la Communication
entre Langues Europe´ennes et Langues Orientales (Arabe–Chinois–Japonais), Commission des Commu-
nautés Europe´ennes, Luxembourg, 1984, p. 46.

18. M. Ziadah, ‘Pre´sentation linguistique d’une mode`le de synthe`se morphologique de l’Arabe litte´raire’,
Compte Rendu du Colloque sur la Communication entre Langues Entre Lanuges Europe´ennes et Langues
Orientales (Arabe–Chinois–Japonais), Commission des Communaute´s Europe´ennes, Luxembourg, 1984,
pp. 45.

588 a. a. rafea and k. f. shaalan

19. A. Chabir, ‘Le verbe en Arabe: essai d’une analyse morphologique automatique’,Compte Rendu du Col-
loque sur la Communication entre Langues Europe´ennes et Langues Orientales (Arabe–Chinois–Japonais),
Commission des Communaute´s Europe´ennes, Luxembourg, 1984, pp. 46–47.

20. J. Dicy, ‘Vers un mode`le d’analyse automatique du mot graphique non-vocalise´ en Arabe’,Compte Rendu
du Colloque sur la Communication entre Langues Europe´ennes et Langues Orientales (Arabe–Chinois–
Japonais), Commission des Communaute´s Europe´ennes, Luxembourg, 1984, p. 46.

21. D. Vermel, ‘Le traitement informatise´ de la langue Arabe: l’analyse morphologique’,Compte Rendu du
Colloque sur la Communication entre Langues Europe´ennes et Langues Orientales (Arabe–Chinois–
Japonais), Commission des Communaute´s Europe´ennes, Luxembourg, 1984, pp. 116–118.

22. M. Kay, ‘Nonconcatenative finite-state morphology’,3rd Conference of the European Chapter of the
Association for Computational Linguistics, 1987, pp. 2–10.

23. A. Jaccarini, ‘Automatic generation of unvocalized Arabic recognition programs: theory and applications’,
3rd Conference on Arabic Computational Linguistics, Kuwait, 1989, pp. 66–87.

24. C. Koster,Affix Grammars, Algol 68 Implementation, North-Holland, Amsterdam, 1971, pp. 95–105.
25. H. Meijer,Programmer: A Translator Generator, Bloembergen Santee, Nijmegen, 1986.
26. E. Ditters, ‘An extended affix grammar for the noun phrase in modern standard Arabic’,Corpus Linguistics

11, Rodopi, Amsterdam, 47–77, (1986).
27. M. Gheith, ‘Realisation d’un programme comprenant des exercices de me´canique pose´s en Arabe’,Thése

de Docteur-Inge´nieur, Universitéde Paris VI, 1980.
28. A. Rafea and Aisha Rafea, ‘Understanding an Arabic word in a text automatically’,Nineteenth Annual

Conference on Statistics, Computer Science and Operations Research, Cairo, Egypt, 1984, pp. 52–77.
29. K. Koskenniemi, ‘Two-level morphology: a general computational model for word-form recognition and

production’,Doctoral Dissertation, University of Helsinki, 1983.
30. A. Farghaly, ‘Three-level morphology’, presented at theArabic Morphology Workshop, Stanford Univer-

sity, 1987.
31. E. Ditters, ‘The role of semantics in automated syntactic analysis of Arabic linguistic data’,2nd Conference

on Arabic Computational Linguistics, Kuwait, 1989, pp. 125–147.
32. M. Gheith and M. Mashhour, ‘A computer-based system for understanding Arabic language’,Workshop

on Computer Processing of the Arabic Language, Kuwait, 1985, pp. 21–42.
33. S. Selim, M. Gheith and M. Mashhour, ‘A general morphological analyzer’,20th Annual Conference on

Statistics, Computer Science and Operations Research, Cairo, Egypt, 1985, pp. 21–42.
34. A. Moutaouakil, ‘Lexical derivation in Arabic: roots and patterns’, inLinguistics and Signal & Information

Processing, Harper & Row Inc., 1987, pp. 93–97.
35. M. Harris,Introduction to Natural-Language Processing, Reston Publishing Company, 1985.
36. A. Kaye, ‘A comparative-etymological dictionary of three African Arabic dialects on computer’,Second

Conference on Arabic Computational Linguistics, Kuwait, 1989, pp. 88–103.
37. A. Barr and E. Feigenbaum,Handbook of Artificial Intelligence, Vol. 1, William Kaufman Inc., Los Altos,

California, 1981.
38. W. Woods, ‘Transition network grammar for natural language analysis’,Comm. ACM,10, 591–606 (1970).

	SUMMARY
	BACKGROUND
	MATERIAL RELEVANT TO WORD MORPHOLOGY
	THE PROBLEM OF BUILDING A LEXICAL ANALYSER FOR ARABIC
	Nature of Arabic words
	Lexical-analysis functions
	Technical difficulties

	METHODOLOGY
	Lexicon entry
	Context-sensitive knowledge representation
	Resolving ambiguity
	The algorithm of the lexical analyser

	IMPLEMENTATION
	The representation of Arabic characters
	The augmented transition network
	Data structure associated with the ATN
	Rules associated with the arcs of the ATN
	Recognition of the stem and its additions

	RESULTS AND CONCLUSION
	APPENDIX: AN EXAMPLE USED FOR TESTING THE LEXICAL ANALYSER
	Textual input
	Output from the lexical analyser

