Software Development Environment
Based on

Object-Oriented and Logic
Programming Paradigms

Khaled Fouad Sayed Shaalan

A Dissertation submitted in partial fulfillment of the
requirement for the Degree of Doctor of Philosophy at
Department of Computer Science
The Institute of Statistical Studies and Research (ISSR)
Cairo University, Egypt

1995

Supervised by

Prof. Salwa El Gamal Prof. Ahmed Rafea Prof. Seif Haridi
Dept. of Computer, Dept. of Computer Swedish Institute
Science, ISSR, Science, ISSR, of Computer Science,

Egypt Egypt Sweden

Abstract

oftware development environments are essential in today’s world of growing
software systems. Software development environment increases the produc-
tivity of software by providing better languages and better tools.

Programming languages naturally play an essential role in the software development
process. Finding more powerful and better suited language has been the aim of lan-
guage designers ever since the dawn of computer programming. For instance, the
most recent research in concurrent logic programming paradigm is directed towards
concurrent constraints framework where the development of the AKL (Agents Ker-
nel Language) language is significant. AKL+, the main contribution of this thesis,
is a natural development which is derived from the fusion of concurrent constraint
programming and object-oriented programming paradigms. The result is more than
a sum of its parts since many of the inadequacies of one programming paradigm
are compensated for by features of the other. The development of large concurrent
object-oriented programs puts a new demand for tools that keep software compo-
nents up to date. This has lead us to develop a general incremental compilation
facility which is needed for comfortable processing of large programs.

This thesis has presented the background to, and motivation for, the design of
AKL+, and described the language. The schemes for developing an efficient imple-
mentation have been discussed. Algorithms are developed for the general incremen-
tal compilation facility and multiple inheritance. The semantics of AKL+ has been
described in terms of translation to AKL. A set of examples has been implemented
to demonstrate the applicability of AKL+ both as a modeling language and as an
implementation language. The AKL+ language and our incremental compilation fa-
cility have been implemented on Unix-based workstations and they are parts of the

official release of the AKL system, AGENTS, developed at SICS (Swedish Institute

of Computer Science).

Acknowledgments

I am greatly indebted to my supervisors: Prof. Dr. Ahmed Rafea, Prof. Dr.
Salwa El-Gamal, and Prof. Dr. Seif Haridi for their help, encouragement, valuable
discussions, and for their comments on this thesis.

I would like to thank the Central Lab for Agriculture Expert System (CLAES) leaded
by Prof. Dr. Ahmed Rafea, the place in which my experience in object-oriented
programming and logic for real life systems are initiated and has been grown up.

I would like to thank the Egyptian Government for offering the financial support
that allwed my study in Sweden to undertake the research reported in this thesis.

Thanks are due to the entire members of Swedish Institute of Computer Science
(SICS) for offering me the facilities, resources, and support that were needed for my
research. In particular, I want to acknowledge the entire members of the PS group
leaded by Dr. Sverker Janson. Also, a very special thanks to Prof. Khayri Ali who
helped me and provided me with very valuable support during the critical time of
the research. Finally, I would like to thank the entire technical support staff for
keeping computer facilities alive and up-to-date.

This list of persons could be extended much further, therefore I would like to thank
all those not mentioned above, who have helped and supported me.

Table of Contents

1 Introduction 1
1.1 Software Development Environments 1
1.2 Motivations e 2
1.3 Parts of Software Development Environments Treated in this Thesis . 4
1.4 Main Contributions L o 5
1.5 Structure of the Thesis L. 5

2 Previous and Related Work on Object-Oriented Programming Lan-

guages 9
2.1 Conventional Languages 9
2.2 Actor Based Languages 14
2.3 Logic Based Languages L. 17
24 AKLA4 . . o 28
2.5 SUmMmMaryo e e e e e 32
3 AKL 35
3.1 Concurrent Constraint Programming 35
3.2 Language Design 37
3.2.1 Basic Concepts Lo 37
3.2.1.1 Don’t know nondeterminism 41

3.2.1.2 Don’t care nondeterminism 42

3.2.1.3 Encapsulated computations 43

3.2.2 Definitionso 45

3.3 Basic Object-Oriented Style 45
3.3.1 Objects 16
3.3.2 Ports for Objects oo 19
3.3.3 Data Objects 52

3.4 Syntactic Sugar L 53
3.5 Summary e 56
4 AKL+ 57
4.1 Classes o e 57
4.1.1 Defining Classes o 58
4.1.2 Attribute Methodso 64
4.1.3 The Default Behavior 66
4.1.4 The Class Membership Method 67
4.1.5 Method dispatchero 68
4.1.6 Generic Classeso 69
4.1.7 Metaclasses oL 71

4.2 Objects 72

4.2.1 Message Sending vs Method Call 73

i

4.2.2 Creating and Destroying Objects

4.2.3 Sharing Objects L oo
4.2.4 Synchronization
4.3 Standard Classes
4.3.1 State Representation Classes
4.3.2 Object type Classes
4.4 Synchronization Constraints
4.4.1 Accept Method Set 0oL
4.4.2 Synchronizerso
4.4.3 Transitions Lo
4.5 Inheritance
4.5.1 Class Inheritance 0oL
4.5.2 Differential Inheritance
4.5.3 Synchronization Constraints and Inheritance
4.5.4 Multiple Inheritance00
4.6 Summary
Definition of AKL+
5.1 Definitions and Programs L.
5.2 A Simple Example
5.3 Expansion to AKL Code
5.4 SUmMmMary e e e e
Implementation
6.1 The Incremental Compilation Facility
6.2 Applying the Inheritance Mechanism
6.3 Expansion to AKL Code
6.3.1 Examples of a Class Expansion
6.3.2 The Class Expansion
6.3.3 Efficiency
6.4 Expansion to AKL Abstract Machine(PAM)
6.5 The AKL+ Run-time
6.6 Summary e
Programming Examples
7.1 A Car Washer Simulation
7.2 A Moving Point Constraints
7.3 A Car Maintenance Fault diagnosis
7.4 A Bounded Buffer State Modification
7.5 SUMMAary e e
Conclusion and Future Work
8.1 Conclusion L
8.2 Future Worko

105
105
106
110
118

119
119
123
127
127
132
141
142
143
144

145
145
155
160
169
176

A Interactive Incremental Compilation Commands

185

111

1.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2

6.1
6.2

7.1
7.2
7.3
7.4

List of Figures

Chapter dependencies. oo 7
Agents interacting with a constraint store 36
Abstract syntax of AKL program 46
An object consuming a list of messages 47
The AKL+ Object Oriented System 58
base-class reference Lo oL 63
self-referenceo 64
The passing of parameters to a parameterized class 71
Anobject 73
The method execution L. 74
Method call vs self-reference 74
Creating an object Lo 75
An example of object sharing 0000 76
A conceptual view of an initial classo 0000 80
The structure of a synchronized object 84
Message acceptance of a bounded buffer 86
An example of method overriding 0L 94
An example of multiple inheritance 0000 101
An example of linearized multiple inheritance 102
Abstract syntax of AKL+ program 107
State threading through the body of a method 111
Compiler and run-time expansions of AKL 120
Finding the source files o0 121
Existing interaction in the Car Washer problem 146
The moving point class hierarchy 156
A car component hierarchy 00000000 161
Conceptual illustration of the state modification of a bounded buffer

object . .. 169

Introduction

Software development environments are essential in today’s world of growing soft-
ware systems. Software development environment increases the productivity of soft-
ware by providing better languages and better tools. In this chapter some back-
ground on software development environments are first presented. The motivations
and the subject of this thesis are then discussed. The parts of software development
environments treated in this thesis follows. Finally, the main contributions and the
structure of this thesis are summarized.

1.1 Software Development Environments

As ambitions show software applications get more and more complicated and thus
harder to develop, maintain and understand. The need for increased efficiency in
developing software has long been recognized and is an important aim in Software
Development Environment research. The Software Development Environments in-
clude languages with expressive power desirable for application programming, the
tools needed to develop programs (editors, compilers, debugger, browsers, etc.) and
also include the tools needed to handle a large complex system (incremental compi-
lation, interface design, etc.).

The wide acceptance of object-orientation has put new demands on the environ-
ments we use. The demands put on modern software environments are summarized
by highlighting three important aspects [87]: interactiveness, integration, and incre-
mentality.

Interactiveness. Aspects of interactiveness come up in a wide range of situations.
Examples arise during editing, code generation and updating the executing envi-
ronment; other examples are the availability to change a running program and the
development and extension of the environment itself.

Integration. Aspects of integration apply to the user interface design, how func-
tionality like editing, how programming in-the-large [116] and version control inter-
act with the programming in the large support, and how language dependence and
the environment itself are developed and customized.

Incrementality. Incremental algorithms are often recognized as essential in order
to achieve quick enough turnaround between different activities. This is indeed
important since programs will inevitably grow large enough for “batch” algorithms

1.2 Motivations

to be too slow for high demands on response time. Incrementality is, however, not
only a quantitative aspect, but also a qualitative aspect. Many of the demands on
tight integration can only be achieved by incremental algorithms that keep program
representation updated all the times.

Examples of existing software development environments are:

e Many Lisp environments fits into this category, and we point at Interlisp sys-
tem as an example [140]. These environments provide integrated environments
with quick turnaround between editing and execution. Often this is achieved
by interpreting the program and having untyped language which puts little
burden on the system in terms of checking. Also there is no need for time-
consuming linking since the user’s program is incrementally linked into the
address space of the development environment.

e The Smalltalk environment [56] provides a graphical user interface, a browser,
for navigating among classes and operations, but the program editor is purely
textual. Quick turnaround time is achieved by translating a piece at a time
(a procedure, a message) and again using linking in the same address space.

One important goal in these environments has been to achieve fast turnaround
between editing and execution, which is an important aspect in order to support
interactive development style of programming. However, the techniques used to
develop these environments are not always generally applicable, being tailored to
one specific language. Development of environments are very large tasks and more
generally applicable techniques are needed to make integrated environments common
for many languages.

1.2 Motivations

Object-Oriented programming is attracting a significant amount of attention from
researchers and software developers alike. A major benefit from object-orientation
is to reduce software complexity through its ability to increase the reuse of software
components [25, 37]. In object-oriented programming, the program execution is
viewed as a physical model that simulates the behavior of some real or imaginary
part of the world. Programs/designs constructed in the object-oriented style are by
most people considered easier to understand and change than traditional programs.
In addition, the abstraction mechanisms of object-oriented languages are powerful
means to encapsulate and isolate design and execution information [27].

A logic language provides mathematically based framework for symbolic evaluation
and automatic deduction. Logic languages has been proved adequate to “declara-
tive programming”, deductive database implementation, expert systems, and more

Introduction

generally as general-purpose tools for non-deterministic programming. Prolog is the
most popular logic programming language. It is a sequential language designed to
run efficiently on a von Neumann machine by exploiting its ability to perform ef-
ficient stack management. Nevertheless, Prolog cannot express concurrency [128].
For this purpose, languages of a new type have been defined such as concurrent logic
programming languages.

Recently, some work on concurrent logic programming languages are extended with
the notion of constraints. This evolution is clearly visible in AKL which is, first
and foremost, a language incorporating ideas from constraints and concurrent logic
programming. The view of computation in this setting is interesting in the context of
concurrency because of the ability to represent and manipulate partial information
about the domain of discourse, in the context of concurrency because of the use of
constraints for communication and control, and in the context of Al because of the
availability of simple yet powerful mechanisms for controlling inference [123].

There are many advantages in combining concurrent constraint logic programming
and object-oriented programming paradigms, because the resulting language over-
come most limitations of both approaches, taken singularly. For instance, concurrent
constraint logic programming benefits because an object-oriented style provides good
notations for expressing abstractions that helps in the comprehension of programs.
The lack of structuring mechanisms for large applications can be removed using a
class construct. Also, the problem of being able to reuse software components can
be removed using inheritance. Conversely, a constraint programming provides an
excellent computational support with a basic, but not enough, object-oriented style.
The notion of self-contained independent object is very close to that of concurrent
process (dynamically computing agent) or actor. Furthermore, the use of constraints
for communication and control maps well onto communication by message passing
between objects.

The development of large concurrent object-oriented programs puts a new demand
for tools that keep software components up to date which is needed for comfortable
processing of large programs.

The main motivations for investigating object-oriented programming in concurrent
constraint logic programming are:

1. The design of a language that has the concurrent computation ability, and the
knowledge representation and problem solving of concurrent constraint logic
programming enriched with the program and knowledge structuring capabili-
ties of object-oriented programming.

2. Supporting all features that are needed for any object-oriented application.
These features will increase the generality and the reuse of software com-
ponents such as generic classes, to support fine-grained objects, provide for
higher-order and data-driven programming techniques, and synchronization,

1.3 Parts of Software Development Environments Treated in this Thesis

as well as mechanisms to handle problems arise due to multiple inheritance
and/or synchronization.

3. The design and implementation of a general incremental compilation facility.
A primarily feature of this tool is that the work needed after a change is
proportional to the size of the change rather than to the size of the program.

4. QOur belief in the possibility of an efficient implementation.

1.3 Parts of Software Development Environments
Treated in this Thesis

Software productivity is essential in today’s world of growing software systems.
Productivity can be increased by improving the situation in at least two different
ways: better languages and better tools.

Better languages. Programming languages naturally play an essential role in the
software development process. Finding more powerful and better suited language
has been the aim of language designers ever since the dawn of computer program-
ming. AKL+, the main contribution of this thesis, is evolved from the fusion of the
most recent research in concurrent constraint programming and object-oriented pro-
gramming paradigms supporting all features that are needed for any object-oriented
application.

Better tools. Constructing programs involves the use of many different tools:
editors, compilers, linkers, etc. By providing better environments much of these
tools could be automated, freeing the developer’s attention for important tasks.
The incremental compilation facility, the supported tool in our environment, is an
essential part of the software development environment with the aim of integrating
support for interactive incremental compilation facility for object-oriented systems.
The advantages of this tool are twofold. First, a quantitative effect is obtained,
by decreasing the compilation time. This allows the programmer to switch rapidly
between program editing and running the program. The second effect is qualitative.
It the compilation is made with small increments after each single edit operation,
and each such small increment is computed so fast that the programmer does not
notice, the illusion can be maintained of having which is compiled at all times. The
programmer does not have to issue different commands since the compilation and
the incremental loading is always done automatically and all the dependent files
made up to date.

The AKL+ language and our incremental compilation facility have been imple-
mented on Unix-based workstations and they are parts of the official release of the

AKL system developed at SICS (Swedish Institute of Computer Science). The AKL

4

Introduction

system, AGENTS, is available from SICS for research and educational purposes
(contact agent-request@sics.se).

1.4 Main Contributions

In short, our main original contributions are as follows:

1.

A new language called AKL+ which can naturally express a large class of prob-
lems than most languages, simply because it combines two extremely powerful
paradigms: concurrent constraint logic programming and object-oriented pro-
gramming.

. The ability to utilize AKL+ as a higher level AKL by virtue of the way that its

features subsumes AKL programming style in a less verbose, proper linguistic
support, and more intuitive manner.

. The development of a class library for most common operations which fulfills

the user’s computational needs as it provides him with a simpler, and easier-
to-use computing environment.

. The investigation of application areas which benefit from the concurrent con-

straint logic programming and object-oriented features.

. The definition of the language semantics in terms of translation to AKL which

has been proved formally.

. Developing techniques of an efficient implementation of the language.
. An algorithm for a general incremental compilation facility.

. An algorithm that computes multiple inheritance.

1.5 Structure of the Thesis

The thesis is structured as follows. The present chapter aims at presenting some
background material and establish the problem area.

Chapter 2 gives a survey to the most popular object-oriented programming lan-

guages. In our presentation we try to group the related languages into separated

sections. We present the main features of our language and compare it with the

most related ones.

Although AKL+ is a language in its own right, many of the programming techniques
used are those of AKL, the language on which it is based, and many AKL programs

1.5 Structure of the Thesis

can be incorporated into an AKL4 program without change. Chapter 3 gives a
brief and informal summary of AKL and reviews the basic techniques that allows
us to do object-oriented programming in AKL. We also give a short background of
concurrent constraint programming.

Chapters 4 and 5 looks at the basic elements of the AKL+ language and its defini-
tion. Chapter 4 informally presents AKL+ and its computation model. We describe
classes, including standard classes, objects, message passing, synchronization, and
inheritance. Our approach to handle multiple inheritance, differential inheritance,
and inheritance anomaly is discussed. Several examples show the main features of
AKL+ as well as a number of programming techniques. Chapter 5 presents the
syntax and semantics of AKL+. We describe the semantics in terms of translation
to AKL. The translation is based on a source-to-source transformations. For each
kind of transformation, we give a definition of a rewrite rule.

Chapter 6 presents the implementation aspects of the general incremental compi-
lation facility and our language. The text in this chapter is kept on a higher level
of abstraction in order to gain the applicability to a wide range of object-oriented
languages. We give an algorithm for a general incremental compilation facility. The
algorithm specifies dependencies as functions to bring a target file up to date. We
give an algorithm for the dependency that computes multiple inheritance. We de-
scribe the dependency for expanding a class definition into AKL and show how we
can implement AKL+ as an efficient programming language. The AKL+ run-time
module that allows us to achieve a run-time uniform message sending is described.

Chapter 4 includes a number of small examples, but to bring out the advantages of
combining the object-oriented and concurrent constraint logic programming paradigms
it is necessary to look at some longer examples. This is done in Chapter 7. In this
chapter we explore small but complete AKL+ examples, from its conception to re-
alization. These problems, are general enough for the purpose of demonstrating the
applicability of AKL+ both as a modeling language and as a programming language.

chapter 8 concludes the thesis and gives directions for future work.

Appendix A contains the description of the interactive incremental compilation com-
mands.

See Fig. 1.1 for a graphical overview of the thesis.

R

AKL, Ch 3

AKL+, Ch 4

Def. of AKL+, Ch 5

Implementation, Ch 6

Prog. Examples, Ch 7

Figure 1.1: Chapter dependencies

Introduction

Previous and Related Work on
Object-Oriented Programming
Languages

In this chapter, we will survey the most popular object-oriented programming (OOP)
languages. In our presentation we try to group the related languages into separated
sections. Section 2.2 presents actor based languages and Section 2.3 presents logic
based languages. In Section 2.1, we present the conventional and other object-
oriented programming languages which cannot be classified as either actor based or
logic based languages. In section 2.4, we present the main features of our language
and compare it with the most related ones.

2.1 Conventional Languages

Simula [38] is the first object-oriented language that took the block concept of Algol
one step further and introduced the concept of an Object. It was mainly intended
as a simulation language. Conceptually, an object contained both data and the
operations, called methods, that manipulate its data. However, in allowing direct
access to attributes, it failed to provide encapsulation. Simula also incorporated
the notion of classes, which are used to describe the structure and behavior of a
set of objects. Class inheritance where classes can be organized into hierarchies is
also supported. Simula is a strongly typed language. Simula supports sequential
execution as well as coroutining. Coroutining is different from sequential execution
since a coroutine may temporary suspend execution (“detach”) and “resume” later.
This means that coroutines are useful to support program executions with multiple
action sequences. Simula laid the foundation of object-oriented languages and some
of the object-oriented terminology.

Smalltalk [56, 119, 91] was the first and popular object-oriented language, devel-
oped at Xerox PARC, and its success engendered many other object-oriented lan-
guages. Smalltalk is not only a language but also a development environment. All
aspects of the Smalltalk language system are available through an on-line interpreter
and class browser. The language is untyped and every thing is an object, including
classes. The individual object described by a class is called instance. Smalltalk
supports a standard class library—a predefined set of reusable software components,
which can be subclassed and extended incrementally. Smalltalk allows inheritance

2.1 Conventional Languages

in the form of single inheritance, where each class can have at most one superclass.
Smalltalk includes a FORK construct which allows processes to run concurrently.
However, the processes are actually run sequentially, starting with the first process
listed. This first process runs until completed or until it cannot continue, at which
time the second process begins to execute. This second process also runs until com-
pleted or until it cannot continue. Then, if there is a third process it begins to run,
otherwise the first process is again started. This continues until all processes have
completed. Semaphores [129] are used for process synchronization. A YIELD state-
ment is also provided which allows processes to yield the processor at any time. A
process can be made to yield the processor between any pair of statements. Using a
random number generator to calculate the probability of yielding the processor can
lead to a nondeterministic system in which each Smalltalk statement is considered
to be atomic (uninterruptible) [135]. However, this is probably not the best way to
implement a concurrent system.

Lisp-Based Languages. The Common Lisp Object System (CLOS) [21, 82], Com-
monLoops [20], and Flavors [108] are the object-oriented extension of Lisp. The most
notable OOP language of this family is CLOS, an object-oriented extension of Com-
mon Lisp [134]. In CLOS, every data object, including atoms and lists of Lisp, is a
member of a class. Methods for Lisp primitives belong to an inheritance structure.
CLOS does not have a standard class library. CLOS Contains facilities for multiple
inheritance and applies “linearization”, see [133], for resolving the ambiguity result-
ing from inherited features with the same name. New Classes can be defined, and
methods can be added to classes dynamically. These features are a standard part
of the language, documented as “meta-object protocol” [85]. Like Common Lisp,
CLOS is a weakly-typed language. The concept of encapsulation is not enforced
by the CLOS since there is nothing to prevent the code of one class from directly
accessing the implementation details of another class. A Lisp-based OOP language
does not support any constructs for handling concurrency.

However, as Lisp is a form of functional programming [60] (which is based on lambda
calculus), some form of concurrency is possible. In pure functional programming,
a program may be expressed as a single function call, with the arguments to the
function themselves being function calls; the arguments to these functions can in
turn be function calls, etc. Since the value returned by a pure function is determined
solely by the arguments passed to it, implementations can be devised which allows
for all of the arguments which are function calls to be executed in parallel [112].
The arguments of these function calls which are themselves functions can then be
executed in parallel, and so on. This is sometimes referred to as divide and conquer
in that a program is divided up into concurrent subprograms (the arguments which
are function calls) which can then be conquered (solved) by again using the divide
and conquer scheme [118].

10

Previous and Related Work on Object-Oriented Programming Languages

Ada [144, 22, 17] is not generally considered to be object-oriented as it does not
support inheritance; rather, it is more appropriately classified as object-based lan-
guage. Ada does, however, support concurrency in the form of tasking and message
passing with rendezvous for process interaction.

Eiffel is strongly typed object-oriented language [106]. Programs consist of class
declarations that include methods. Multiple inheritance and parameterized classes
(generics) are supported. A modest class library is provided. The focal point of
Eiffel is the class declaration, which lists attributes and operations. Eiffel provides
uniform access to both attributes and operations. Eiffel does not treat classes or
operations as first-class objects. Eiffel does not contain any form of concurrency.

C-Based Languages. C++ [138, 137, 139, 154] and Objective-C [120] languages
are the object-oriented extension of the C language [83]. The most notable OOP
language of this family is C+4. C++4 is a hybrid language, in which some entities
are objects and some are not. It is a strongly-typed language. It was originally
implemented as a preprocessor. Unlike several other object-oriented languages, C++
does not contain a standard class library. Unfortunately, because C++ provides no
guidelines for library organization, different libraries may be incompatible. C++
contains facilities for multiple inheritance and run-time method resolution, but a
C++ data structure is not automatically object-oriented. Method resolution and
the ability to override an operation in a subclass are only available if the operation
is declared wvirtual in the superclass. C++ contains good facilities for specifying
access to attributes and operations of a class. Access may be permitted by methods
of any class (public), restricted to methods of subclasses of the class (protected), or
restricted to direct methods of the class (private). In addition, “spot” access can be
given to a particular class or function using the friend declaration.

LogiC++ [155] integrates logic and object-oriented programming. The language
is designed primarily based on C+4. A program in LogiC++ has a very strong
resemblance to C++ programs. However, in a LogiC++ program, the keyword
“methods” is used to indicate that the following methods would be defined by Horn
clauses as in Prolog programs. The rest of the program structure is basically the
same as any C+4++ program. The compiler takes a LogiC++ program as input and
produces an equivalent C4++ program as the output. In particular, the compiler
takes the methods as input and produces C++ functions as output. The C++
program can then be compiled by a C+4 compiler.

BETA [89, 95] is a language designed in the Simula tradition. It is untyped language
as Smalltalk. BETA replaces classes, procedures, functions and types by a single
abstraction mechanism called “pattern”. It has a linguistic support for nesting and
block structure. The language allows single inheritance. Object may execute their
actions sequentially, “alternating” with other objects (coroutining), or concurrently
with other objects. The alternation between coroutines may be deterministic in the
sense that the sequencing is decided by the object itself. The shifts between corou-

11

2.1 Conventional Languages

tines may be triggered by events performed by other concurrent objects, leading
to nondeterministic alternation. The basic mechanism in BETA for synchronizing
concurrent objects is semaphore. Moreover, the library of the BETA languages
includes also monitor [67] for guaranteeing exclusive access to an object and ren-
dezvous mechanism for handling direct communication between objects [144].

ConcurrentSmalltalk [159, 160, 161, 39] is based on Smalltalk-80 [56]. The sig-
nificant extensions were made: per-instance lock variables, asynchronous message
passing, and distributed objects. ConcurrentSmalltalk allows several methods of an
object to be active at one time. Actually, an object can respond to only one mes-
sage at a time; however, a new context of the object can be allocated (activated)
which uses the same set of variables as the original object. The lock variables are
used in a fairly straight-forward way to control interference between methods which
run concurrently. However, locking is only allowed on instance variables. A dis-
tributed object consists of one or more constituent objects. Each of these objects
has the same behavior, i.e. the same set of methods available, but they may have
different local data. An object which sends a message to a distributed object has
no control over which constituent object handles the message. ConcurrentSmalltalk
supports two distinct categories for objects: “atomic” objects and “non-atomic”
objects which represent different levels of abstractions. The atomic objects act as
serializers; messages to such objects are processed sequentially. The non-atomic ob-
jects are compatible with objects in Smalltalk; processing of invocation messages to
such objects is concurrent.

AUM [162, 163] is a concurrent programming language which can be characterized
by its stream-based computation model and by its relational representation. A
stream is different from a thread in that a thread is a sequential set of actions
(which may be performed concurrently with other threads), while a stream is a
potentially concurrent set of actions (which may also be performed concurrently with
other stream.) Stream computation may be explained using three terms: “inlet”,
“outlet”, and “nil”. These are all defined from the object’s point of view. An inlet
is where a stream may come into an object and an outlet is where a stream may
leave an object. When an outlet is closed, it is referred to as nil. Messages from
various streams may be merged together nondeterministically, and messages from
one stream may be appended to messages from another stream. Messages become
stream connector as the stream flows from one object to another. AUM consists
only of objects which communicate with one another via streams. A'UM supports
multiple class inheritance.

Blaze2 [103] is designed to allow multiple threads within an object, i.e. both con-
currency between objects and within objects is supported. Methods are “serial”
by default, but may be explicitly declared to be “parallel”. Both serial and paral-
lel methods may be declared for each class. When an object is executing a serial
method, no other methods may be active. Any number of parallel methods may

12

Previous and Related Work on Object-Oriented Programming Languages

be executed concurrently as long as no serial method is currently active. Both read
locks and exclusive (write) locks are supported. Blaze2 does not support any form
of inheritance, and is therefore an object-based language, see [151, 152, 153] for the
classification of languages.

CLIX [68] incorporates the notion of objects with communications as found in
distributed systems. That is, the underlying communication system is modeled as
a mail system. The basic elements in CLIX are objects and communications. An
objects is similar to the notion of a process. Objects execute asynchronously and
communicate via message passing, although synchronous communication are also
supported. Additionally, messages may be forwarded from one object to another-
if the message was originally a synchronous (blocking) one, then its reply address
is provided to the object that the message is forwarded to. This forwarding of
messages implements a form of delegation (inheritance is not supported). Messages
are guaranteed to be delivered, and message ordering is preserved for all messages
sent by one object to another.

Parallel Object-Oriented Language (POOL) [8, 9] is specifically designed to
run on a specialized parallel architecture called Decentralized Object-Oriented Ma-
chine (DOOD) [14]. Concurrency is only supported between objects, i.e. concurrent
methods within a single object are not allowed. An object in POOL cannot receive
a message until it is ready to do so. It may indicate a readiness to receive only some
subset of the messages which it is capable of responding to. Both synchronous and
asynchronous message passing are supported. POOL is an object-based language.

PROtocol-constrained Concurrent Object Language (PROCOL) [23] is a
C-Based object-oriented language. Concurrency is allowed between objects, but not
within an object. Actions (methods) in PROCOL are atomic, i.e. they uninterrupt-
ible. Message passing is synchronous in that the sender must wait until the message
has been received. The sending object does not wait, however, on the receiver to
do any processing-as soon as the message is received a reply is sent back, so that
both the sender and the receiver of the message are then executing concurrently.
An object will accept messages only when it is ready to do so. It may use various
guards to conditionally accept only certain kinds of messages from various objects.

PROCOL is an object-based language.

SINA [142] is an OOP language for distributed and concurrent computing. It is
based on the notion of prototypes [93]. SINA supports concurrency within objects.
There are two kinds of objects in SINA, “passive” objects (instances of primitive
types) and “active” objects (processes). Methods can process invocation requests
either on a first-in-first-out basis or according to a priority scheme (as an integer-
valued parameter). Every active object has a queue for buffering invocation request
messages. In order to synchronize concurrent activities an object’s interface can be
in one of two states hold (messages are buffered in the queue) or accept (messages

13

2.2 Actor Based Languages

can be processed). Moreover, an object operation can put in the accept or the hold
state by executing the accept or hold operation, respectively.

Ellie [10, 11] is a fine-grained OOP language for parallel and concurrent computing.
Ellie is a strongly typed language. Like Smalltalk, everything is treated as objects,
e.g. classes, types, block, methods and regular objects. It is a prototypical language
where objects can be organized into hierarchies. Multiple inheritance is supported.
Synchronization is supported by means of interfaces that can change over time,
i.e. an object is allowed to select between incoming requests as it pleases. An
incoming request, that cannot be served because the accept interface is closed or
the operation excluded, is delayed. When the interface is changed, the delayed
requests are inspected in FIFO order to look for the first request that can be served,
if any. If a request is found, it will be served immediately.

Orient84 /K [69, 70] is a concurrent language which combines logic and OOP.
Objects in Orient84/K are called “knowledge objects” (KO), which may execute
concurrently. They consist of three parts: a behavior part, a knowledge part, and a
monitor part. The behavior part is very similar to an atomic object in ConcurrentS-
malltalk. It consists of a collection of instance variables and a set of methods. Both
synchronous and asynchronous message passing, as well as future style messages
of ABCL [156, 158], are supported. The knowledge part is essentially a Prolog-like
collection of first-order predicate logic relations. The contents of the knowledge part
can be examined and altered by the methods in the behavior part. The monitor
part is used to achieve synchronization when required. Orient84/K supports mul-
tiple inheritance. Mutual execution are realized through changing the interface of
the object.

2.2 Actor Based Languages

The actor model [65, 1, 2, 3, 66] is not object-oriented as it does not support inher-
itance or delegation; rather it is more appropriately considered to be object-based.
However, it may serve as the foundation for an actor-based OOP language.

An actor is simply an object which responds to messages, but it can only respond to
a single message at a time. A message queue is associated with each actor to hold
incoming messages in the order of arrival. Two assumptions are inherent within the
actor model [92]:(1) message are guaranteed to be received within a bounded time
interval, and (2) an actor waiting to execute will eventually do so. An actor has
one or more scripts which it can use in response to various messages (a script is
essentially the equivalent of a method in more conventional OOP languages.)

Concurrency is supported in many ways. Messages can be sent to several actors,
so that each is responding to its own message. An actor responds to exactly one

14

Previous and Related Work on Object-Oriented Programming Languages

message then “dies”. One of the things that it must do before it dies is to specify a
replacement which will handle any additional messages sent to that actor (actually,
the replacement will respond only to the next message, it too must specify a replace-
ment which will then handle the next message, etc.) The message queue associated
with the original actor is transferred to the replacement actor. This replacement
may be another actor all together, or, more likely, a “clone” (possibly modified) of
the original actor. This replacement may be specified at any time. If the creation
of the replacement is the first thing that the actor does (or at least before it is
finished responding to its message), then the replacement may begin to respond to
the next message while the original actor is continuing to service the first message.
In servicing a message, the actor may send messages to other actors.

Several languages have been designed around the actor model. Following is some of
these languages.

Acore is a Lisp-based Language [96]. As such, it incorporates ideas from both the
actor model and from lambda calculus. The functional style of lambda calculus
easily expresses divide and conquer algorithms in Acore. As such, both objects
which can execute scripts concurrently and functions which evaluate their arguments
concurrently are supported.

ACT++ [76] is a proposed concurrent OOP language which combines both the
actor model of computation with the class structure of C++. It is intended for
real-time applications. The main intentions of the project are to: determine if the
flexibility of the actor model can be maintained when an inheritance discipline is
added, determine the usefulness of a concurrent OOP language in general and of
the actor model specifically for real-time applications, and design the kernel of an
operating system (called the REACT kernel) to meet the needs of real-time system.

Actalk [24] is an implementation of Actors in Smalltalk—80. It is designed as a
minimal extension which preserves the original Smalltalk—80 language, i.e., it is
designed as a superset of Smalltalk. Standard Smalltalk—80 objects are passive, but
actors are active and autonomous. An actor is built from a standard Smalltalk—80
object by associating a process with it and by serializing the message that it receives
into a queue. For this purpose, two classes, Actor and ActorBehavior are added to
the class library. It is intended as a platform to express, classify, and test various
computation and execution models of actor languages.

Actra [141] is a project investigating future generation industrial computer systems
based on the actor model. Its primary goal is to provide an integrated, multi-
user, multi-processor object-oriented development environment for use in medium
and high performance industrial applications dealing with complex man-machine
systems. It was originally designed as an extension of Smalltalk—80, but the current
system is an extension of Smalltalk/V Mac [44]. A new class of objects called actors

2.2 Actor Based Languages

is added. An object of these classes, unlike Smalltalk processes, is a first-class object.
They can sent messages and its behavior can be specialized.

Cantor [16] is a research tool developed at Caltech for experimenting with fine-
grain message-passing concurrent computers called multicomputers. The physical
platform being built is an ensemble of thousands of single-chip computing nodes in
which each chip contains a processor, a memory system, and a message-passing in-
terface. A message routing network is provided to connect the processors of message-
passing interface together. Since memory is located on each chip, its size is fairly
small. This small memory precludes the use of general models that have been de-
veloped for more conventional systems.

Plasma—IT [92], also known as Plasma-parallel, is an actor language designed to
be executed on a set of virtual machines which communicate via messages that can
be distributed on diverse types of computer architectures. Each virtual machine is
running on a fixed physical processor that can execute many actors in a time sharing
mode. An actor can send a message to another one on any virtual machine. Both
blocking and non-blocking message passing are supported. Plasma—II supports two
types of actors: pure actors and serialized actors. A pure actor is created when it
receives a message and then disappears after its script is completed. A serialized
actor is what one would think of as an object in more conventional systems-it has
a state which is maintained between servicing its messages.

Act 1 [94] is a proposed programming language based on the notion of actors, active
objects that communicate by message passing. Act 1 incorporates two special actors:
“future” which creates concurrency by dynamically allocating processing resources,
and “serializers” which restricts concurrency by constraining the order in which
events take place and has changeable local state. Act 1 exploits delegation for
knowledge sharing rather than class inheritance. Whenever an actor, called “client”,
receives a message it cannot answer immediately on the basis of its local knowledge
and expertise, it delegates the message to another actor called its “proxy”. This
avoids the need for duplicating common knowledge in every client actor.

Actor Based Concurrent Language (ABCL) [156, 158] takes the view that
objects coexist with other more traditional types of data, i.e. user-defined objects
are treated differently than system-supplied types. Objects communicate by passing
messages to one another, while more conventional data are manipulated by functions
and operations. It supports three types of message passing: “past” (send and no
wait), “now” (send and wait), and “future” (reply to me later). Two modes of
message passing are supported: “express” and “ordinary”. An express message will
interrupt the processing of an ordinary message, but not another express message
that is being serviced. As such, each object has two message queues—an express
queue and an ordinary queue.

16

Previous and Related Work on Object-Oriented Programming Languages

The first implementation of the language, called ABCL/1, like the underlying ac-
tor model, did not support any form of inheritance, and is therefore an object-
based language. However, when adding inheritance to the language, the concept of
“inheritance anomaly” is introduced into object-oriented concurrent programming,
[97, 98, 99, 100]. Inheritance anomaly is classified into three major categories:(1)
Partioning of acceptable states (State Partitioning Anomaly), (2) History-only sen-
sitiveness of acceptable states (History-only Sensitiveness Anomaly), and (3) Mod-
ification of acceptable states (State Modification Anomaly). It was shown that ex-
isting synchronization mechanisms are weak in one or more of these anomalies. The
appearance of these anomalies has a great significance because, from now on, any
forthcoming proposals for language tools in object-oriented concurrent programming
can and should be demonstrated to successfully solve these critical cases.

2.3 Logic Based Languages

In the last few years, a large number of languages have been proposed which combine
logic programming and object-oriented programming. We distinguish between three
main groups of these mergers:(1) object-oriented languages extended with logical
constructs, (2) two base languages (object-oriented and logic), interfaced, and (3)
logic based object-oriented languages, either logic based languages extended with
object-oriented constructs or higher object-oriented languages built on top of logic
based languages.

This classification was motivated by similar ones proposed in various papers [145,

42, 43, 28].

The examples of object-oriented language extended with logical constructs is Ori-
ent84 /K [69, 70] and LogiC++ [155]. In Orient84 /K, deductive retrieval is facilitated
through built-in methods. Besides, all logical constructs are viewed as objects. In
LogiC++, a program is basically a C++ program. However, the Horn clauses in
Prolog are used to express methods for the objects. Hence, the expressive power of
Prolog based on declarative semantics is obtained for defining methods.

The example of a language interface is Prolog/Loops [88], where facilities have been
provided for making calls to Loops objects from Prolog, and for setting Prolog goals
form Loops (in the form of messages).

Mergers with a logic based language are the most numerous. The historically earliest
proposal by Shapiro and Takeuchi [127] and Zaniolo [164] have had strong influence
on the development of this group, and may thus be also viewed as belonging here.

In the following, the design and implementation issues concerning classes, objects,
state, and inheritance will be discussed. Then, we present the proposals which
integrates logic and objects.

17

2.3 Logic Based Languages
Classes

A class is usually mapped to a set of Horn clauses in the underlying logic program-
ming language [102]. In languages that support a module system, a class may be
mapped into the module construct of the underlying logic programming language
[7]. Classes can be defined as Mizins, [85, 54], whose purpose is solely to augment
the structure or behavior of other classes. However, there are more varied mappings
possible for instances of classes (objects), including sets of clauses, processes, or
terms.

Objects

Objects are the run-time instances of classes. However, several languages do not
distinguish between them at all; instead preferring to call everything an object

[109, 113, 7].

The most popular way is to treat objects as encapsulated label collection of clauses
as in [164]. In [79], terms is also treated as (immutable) objects which means
that terms can be sent messages. Others, may allow objects to be parameterized
[102, 164], called generic objects in [102].

Logic programming languages allow programs to have a declarative and procedure
interpretation. In concurrent logic programming, a third interpretation is possible
where a conjunction of goals can be regarded as a system of concurrent (proof)
processes [43]. Each process is an executing recursive predicate, and the processes
communicate by partially instantiating shared variables. This process interpreta-
tion is the basis of all the languages which combine object-oriented programming
and concurrent logic programming. A seminal paper by Shapiro and Takeuchi was
the first to investigate the connections between concurrent logic programming and
object-oriented programming [127]. Their model, based on the actor model, can be
summarized by the following points:

1. An object can be represented as a process which calls itself recursively and
holds its internal state in unshared arguments.

2. Objects communicate with each other by instantiating shared variables. Usu-
ally, one of the arguments is a message stream to the object, represented as a

lazy list (one whose tail can be undetermined).

3. An object becomes active when it receives a message, otherwise, it is sus-
pended.

4. An object instance is created by process reduction.

18

Previous and Related Work on Object-Oriented Programming Languages

5. A message is responded to either by binding a shared variable in the mes-
sage, so-called incomplete messages, or by sending a dedicated message in the
opposite direction.

6. Inheritance is implemented by forwarding unrecognized messages to another
object.

There are a few things to note about this model. First, the type of inheritance
that follows naturally from this model supposes that all the ancestors of an object
from which it inherits properties are themselves fully fledged objects. This can be
easily modeled within the concurrent logic programming languages: each object has
separate private channels back to the ancestor through which it passes back the
information. The hierarchical structure of the objects is reflected by the structure
of the communication network that they form. This can also cope with multiple
inheritance using several channels, though the mechanisms used become somewhat
cumbersome.

Second, when we create an instance of an object, it is also necessary to create a fresh
instances of all its ancestors. So instead of creating one object, we may need to create
half a dozen separate objects, each of which has the normal object overhead.

Third, there is another perhaps more important difficulty with inheritance in this
model which has to do with dynamic binding and the “self” variable. To be able
to provide this facility with the explicit channel system that is used in this model,
an inheritance path would need to have two channels, one to pass the message up,
and the other to pass the seltf messages back down again. But when they reach
the original object, there is a possibility for deadlock. It is currently awaiting a
response to its original message and to do that it must defer the consideration of
other incoming messages. But this message is itself an incoming message.

Fourth, verbose description of objects with state and communication. Each method
must at the very least repeat the names of the state variables in both the head of the
method and in the tail recursive call. Each method must explicitly fetch the next
method from the stream and then recur on the stream of the remaining messages.
Such tedious repetition easily results in subtle mistakes.

Fifth, relying on streams as a communication medium may cause problems. These
problems are solved in AKL by introducing Ports [73], objects (agents) that com-
municate by posting and checking constraints upon bags.

Sixth, no syntactic support for OOP was proposed.

As shown, Shapiro and Takeuchi’s work did not deal with some of the fundamental
issues involved in OOP, such as multiple inheritance conflicts, selt communication,
the accessing of state variables and clauses. Consequently, the concurrent logic based
OOP languages developed since can and should provide solutions to these problems.

19

2.3 Logic Based Languages

State

One of the most difficult problems on the way to an integration of object-oriented
and logic programming is the modeling of changeable object state since multiple
assignment of values on logic variables cannot be performed [26]. To overcome this
problem, some proposals simulates the assignment statement in logic programming
by using the built-in non-logical operators assert and retract of Prolog!. There
are many problems with assert/retract which motivate e.g. Warren [149] to talk
about “The evils of assert” and which make programming using these operators a
rather non-declarative effort [6]. One solution is proposed in [30] has utilized an
intentional semantics to describe Horn clause logic, which allows intention variables
to be used in programs. Such a variable is actually a function from a state to a set
of values, and also contains a sequence of states which represents the partial history
of the object. The state is changed at resolution and through stepwise instantiation
of the history list. Whereas in [34], a new inference rule is introduced which in
responding to a goal (message) consumes two literals: the object names and the
procedure names and introduces a new object literal in a derived goal which models
operations that change the state. Another satisfactory, even if limited solution,
could be as in [102] to represent classes as generic objects with variable specified in
their names. Such variables perform some of the same functions as instance variables
in conventional object-oriented programming, although they do not change state.
State change can be simulated by creating new instances. From the declarative point
of view, as pointed out in [102], variables in the class name stands for infinitely many
ground instantiations of the class determined by substituting terms of the Herbrand
universe to the specified variables. In other proposals, supported by a concurrent
logic programming language, state change is represented by incarnating the tail-
recursion process with the new state instead of the old. This lack of side-effects
leads to a simpler, clearer declarative semantics.

In concurrent languages, an important problem with state changes is that calcu-
lations do not interfere with other calculations using the old state. In [78], the
operation that function on the successive state of the object is serialized. Serializa-
tion is achieved by using message queues. This is implemented as a definition of
a “continuation” method that works on the new state. Another solution in [63] is
to maintain a “threaded” state such that only one of the state-using sections in a
method body can at the same time be entered. The threading is implemented by
means of intermediate variables which correspond to state transitions.

Several languages contain the notion of data-driven programming, which allows
daemons to be fired when certain events occur, such as state updates [31, 18].

'In some Prolog systems, only predicates declared as dynamic is allowed to be modified by other
predicates.

20

Previous and Related Work on Object-Oriented Programming Languages

Inheritance

Wegner [151, 152, 153] classify object-based programming languages into three cate-
gories: object-based languages, class-based languages, and object-oriented languages.
A language is object-based if it supports objects as a language feature. A language is
class-based if it requires all objects to belong to a class. A language is object-oriented
if it requires classes to support inheritance. Liberman [93], differs in believing dele-
gation and inheritance to be different mechanisms. Systems based on delegation are
called prototypes and, it is noted that they serve both instances and templates for
descendents. In these systems, an object can delegate, by forwarding, messages to
one or more of its designated ancestor objects. There is a trade off of space versus
execution time between class inheritance systems and prototype systems. Proto-
type systems require less space but more time to bind methods or obtain attribute
values. By contrast, systems using class inheritance have faster method lookup but
may require more space.

Most languages are based on the notion of prototypes [146, 79]. As mentioned
before, with Shapiro and Takeuchi’s model this may have the overhead of creating
instances of the ancestors of the newly created object.

Multiple inheritance introduces the problem of deciding which method to use when
there are methods with the same name but different or unrelated semantics inherited
from different superclasses. This problem is often resolved in conventional OOP
languages, by imposing a standard search order: the ancestors of a class are searched
in some predetermined order and the first one which contains an implementation
of the method is used. The search order is often based on the order of declaration
of ancestors in a class. This is simply provided in [164, 110], as a default strategy,
by relying upon the same searching principle of the underlying Prolog system. This
search is a branch-first, left-to-right traversal of the object hierarchy starting at the
object (or instance of an object) to which the message was originally sent. In [124],
the problem is handled by forcing the user to choose which ancestor to inherit from.

In addition to inheritance, some languages allow an inverse of the inheritance relation
to coexist. One example in [164] is the “sub” relation which returns the name of
the object below the current one in the inheritance graph and through backtracking
can return them all. This leads to another technique of searching the inheritance
graph.

Conventional OOP languages presume overriding inheritance which in the logic
context means that if a given class owns a definition for a called method, and the
invocation fails, then no definition from superclasses will be searched for or tried. In
mergers with logic, it seems equally reasonable to allow further pursuing until either
success will be achieved, or the place of appropriate definitions will be used up. Such
inheritance is called cumulative [145]. Other language designers have taken the view

21

2.3 Logic Based Languages

that a message send should not fail, as in [33]. In [102], a differential inheritance
filter capability is provided in order to be able to exclude inherited methods.

Inheritance is usually implemented by inheritance rules [31]. When the matching of
a message with inheritance rules results in searching the inheritance graph at run-
time, a much run-time overhead is added. Another implementation approach for
inheritance, is to copy all the clauses of the inherited classes over to their inheritor
at compile time [33, 79, 57]. In [124], all inheritance is computed at compile time.
However, it does not resolve the collision that occurs when one class inherits the same
method from two unrelated ancestors. In languages based on Shapiro and Takeuchi’s
model [79], a link between an object and its ancestor is usually implemented by
a shared logical variable which acts as a stream for forwarding messages from the
object. Multiple inheritance presents a problem since languages based on concurrent
logic programming cannot use backtracking to search through the inherited objects
for the right clause, and once a message has been forwarded to a particular object,
the choice is fixed. One answer is to broadcast the same message to all the inherited
objects, but this makes it possible for a variable in the message to be bound more
than once, causing one or more of the objects to fail. In [41], broadcasting primitives
exist which automatically make unique copies of a message for each inherited object.
Even so, problems still remain about what to do if more than one copy of the message
is successfully processed, or if all the copies fail to deal with.

Another important feature in OOP is the selt communication, so-called self-reference,
since it allows the meaning of the self application of a method from a class to de-
pend on method definitions in the class of the object that was originally received the
message, normally below it in the inheritance hierarchy. Typically, this is achieved
through late binding, which identifies the object on whose behalf an operation is be-
ing executed rather than the textual module in which the self reference occurs. This
means that a self message is always tried against methods in the class at the bottom
of the inheritance graph for a particular invocation. Some languages disallows self
communication, e.g. [117].

Self-reference may be represented as an extra argument in every message [7]. This
extra term will contain the name of the initially invoked object, and then if a self
message is necessary, the corresponding goal will use this name to invoke this object.
In concurrent logic programming, self-reference is normally implemented by adding
an extra (output) message stream to every object [41, 79]. Self streams can exist
throughout the lifetime of the objects, but an alternative is to only set them up for
the duration of the computation of the forwarded messages, as in [79]. In [63], self
messages can be given priority over external communication.

In Prolog++, there is a “myself” message which is applied to the method in the
class in which the myself occurs [109].

22

Previous and Related Work on Object-Oriented Programming Languages

Languages that represent the state by clauses allows state to be inherited much the
same like methods. Languages based on Shapiro and Takeuchi’s model, [41], do not
permit state to be inherited. This is due to the implementation of state as unshared
argument of a process, which makes it difficult to share with other processes. The
normal solution is to force the state in an inherited object to be explicitly manip-
ulated by clauses which are activated by messages sent by the inheritor. However,
the use of such messages may interact unfavorably with messages from other parts
of the object network which manipulate the same state.

Zaniolo’s objects [164] is the seminal work on combining Prolog with OOP. It
is derived from work in Al on “isa” hierarchies. This represented parameterized
objects with methods lists, expressed directly using Prolog operators. Inheritance
is overriding. Ancestors are tried in the order in which they are declared. The
implementation uses meta-interpretation in Prolog. Self-reference is not supported.

Extended Self-contained Prolog(ESP) [31, 32] is a language built on top of
KLO0, a Prolog like language, and the run-time is directly supported by PSI, a
Personal Sequential Inference machine. It is designed as a system programming
language for PSI. Objects are represented as vectors of KLO. Changes of instance
variables are performed by assigning new values to these vectors; an efficient imple-
mentation of destructive updates similar to assert and retract operations. Names
of classes to be inherited must be listed in a class definition in the order they are
inherited. ESP imposes many restrictions on the use of logical variables, e.g. in
a message passing, the variables which stands for the receiver must be bound be-
fore the execution. There is also a problem concerning the recovery of backtracking
effect.

Prolog++ [109, 110, 146, 111, 7] is an extension of LPA Prolog with object-oriented
programming. It is a prototype language. Objects are either static or dynamic.
Dynamic objects can be created or augmented at run-time, while static objects are
fixed and optimized at compile time. Methods are Prolog clauses. They can be
defined as public or private, have multiple definitions and be truly dynamic, i.e.
they can be augmented at run-time. Inheritance is overriding. Multiple inheritance
is allowed. Prolog++ supports data driven programming through special objects
called daemons. State is changed through the assert and retract primitives of LPA
Prolog. Prolog++ provides a set of object variables. These are reserved words
of the language which are used for representing arbitrary objects whose names are
calculated at run-time. For example, “selt” denotes the self object, “myself” denotes
the object in which the word textually appears, and “sub” denotes a child object.

Logic and Objects [102, 101] has been developed at Imperial College, London, by
McCabe. It is a very expressive language system incorporating ideas from Prolog,
object-oriented programming systems, and functional programming. Both overrid-
ing and cumulative inheritance are supported. The system is based on a concept
called “class templates”. These are classes which are parameterized and when they

23

2.3 Logic Based Languages

are called enabling a declarative approach to generic descriptions of objects. This
concept has proposed a solution to the treatment of state which relies on the in-
stance’s label being returned at the end of message processing. The label will contain
new state values as its parameters, and these can be used as the initial state for the
instance when it is next invoked. However, all other instances must be sent this label
in order for them to use the changed instance. Multiple inheritance is supported.
The resolving of the conflicts that may be caused because of multiple inheritance
is left to the programmer. A differential inheritance filter capability is provided in
order to be able to exclude inherited methods.

SICStus Prolog Objects System(Prolog Objects) [7] is an extension of SICS-
tus Prolog with object-oriented programming. It is a prototype language. An object
is a named collection of Prolog predicate definitions. In addition an object may have
attributes that are modifiable through built-in access and update methods. State is
changed through the assert and retract primitives of SICStus prolog. In addition,
generic objects is supported which defines objects with variables which have a global
scope to the object being defined. Objects may be defined in a file, or dynamically
created during the execution of a program. Inheritance is overriding. Multiple in-
heritance is allowed as well as light weight objects called instances. Such an object
may only inherits from one object and have only attributes derived from its super
object. Self-reference is allowed and the self object may be retrieved in any method
using the method “self”. Every object is translated to a SICStus module. Each
object that has a subclass posses automatically the “sub” relation which returns its
subclass.

Logic, Inheritance, Functions, Equations(LIFE) [5] is based on [4] which rep-
resents a rather different approach to incorporating objects into logic. LIFE uses
the so-called ¥-terms instead of conventional terms to represent classes and objects.
Arguments in a complex 1-term (corresponding to a normal compound term) are
indicated by attribute/value pairs rather than by their positions. A labeling schema
over terms is employed to logically link objects into “isa” hierarchies. Attribute
inheritance is then achieved by overloading unification to take the term hierarchy
into account when attempting to match two terms. Assignment is supported, in-
cluding assignment to terms, though no semantics is as yet forthcoming. There is
not possibility of overriding. Nor can we express the notions which involve the use

of self.

SPOOL [53] is an object-oriented language built on top of VM /Programming in
Logic, an IBM implementation of the Prolog. From the viewpoint of Prolog, the lan-
guage supplies Prolog with the facilities for modularizing program database. Meth-
ods are treated as Prolog clauses and messages to objects as goal invocations. State
information is stored as extra clauses, which are asserted and retracted when the
state of an instance needs to be changed. A special type of messages called “anony-
mous” is supported in order to be able to send a message without explicitly speci-

24

Previous and Related Work on Object-Oriented Programming Languages

fying the receiver. The object which can serve this message will respond. Multiple
inheritance is allowed. Inheritance is overriding. Self-reference is not allowed. The
compiler attempts to reduced the number of asserts and retracts by analyzing mes-
sage passing and collecting together sets of state accesses and changes.

Structured Concurrent Object Oriented Prolog(SCOOP) [147] is an exper-
imental language implemented in Prolog that tries to combine the best of logic,
object-oriented and concurrent programming. Classes represent independent Prolog
programs. Some clauses are immutable and fixed for all objects; but others, can
be asserted and retracted by the object. The fixed (static) clauses act as meth-
ods whereas the dynamic ones act as state variables. Objects can be augmented
with new clauses passed as parameters at creation time or asserted /retracted during
program execution. Dynamic predicates are limited to facts for efficiency reasons.
SCOOP support processes, synchronized by the exchange of messages. Self object
may be retrieved in any method using the method “thisobject”. Inheritance is over-
riding. Messages are distinguished as “local call” that accesses predicates internal
to the object or “remote call” that accesses predicates of other objects. In order to
protect locality and protection for object’s state, SCOOP does not allow the assert
or retract as goals in a remote call. This restricts the modification of object’s state
to its own context. Management and access of dynamic clauses are more complex
than for static clauses. In particular, dynamic clauses are replicated in each object
whereas static clauses exist in only one copy.

O-CPU [104, 105] combines logic and object-based programming in a concurrent
language. Objects, called P-units, are expressed as Prolog databases, i.e. as a col-
lection of Horn clauses. Methods are represented as a collection of Prolog clauses.
P-units activate “demonstration processes” to solve goals, i.e. to serve messages
received, and they can activate parallel demonstration processes when needed. Sim-
ilar to the actor systems, O—CPU supports passive demonstration processes(PDP)
and active demonstration processes(ADP). A PDP is like an unserialized actor-it
does not have a private state. Lack of an internal state allows a high degree of
concurrency to be achieved, but also makes the PDP of limited usefulness. An ADP
does have an internal state, which means that synchronization may be required. O—
CPU does not allow logical variables to be shared between different ADPs. For this
reason, ADP interactions cannot be expressed in terms of streams and annotated
variables. Communication between ADPs has been implemented by using particular
passive objects, Prolog terms, that behave like queues.

Linear Objects [12, 13] is based on linear logic [55]. This language utilizes the usual
idea of equating an object with a process, and state with process arguments, but this
is encoded using clauses containing multiple literals in their heads (cf. [34]). Each
clause can be thought of as a method, while the head literals correspond to object
states. A method is selected if its head matches the goal corresponding to the object
in its current state. A crucial aspect of the matching is that it is done in terms of

2.3 Logic Based Languages

multi-set inclusion (i.e. unordered lists) such that the object must contain at least all
the states in the head. This permits an object to contain more state values than the
method it is using, and so the object can be thought of as a more specialized instance
of the class whose methods it is utilizing. This is a very elegant way of encoding
inheritance since an object will only consist of structured process. This is in contrast
to an approach which uses delegation as its inheritance mechanism, where there will
be as many processes as there are classes, and a complex communication protocol
is required. Another criticism is that a method does not belong to a distinguished
class explicitly by the program; its owner is only determined at run-time by the set
of object literals which the method lists in its head.

Sandra [46, 47] is an object-oriented language built on top of the concurrent logic
language core-Sandra [45, 48]. Core-Sandra is based on the Shapiro and Takeuchi’s
model. Before a predicate is defined, the types and the mode of instantiation of its
arguments must be declared. Sandra implements inheritance by delegation. The
designer of a guardian, an object definition in Sandra, is allowed to choose a subset
(possibly empty) of the interface of the ancestor guardian. Self-reference is allowed.
Multiple inheritance is allowed. However, it is the designer’s responsibility of the
inheriting guardian to resolve any name conflicts due to multiple inheritance.

Vulcan [78, 79] is an object-oriented language built on top of Concurrent Prolog. 1t
is based on the Shapiro and Takeuchi’s model. The main purpose in building Vul-
can is to overcome the shortcoming of object-oriented programming in Concurrent
Prolog. This concerning its verbosity and the poor linguistic support. Vulcan re-
duces verbosity by allowing the user programs declare the state variables once and
methods are written in a concise notation and expanded into Concurrent Prolog.
The pseudo-variable “Self” is a stream which refers to the receiver of the message.
Message sending is serialized such that messages are function on successive state
of the object. Vulcan packages any expressions lexically after a send to Self into a
“continuation” method in order to refer to the new state. Vulcan offers a uniform
way of dealing with objects as processes and terms. This has lead to the treat-
ment of terms as immutable objects which means that terms can send messages.
Vulcan implements inheritance in two ways. The first is description copying se-
mantics corresponding to subclassing. The second is inheritance by delegation to
parts described by Shapiro and Takeuchi’s model. For subclassing, the subclass is
created with source copies of all methods and instance variables inherited from its
superclasses. For delegation, each method is translated into two clauses: one for
handling normal messages and another for handling delegation messages. Multiple
inheritance is allowed. However, it has the same criticism concerning the multiple
inheritance problems in Shapiro and Takeuchi’s model.

Polka [11] is an object-oriented language built on top of Parlog. It is based on the
Shapiro and Takeuchi’s model. Polka treats terms as classes, called “term classes”.
Term classes are terms of the underlying logic programming language which are

26

Previous and Related Work on Object-Oriented Programming Languages

manipulated by the meta-interpretations. Whereas, other constructs are based on
the committed choice process view. State variables are assigned new values using an
operation called “becomes”. This allows state variables to be encoded in much less
verbose way than the underlying language. Polka also has a special type of message
called a “suspendable” message. This is an ordinary message tagged with a list of
logical variables which will not be delivered to its destination until all the variables
on its associated list become bound. This is the way to handle sending messages in
a batch. Polka allows an object to execute a method without waiting for a message
to arrive. This is useful when encoding clock, producers, or other types of generator.
Self-reference is allowed. Multiple inheritance is allowed. However, it has the same
criticism concerning the multiple inheritance problems in Shapiro and Takeuchi’s
model.

Logic Programs with Inheritance [57] is introduced in order to remedy the main
weakness in Shapiro and Takeuchi’s model [79]- verbose description of state change
and of stream communication (cf. [78, 79]), and the lack of class-like inheritance. A
procedure is a class definition. Each clause of the procedure is viewed as a method.
State is unshared arguments. The concept of “implicit arguments” is introduced
in order to reduce the proliferation of variable names. The new style differentiates
between global and local (hidden) arguments. Multiple inheritance is allowed. In
addition, an inherited class can inherit the same class several times with different
instantiation of the class parameters. Self-reference is not allowed and “self” is
used as a sugared syntax for the tail recursive call that simulates a state change.
Inheritance is implemented by code copying. The resolving of the conflicts that may
be caused because of multiple inheritance is not supported.

Oz [63, 62] integrates the features of OOP to kernel Oz [131]. It is a very expressive
language system incorporating ideas from constraints and concurrent logic program-
ming. The state of objects and messages are represented as records, a more general
structure than Prolog terms. Each state record has the label “state” and consists of
fixed number of attributes. The order of attributes is not significant. State change
is provided by the side-effect free predefined operation “adjoinAt” which constructs
a new state record by adjoining to a given state record a given value at a given
attribute. Objects are created as instances of classes. Classes define methods and
attributes. A class can inherit from one or several classes. Objects can only be
created from classes that inherit directly or indirectly from the predefined class
“UrObject”. The label of a message specifies the method to be applied. A method
is modeled as a procedure, called abstraction, computing an output state from an
input state, a message, and the receiving object. The body of a method threads the
input state of the method through state access and update procedures and returns
it as the output state. The construct “method application” gives messages a prior-
ity over external communication. This applies the message directly to the available
state instead of scheduling the message to the object where other messages may be
served first. Using method application, batch methods can be defined as a way to

27

24 AKL+

enforce an order on messages. Oz makes it possible to express lexically scoped pri-
vateness of attributes and methods that should not be visible outside. Unrecognized
messages is forwarded to the method “otherwise” defined in UrObject for reporting
an error. Two types of objects are supported: cell-based objects and port-based
objects (cf. [73]). The “cell” construct provides cell objects with a minimal form
of state change. A Port object enhancing stream-based objects by eliminating the
need for stream merging in case of many-to-one communication and also guarantees
that streams are written consistently. Objects are concurrent due to the inherent
concurrency of Oz. Objects are synchronized using messages that works upon the
availability of the state. Multiple inheritance brings the complication that several
ancestors of a class may define a method for the same label. The general rule for re-
solving such inheritance conflicts is that the closest ancestor defining the method is
chosen. Obviously there are situations where the closest ancestor defining a method
is not unique. In these situations classes appearing more to the right in superclasses
declaration are given precedence over classes appearing more to the left (cf. CLOS
[21, 82]). If these additional precedences do not suffice to resolve an inheritance
conflict, Oz will reject the class definition and print an error message.

2.4 AKL+

AKL++ is the main contribution of this thesis. It is built on top of AKL. AKL is a
major landmark in the new field of concurrent constraint programming incorporating
ideas from constraints and concurrent logic programming. The concurrent constraint
model can accommodate object-oriented programming along the lines of Shapiro
and Takeuchi’s model. Unfortunately, this model is intolerably low-level. AKL
introduced the “port” construct that efficiently solves the problems with streams in
this model [73]. AKL+ utilizes a very simple and flexible concepts that supports all
features that are needed for any object-oriented application.

An AKL+ class can be defined with attributes, methods, access control of methods,
and superclasses. It supports generic classes. A parameter of a generic class lies
in four categories: class abstraction, constant, object or method abstraction. The
passing of a class parameter is not resolved at compile time but rather all references
are bound at run-time. This is due to the dynamic binding of parameters with
the actual code. A set of implicit behavior is defined for each defined class. These
are supported for error handling, attributes manipulation, and class membership.
Classes, methods and instances of classes can be expressed as first-class values in
the language which may be passed as arguments, returned as results and stored in
attributes of objects. Defining classes and methods as abstractions provides for all
higher-order programming techniques.

28

Previous and Related Work on Object-Oriented Programming Languages

One of the most important design issues, in AKL+, is to supply programmers
with the minimum set of efficient and effective built-in standard classes (library).
This fulfills the users computational needs as it provides him with a simpler, and
easier-to-use computing environment. AKL+ standard classes are classified into two
categories: state representation standard classes and object type standard classes.
AKL+ provides two standard state classes: the “state_hash” class and “state_array”
class as an important piece of global information that is used by instances or other
clients of the class. These standard classes greatly improve the efficiency in manip-
ulating attributes. AKL+ provides three standard object type classes: the “object”
class for creating port objects, the “cell” class for creating objects as light-weight
objects that provides a minimal form of state change, and a “sync_object” class for
synchronizing the acceptance of messages to the objects. These standard classes
create objects with encapsulated state. AKL+ provides two standard classes for
programming the synchronization constraints namely: “synchronizers” and “transi-
tions”. The main advantage to the synchronization constraints schemes in AKL+
is the clean separation of concurrency control and the method specification such
that they can be inherited, overridden, or extended separately without affecting
each other. Furthermore, one scheme can be integrated and composed with other
schemes. These standard protocols are provided to support synchronization schemes
for resolving the “inheritance anomaly” [97, 98, 99, 100].

In AKL+, each method is executed in the context of a class, called “base class”.
This class may not be the class where the method is defined. The current contextual
class is used to determine dynamically which methods are called. Within a method,
the base class is referred to by the reserved context variable “Self” and the state is
referred to by the reserved variable “State”. Self is bound to the abstraction of the
dispatch table of the base class which when applied to a method invokes its method
definition. State is bound to an object.

Method definitions can be called in two ways: “method delegation” and “method
invocation”. The difference between a method invocation and delegation is that
the called class of the method invocation will be the base class of the invocation
while the base class of the method delegation will depend on the context, denoted
by the reserved variable Self, of the calling definition. This affects the dispatching
of methods in case of base class application, base-class reference. In Simula [38],
this notion of context is called the qualification of reference. These calls applies the
message directly to the available state. The body of a method threads the input
state of the method through the method calls and returns it as the output state.
The target object is available under the special attribute “selt” so that methods can
send messages back to their target objects.

Objects can be explicitly allocated or destroyed using meta level operations provided
by the language. Objects can share a common object by passing it as a parameter

29

24 AKL+

to their classes at creation time. AKL+ achieves a uniform message sending which
means that objects of different types can receive messages in the same manner.

The language is very flexible to support data-driven programming like, specifying
daemons, default methods, and class-specific methods. A daemon can be specified
as an active constraints on attributes values or as a method triggered when an
object is no longer in use. A default method is automatically invoked when there
is no message selector matches with any methods of the interface. A class-specific
method makes it possible to invoke methods on the basis of the identity of classes.

AKL+ supports differential inheritance where the designer is able to be selective
about what is inherited (directly or indirectly) from a superclass. AKL+ supports
multiple inheritance. Operations are inherited along the inheritance graph, exclud-
ing differentially inherited and private operations encountered, until redefined in
a class. If a class inherits operations with the same selector from more than one
superclass, a default (implicit) differential inheritance is applied; excluding all the
methods with the same selector occurring further on the right. In AKL+ the de-
signer is able to resolve the conflict in different ways. One way is to redefine the
operation in the subclass. An alternative way is to differentially inherit the conflict-
ing operation.

Since efficiency is one of our prime motivations, the class dispatcher is computed at
compile time and this will result in dispatching methods in a constant time rather
than searching the class hierarchy each time a method is invoked. This run-time
overhead is unpredictable and dependent on the depth of the inheritance path.

Comparing AKL+ with Other Languages

In what follows we compare our language (AKL+) with the most related ones, i.e.
with those languages that are based on concurrent logic programming. We will
compare with Vulcan, Polka, Sandra, Logic Program with Inheritance, and Oz.

Vulcan supports inheritance by code copying. This reduces the run-time costs,
but increases the size of classes. In AKL+, the inheritance is computed at compile
time in such a way that the class dispatcher is cleanly captured. Like Vulcan, both
inheritance and delegation are supported. Vulcan resolves the interference of state
change by an auxiliary method definition that works on the new sate. Unlike Vulcan,
AKL+ utilizes the state threading through the method body. Another difference is
that AKL+ provides mechanisms for resolving multiple inheritance conflicts in at
least two ways. An AKL+ instances of class “object” is like instances in Vulcan.
However, state is encoded as a separate object whose identity is held as the unshared
argument in the process of the object, which is generalized to be included in other
types of objects. This has the advantage that if state is represented as an object

30

Previous and Related Work on Object-Oriented Programming Languages

at the language level then uniform access and encapsulation are achieved. Another
similarity is that verbose description of state change is avoided.

Polka supports delegation where the class hierarchy is searched each time a method
is invoked. With multiple inheritance, this causes a problem since languages based
on concurrent logic programming cannot use backtracking to search through the
inherited objects for the right clause, and once a message has been forwarded to a
particular object, the choice is fixed. Polka utilizes broadcasting primitives which
automatically make unique copies of a message for each inherited object. Even so,
problems still remain about what to do if more than one copy of the message is
successfully processed, or if all the copies fail to deal with. In AKL+, the method
dispatching mechanism does not allow such a situation. Another difference is that
Polka does not provide any solution for resolving multiple inheritance conflicts. An
AKL+ instance of class “object” is like an instance in Vulcan but the state is held
as unshared argument in the process of the object.

Sandra supports delegation where the class hierarchy is searched each time a
method is invoked. Unlike AKL+, it is the designer’s responsibility of the inheriting
guardian to resolve any name conflicts due to multiple inheritance. Another differ-
ence is that in Sandra it is required to define the types and the mode of instantiation
of the method’s arguments.

Logic Program with Inheritance supports inheritance by code copying. In
AKL+, the inheritance is computed at compile time in such a way that the class
dispatcher is cleanly captured. Self-reference is not allowed and “self” is used as a
sugared syntax for the tail recursive call that simulates a state change. In AKL+,
both self-reference and base-reference are allowed. Another difference is that Logic
Program with Inheritance does not suggest any capabilities to resolve the multiple
inheritance conflicts. Like AKL+4, Logic Program with Inheritance differentiates
between global and local arguments. Global arguments in both languages have the
same treatment. However, local arguments in AKL+ have a scope limited to a
method definition rather than the entire class definition. In Logic Program with
Inheritance an inherited class can inherit the same class several times with different
instantiation of the class parameters. This is not allowed in AKL+.

Oz is perhaps the most closest to AKL+. There are some similarities between Oz
and AKL+. Both use an efficient data-structure to represent the object’s state.
Both resolve the interference of state change by threading the state through the
method body. The method application construct of Oz is equivalent to method del-
egation of AKL+. Both can express privateness. Both support cell based and port
based objects with the same functionality. Both support abstractions that provides
for all higher-order programming techniques. Both adopt class based inheritance.
However, we differ in the approach used in handling multiple inheritance. Oz strat-
egy specifies a linear, overall order of classes, and then specifies that application of
a class method or attribute starts from the most specific class. As pointed out by

31

2.5 Summary

Snyder [133], the main problem with this approach is that the ordering of super-
classes in a class declaration has significant semantic implications. In AKL+4, we
don’t flatten the inheritance graph into a linear chain, and then deals with this chain
using the rules for single inheritance but instead we model the inheritance graph
directly. AKL+ provides mechanisms for resolving multiple inheritance conflicts in
at least two ways.

Other differences which hold with Oz and all the above languages are the follow-
ing. AKL+ supports features which are unique to the above related languages.
AKL++ provides the synchronization schemes that resolve the “inheritance anomaly”.
AKL+ supports differential inheritance where the designer is able to be selective
about what is inherited. AKL+ supports the qualification of reference where each
method is executed in the context of class that can be changed. AKL+ supports
data-driven programming like, specifying daemons, default methods, and class-
specific methods.

2.5 Summary

The discussions above illustrated a wide range of object-oriented programming lan-
guages. In our presentation, we have classified these languages as conventional lan-
guages, actor based languages, and logic based languages. The logic based languages
are of our main interest. We have classified mergers which combine object-oriented
and logic programming into three groups. We have focused our attention to the
mergers which either logic based languages extended with object-oriented constructs
or higher object-oriented languages built on top of logic based languages. These lan-
guages are discussed by examining the design and implementation issues concerning
classes, objects, state, and inheritance. These issues are examined because of their
central roles in object-oriented programming.

At the end of our discussion, we have presented our language (AKL+) and contrasted
it with Vulcan, Polka, Sandra, Logic Program with Inheritance, and Oz. The reason
of the comparison is that these languages are attempt to combine features of object-
oriented programming with concurrent logic programming.

Vulcan, Polka, Sandra and Logic Program with Inheritance do not support mecha-
nisms for multiple inheritance conflict resolution. Furthermore, they do not provide
uniform access to the object’s state. Vulcan, Polka and Sandra use delegation where
the class hierarchy is searched each time a method is invoked. This run-time over-
head is unpredictable and dependent on the depth of the inheritance path. Vulcan
and Logic Program with Inheritance use inheritance by code copying. This reduces
the run-time costs, but increases the size of classes. Oz and AKL+4, as object-
oriented languages, have many features in common: classes, objects, treatment of
state, and privateness. AKL+ differs from Oz in the approach used to handle multi-

32

Previous and Related Work on Object-Oriented Programming Languages

ple inheritance. Oz uses the “linear” approach to handle multiple inheritance where
the order of parents is significant and defines inheritance. Another difficulty is that
in some cases it will not be possible to construct a class precedence list and the
class definition disallowed. AKIL+ uses the “graph” approach to handle multiple
inheritance. In AKL+, the only relationships among classes are those defined by
the subclass—superclass relationship. A salient advantage to the AKL+ approach
to inheritance is that it allows greater flexibility in resolving any conflicts due to
multiple inheritance. One way is to redefine the operation in the subclass. An al-
ternative way is to use the differential inheritance feature to exclude the conflicting
operation.

As pointed out in [97, 98, 99, 100], concurrent object-oriented languages can and
should support mechanisms to solve “inheritance anomaly”, protocols are provided
in AKL+ to support synchronization schemes for resolving this type of anomaly.
Furthermore, other features which are also unique to the aforementioned related
languages are: the qualification of reference where each method is executed in the
context of a class that can be changed, and data-driven programming like, specifying
daemons, default methods, and class-specific methods. Since efficiency is one of our
prime motivations, the class dispatcher is computed at compile time and this will
result in dispatching methods in a constant time.

As shown, AKL+ utilizes a very simple and flexible concepts that supports all
features that are needed for any object-oriented application.

33

AKL

In this chapter, we will present AKL (Agents Kernel Language') because it was cho-
sen as concurrent constraint logic programming element of our language (AKL+).
The reasons for this include its use of deep guards, its use of don’t know nondeter-
ministic capabilities of Prolog and the constraint logic programming languages with
the process-describing capabilities of concurrent logic languages such as GHC, and
the simplicity and flexibility in its support of multiple programming paradigms, such
as concurrent, object, functional, logic, and constraint programming. In addition,
AKL offers a large potential for automatic parallel execution.

The chapter is organized as follows. In Section 3.1 we give an overview of concurrent
constraint programming. However, it is not intended to constitute an introduction
of this topic, and suitable reading material will be referred to during discussion. In
Section 3.2 we give a brief and informal summary of AKL. In Section 3.3 the basic
techniques that allows us to do object-oriented programming in AKL are reviewed.
In Section 3.4 we present the syntactic sugar that enable us to express programs
into clausal syntax, which may be used to give definitions the familiar reading of
the logic programming community. This syntax is also available in AKL+4.

3.1 Concurrent Constraint Programming

AKL is based on the concept of Concurrent Constraint Programming (CCP), a
paradigm distinguished by its elegant notions of communication and synchroniza-
tion based on constraints [123]. It has been proposed as an alternative to committed
choice languages [128] and and/or parallel execution models. The CCP languages
offer parallelism that is programmer-controlled, processes are loosely coupled, mul-
tiparadigm applications can easily be built, constraints can be utilized in a coherent
way and last but not least, existing sequential code can be incorporated in this new
concurrent framework [81].

In a concurrent constraint programming language, a computation state consists of a
group of agents and a store that they share. Agents may add pieces of information
to the store, an operation called telling, and may also wait for the presence in
the store of pieces of information, an operation called asking, see Fig. 3.1. These
two operations provide the necessary primitives for concurrent communication and
synchronization. The information in the store is expressed in terms of constraints,

! AKL was formerly known by the name Andorra Kernel Language.

3.1 Concurrent Constraint Programming

which are statements in some constraint language, usually based on first-order logic,
e.g.,

X<1,Y=Z+X,W=1ab,d,...

If telling makes a store inconsistent, the computation fails. Asking a constraint
means waiting until the asked constraint either is entailed by (follows logically from)
the information accumulated in the store or is disentailed by (the negation follows
logically from) the same information. In other words, no action is taken until it has
been established that the asked constraint is true or false. For example, X < I is
obviously entailed by X = 0 and disentailed by X = 1.

Constraints restrict the range of possible values of variables that are shared between
agents. A variable may be thought of as a container. Whereas variables in conven-
tional languages hold single values, variables in concurrent constraint programming
languages may be thought of as holding the (possibly infinite) set of values consis-
tent with the constraints currently in the store. The notion of constraints in AKL

=~ o o
® W

@

constraint store

Figure 3.1: Agents interacting with a constraint store

is generic. The range of constraints that may be used in a program is defined by
the current constraint system, which in AKL, in principle, may be any first-order
theory. Constraint systems as such are not discussed here, for more details see [29].
For the purpose of this introduction, we will use a simple constraint system with a
few obvious constraints, which is essentially that of Prolog [136] and GHC [143].

Thus, constraints in AKL will be formulas of the form

(expression) = (expression)
(expression) # (expression)
(expression) < (expression)

and the like. Equality constraints, e.g., X = 1, are often called bindings, suggesting
that the variable X is bound to I by the constraint. Correspondingly, the act of
telling a binding on a variable is called binding the variable. Expressions are either
variables (alpha-numeric symbols with an upper case initial letter), e.g.,

36

AKL
X, Y, 7, X1, YL, 71, ...
or numbers, e.g.,
1, 3.1415, -42, ...
or arithmetic expressions, e.g.,
1+ X,-Y, X*Y, ...
or constants, e.g.,
a, b, c,...
or constructor expressions of the form
(name)({expression), ..., (expression))
where (name) is an alpha-numeric symbol with a lower case initial letter, e.g.,
s(s(0)), tree(X, L, R), ...

There is also the constant [/, which denotes the empty list, and the list constructor
[{expression)|{expression)/. A syntactic convention used in the following is that, e.g.,
the expression [a|/b|[c|d]]] may be written as [a, b, ¢|d], and the expression [a|/b|[c|[]]]]
may be written as [a, b, ¢/. In addition the constraints true and false are available,
which are independent of the constraint system and may be identified with their
corresponding logical constants.

3.2 Language Design

In this section AKL is introduced one language construct at a time, also explaining
its behavior. For a formal definition of the computation model see elsewhere [58,

74, 50, 51].

3.2.1 Basic Concepts

The agents of concurrent constraint programming correspond to statements being
executed concurrently. Constraints, as described in the previous section, are atomic
statements known as constraint atoms (or just constraints). When they are asked
and when they are told is discussed in the following.

A procedure atom statement of the form

37

3.2 Language Design
(name)(X1, ..., Xn)

is a defined agent. In a procedure atom, (name) is the functor, an alpha-numeric
symbol, and n is the arity, the number of arguments, of the atom. The variables X1,

.., Xn are the actual parameters of the atom. Occurrences of procedure atoms in
programs are sometimes referred to as calls. Atoms of the above form may be referred
to as (name)/n atoms, which uniquely identifies the corresponding procedure atom,

e.g.,
plus(X, Y, Z)

is a plus/3 atom.

The behavior of atoms is given by procedure (agent) definitions of the form
(name)(X1, ..., Xn) := (statement).

The variables X1, ..., Xn must be different. During execution, any atom matching
the left hand side will be replaced by the statement on the right hand side. For
example,

plus(X, Y, Z):=7Z=X+Y.

is a definition of plus/3.

A composition statement of the form
(statement), ..., (statement)
builds a composite agent from a sequence of agents. Its behavior is to replace itself

with the concurrently executing agents corresponding to its components.

A hiding statement of the form

X1, ..., Xn : (statement)

introduces variables with local scope. The behavior of a hiding statement is to
replace itself with its component statement, in which the variables X1, ..., Xn have
been replaced by new variables.

A conditional choice statement of the form
((statement) — (statement)

N
; (statement) — (statement))

38

AKL

is used to express conditional execution. Its components are called (guarded) clauses
and the components of a clause guard and body. A clause may be enclosed in hiding.

The behavior of a conditional choice statement is as follows. Its guards are executed
with corresponding local constraint stores. If the union of a local store with the ex-
ternal stores is unsatisfiable, the guard fails, and the corresponding clause is deleted.
If all clauses are deleted, the choice statement fails. If the first (remaining) guard
is successfully reduced to a store which is entailed by the union of external stores,
the conditional choice statement is replaced with the composition of the constraints
with the body of the corresponding clause.

AKL exploits the module system facilities, programs can be divided into different
modules. Each module has its own independent procedure name space. Each pro-
cedure in the module system, whether built-in or user-defined, belongs to a module.
A procedure is generally only visible in the module where it is defined. However, a
procedure may be imported by another module. It is thereby visible in that module
too. Procedures declared as public in a module declaration are exported, e.g.

:- module clac.
:- public plus/3.

exports the definition of plus/3 defined in module cale. Normally only exported
procedures may be imported, e.g.

calc.plus(X,Y,Z)

calls the agent plus/3 in the module cale.

It is now time for a first small example, illustrating the nature of concurrent com-
putation in AKL.

Example 3.1 The following definitions will create a list of numbers, and add to-
gether a list of numbers, respectively.

:- module foo.
:- public list /2.
:- public sum/2.

list(N, L) :=

(N=0—L=]

CLINL: N >0 — L = [N[L1], list(N1, L1), NI is N - 1).
sum(L, N) :=

(L= —=N=0
; M, L1, N1 : L = [M|L1] — sum(L1, N1), Nis N1 + M).

39

3.2 Language Design
O

The following computation is possible. In the examples, computations will be shown
by performing rewriting steps on the state at hand, unfolding definitions and sub-
stituting values for variables, etc., where appropriate, which should be intuitive. In
this example we avoid details by showing only the relevant atoms and the collec-
tion of constraints on the output variable N. Intermediate computation steps are

skipped. Thus,

foo.list(3, L), foo.sum(L, N)
is rewritten to

list(2, L1), sum([3|L1], N)

by unfolding the list atom, executing the choice statement, and substituting val-
ues for variables according to equality constraints. This result may in its turn be
rewritten to

list(1, L2), sum([2|L2], N1), Nis 3 + N1
by similar manipulations of the list and sum atoms. Further possible states are

list(0, L3), sum([1|L3], N2), Nis 5 + N2
sum([], N3), Nis 6 + N3
Nis6

with final state N = 6.

The list/2 agent produces a list, and the sum/2 agent is there to consume its parts
as soon as they are created. If the tail of the list being consumed by the sum/2 call
is unconstrained, the sum/2 agent will wait for it to be produced (in this case by
the list/2 agent).

The simple set of constructs introduced so far is a fairly complete programming
language, quite comparable in expressive power to, e.g., functional programming
languages.

In the following sections, we will introduce constructs that address the specific needs
of important programming paradigms, such as processes and process communication,
relational programming, and constraints, see also [74, 71]. In particular, we will need
the ability to choose between alternative computations in a manner more flexible
than that provided by conditional choice.

40

AKL
3.2.1.1 Don’t know nondeterminism

Many problems, especially frequent in the field of Artificial Intelligence, and also
found elsewhere, e.g., in operations research, are currently solvable only by resort-
ing to some form of search. Many of these admit very concise solutions if the
programming language abstracts away the details of search by providing don’t know
nondeterminism.

For this, AKL provides the nondeterminate choice statement.

((statement) 7 (statement)
DL

; (statement) 7 (statement))

?

The symbol ‘?” is read wait. The statement is otherwise like the conditional choice
statement.

The behavior of a nondeterminate choice statement is as follows. Its guards are
executed with corresponding local constraint stores. If the union of a local store
with the external stores is unsatisfiable, the guard fails, and the corresponding clause
is deleted. If all clauses are deleted, the choice statement fails. If only one clause
remains, and its guard is successfully reduced to a store which is consistent with the
union of external stores, the choice statement is said to be determinate. Then, the
nondeterminate choice statement is replaced with the composition of the constraints
with the body of the corresponding clause.

Otherwise, if there is more than one clause left, the choice statement is said to be
nondeterminate, and it will wait. Subsequent telling of other agents may make it
determinate. If eventually a state is reached in which no other computation step is
possible, each of the remaining clauses may be tried in different copies of the state.
The alternative computation paths are explored concurrently.

Let us first consider a very simple example, an agent that accepts either of the
constants a or b, and then does nothing.

p(X) :=
(X =a? true
; X =b 7 true).

The interesting thing happens when the agent p/1 is called with an unconstrained
variable as an argument. That is, we expect it to produce output. Let us call p/1
together with an agent ¢/2 examining the output of p/1.

q(X,Y) :=
(X=a—Y=1
;true = Y =0).

41

3.2 Language Design

Then the following is one possible computation starting from

p(X), a(X,Y)
First p/1 and ¢/2 are both unfolded.

(X=a?true; X =b? true),
(X=a—Y=1;true—-Y=0)

At this point in the computation, the nondeterminate choice statement is nondeter-
minate, and the conditional choice statement cannot establish the truth or falsity of
its condition. The computation can now only proceed by trying the clauses of the
nondeterminate choice in different copies of the computation state. Thus,

X (X=a—-Y=1;true—-Y=0)
Y

a’?
1

and

X=b,(X=a—-Y=1;true—-Y=0)
Y=0

are the two possible computations. Observe that the nondeterminate alternatives
are ordered in the order of the clauses in the nondeterminate choice statement.

The constructs introduced so far give us (constraint) logic programming in addition
to functional programming.

Up to this point, the constructs introduced belong to the strictly logical subset of
AKL, which has a straight-forward interpretation in first-order logic both in terms
of success and failure.

3.2.1.2 Don’t care nondeterminism

In concurrent programming, processes should be able to react to incoming commu-
nication from different sources. In constraint programming, constraint propagating
agents should be able to react to different conditions. Both of these cases can
be expressed as a number of possibly non-exclusive conditions with corresponding
branches. If one condition is satisfied, its branch is chosen.

For this, AKL provides the committed choice statement
((statement) | (statement)

N
; (statement) | (statement))

42

AKL

The symbol ¢|” is read commit. The statement is otherwise like the conditional choice
statement.

The behavior of a committed choice statement is as follows. Its guards are executed
with corresponding local constraint stores. If the union of a local store with the ex-
ternal stores is unsatisfiable, the guard fails, and the corresponding clause is deleted.
If all clauses are deleted, the choice statement fails. If any of the (remaining) guards
is successfully reduced to a store which is entailed by the union of external stores,
the committed choice statement is replaced with the composition of the constraints
with the body of the corresponding clause.

Example 3.2 List merging may be expressed as follows, as an example of an agent
receiving input from two different sources.

:- module list_merge.
:- public merge/3.

merge(X, Y, 7Z) :=
(X=[[2=Y
Y =[1%2= X
B, X1, Z1 . X = [E|X1] | Z = [E|Z1], merge(X1, Y, Z1)
s E, Y1, Z1 Y = [E|Y1] | Z = [E|Z1], merge(X, Y1, Z1)).

A merge agent can react as soon as either X or Y is given a value. In the last
two guarded statements, hiding introduces variables that are used for “matching”
in the guard, as discussed above. These variables are constrained to be equal to the
corresponding list components. a

3.2.1.3 Encapsulated computations

To avoid unwanted interactions between don’t know nondeterministic and process-
oriented parts of a program, the nondeterministic part can be encapsulated in a
statement that hides nondeterminism. Nondeterminism is encapsulated in the guard
of a conditional or committed choice and in the solution aggregation constructs

provided by AKL?2.

The scope of don’t know nondeterminism in a guard is limited to its corresponding
clause. New alternative computations for a guard will be introduced as new alter-
native clauses. This will be illustrated using the following simple nondeterminate
agent.

2The aggregate statement, bagof/3 is built-in in AKL. Its behavior is to build lists of sequences
of alternative results. It provides powerful means of interaction between determinate and nonde-
terminate code. It is similar to the corresponding construct in Prolog, and a generalization of the
list comprehension primitive found in functional languages.

43

3.2 Language Design

or(X,Y) :=
(X =17 true
;Y =17 true).

Let us start with the statement
(or(X,Y) [q)

The or/2 atom is unfolded, giving
((X=17true;Y =17 true)|q)

Since no other step is possible, we may try the alternatives of the nondeterminate
choice in different copies of the closest enclosing clause, which is duplicated as fol-
lows.

(X=1]gq
;Y=1|q)

Other choice statements are handled analogously.

Example 3.3 As a more involved example of embedded computations in AKL,
consider the following N-queens program where calls to nqueens are made in guards,
thus encapsulating a deep constraint computation. The bagof/3 agent is a solu-
tion aggregate agent, collecting all solutions to a nondeterminate agent. The call
bagof(Q,nqueens(N,()),Sols) outputs all solutions to nqueens applied to N in Sols.

The model/2 procedure waits for input messages on M, i.e. it suspends until either
M is empty or it receives one of the messages all(N) or one(N) on M. If one solution
is required the model program suspends until the call nqueens(N, () is entailed, then
proceeding by outputting ¢) on S.

:- module nqueen.
:- public model/2.

model(M, S) :=
(M=[—-S=]
; N, Sols, M1, S1: M = [all(N)|M1] —
bagof(Q, nqueens(N, Q), Sols),
S = [all(Sols)|S1],
model(M1, S1)
; N, M1, SI: M = [one(N)|M1] —

44

AKL

(Q : nqueens(N, Q) —
S = one(Q)|S1]
; true —S = [none|S1]),

model(M1, S1)).

Before leaving the subject of don’t know nondeterminism in guards, it should be clar-
ified exactly when alternatives may be tried. A (possibly local) state with agents
and their store is (locally) stable if no computation step other than splitting a non-
determinate choice is possible, and no such computation step can be made possible
by adding constraints to external constraint stores (if any). Splitting may then be
applied to the leftmost possible nondeterminate choice in a stable state. Stability
is basically an independence property which guarantees that the computations to
be performed locally cannot be affected by agents operating on external stores until
the local nondeterminate computation proceeds.

3.2.2 Definitions

Fig. 3.2 shows the (abstract) syntactic category pertaining to programs in AKL.
We use the following notations in describing the syntax of programs: letters in bold
are keywords, letters between (and) are nonterminal symbols, letters between

!/

and " are terminal symbols, and the symbol | separates alternatives.

3.3 Basic Object-Oriented Style

In this section, the basic techniques that allows us to do object-oriented program-
ming in AKL are reviewed. Like the programming techniques in the previous section,
they belong to logic programming folklore.

There is more than one way to map the abstract concept of an object onto corre-
sponding concepts in a concurrent constraint language. The first and most wide-
spread of these will be described here in detail. It is based on the process reading
of logic programs [127].

3.3 Basic Object-Oriented Style

{program) = (set of definitions of modules)
(module de finition) = {(module heading)(set of procedure definitions)
(module heading) m= ": —" module (module name)

(set of public definitions)
"1 =" public (functor)'/'{arity)
) =" (body)
procedure atom)
)

) | (composition) | (hiding)
choice) | (aggregate) | (abstraction)
abstraction application) | (message send)
constraint atom) | (procedure atom)
statement)', (statement)

public de finition)
procedure definition)

(
(
(head)
(
(

=
o
Q
X

I
Q
I S
S =
s 3
3
o
3
o~

statement)

)
=
3
QS
&
5.
QS
<
[

N T o T o s

set of variables)' ' (statement)

(

(
(hiding)
(choi

(

choice) = (sequence of clauses with the same guard operator)

clause) = (set of vars)" ! (statement)(guard operator)
statement)

(guard operator) a= Y

{aggregate) = aggregate({variable)') (statement)’’ (variable))

{(abstraction) = (variable) " =" ((set of variables)) '\’ (body)

(abstraction application) = 'akl'(variable)((sequence of variables))

(message send) = 'akl.send ({method atom)') (variable))

| 'akl.send({method atom)’, (variable)' (variable})

Figure 3.2: Abstract syntax of AKL program
3.3.1 Objects

Objects are realized as processes® that take as input a stream of requests. The list
is by far most popular communication medium in concurrent logic programming. In
this context lists are usually called streams. The stream identifies the object, i.e.
the identity of the object is preserved by its input stream. The data associated with
the objects are held in the arguments of the process. An object definition typically
has one clause per type of request, which performs the corresponding service, and
one clause for terminating (or deallocating) the object, see Fig. 3.3. Thus, clauses
correspond to methods. The requests are typically expressions of the form name(A4,
B, C), where the constructor “name” identifies the request, and A, B, and C are the
arguments of the request.

The process description, the agent definition, is the class, the implementation of the
object. The individual calls to this agent are the instances.

3Agents may be thought of as processes, and telling constraints on shared variables may be
thought of as communicating on a shared channel.

46

AKL

p(Stream, X) :=
(Stream=[M | S] ->
transform(M, X, X1),
p(S, X1)
; Stream=[] ->
terminate(X)).

Figure 3.3: An object consuming a list of messages

Example 3.4 A standard example of an object is the bank account, providing
withdrawal, deposits, etc.

:- module bank.
:- public make_bank_account/1.

make_bank_account(S) :=
(true — bank_account(S, 0)).

bank_account(Stream, N) :=
(Stream = [] — true
; A,R)NI: Stream = [withdraw(A)|R] — N1 is N - A,
bank_account(R, N1)
; A,R)NI: Stream = [deposit(A)|R] — N1is N + A,
bank_account(R, N1)
; M,R: Stream = [balance(M)|R] — M = N, bank_account(R, N)).

A computation starting with

bank.make bank_account(S),
S = [balance(B1), deposit(7), withdraw(3), balance(B2)]

yields
B1=0,B2=14

A bank-account object is created by starting a process bank_account(S, 0) given as
initial input an unspecified stream S (a variable) and a zero balance. The stream
S is used to identify the object. A service deposit(5) is requested by binding S to

47

3.3 Basic Object-Oriented Style

[deposit(5)]S1]. The next request is added to S7, and so on. In the above example,
only one clause will match any given request. When it is applied, some computation
is performed in its body and a new bank_account process replaces the original one.
The requests in the above example are processed as follows. Let us start in the

middle.

bank_account(S, 0), S = [deposit(7), withdraw(3), balance(B2)].

The bank_account process is reduced by the clause matching the first deposit request,
leaving some computation to be performed.

N = 0+7, bank_account(S1, N), S1 = [withdraw(3), balance(B2)].

This leaves us with.

bank_account(S, 7), S1 = [withdraw(3), balance(B2)].

The rest of the requests are processed similarly.

Finally, there are a few things to note about these objects. First, they are automati-
cally encapsulated. Clients are prevented from directly accessing the data associated
with an object. In imperative languages, this is not as self-evident, as the object
is often confused with the storage used to store its internal data, and the object
identifier is a pointer to this storage, which may often be used for any purpose.

Second, requests are dynamically bound, so-called late binding. The expression
that identifies a request may be interpreted differently, and may therefore involve
the execution of different code, depending on the object. This does not involve
mandatory declarations in some shared (abstract or virtual) ancestor class, as in
many other languages.

Third, delegation can be achieved by creating instances of the ancestor objects. The
object identifier of (the stream to) this ancestor object is held as an argument of
the derived object. The object corresponding to the ancestor could appropriately
be called a subobject of the derived object. The derived object filters incoming
requests and delegates the appropriate requests to its subobject. Two difficulties
may be observed in this setting. It is cumbersome to handle the notion of self
communication correctly. It is quite easy to model an interface hierarchy, however,
it is difficult to achieve specialization and, hence, overriding. There are also some
unresolved issues like multiple inheritance conflicts and the efficiency in executing
requests served by ancestors, for more details see Section 2.3.

48

AKL
3.3.2 Ports for Objects

Ports are a special form of constraints, which, when added to AKL, or to any
concurrent logic programming language, will solve a number of problems with the
approach to object-oriented programming presented above, problems that we have
avoided mentioning so far. This section provides a preliminary introduction to ports.
They, and the problems they solve, are described in great detail elsewhere [73].

A port is a binary constraint on a bag (a multi-set) of messages and a corresponding
stream of these messages. It simply states that they contain the same messages,
in any order. A bag connected to a stream by a port is usually identified with the
port, and is referred to as a port. The akl.open_port(P, S) operation relates a bag
P to a stream S, and connects them through a port. The stream S will usually be
connected to an object. Instead of using the stream to access the object, we will
send messages by adding them to the port. The akl.send(M, P) operation sends a
message M to a port P. To satisty the port constraint, a message sent to a port will
immediately be added to its associated stream, first come first served.

When a port is no longer referenced from other parts of the computation state,
when it becomes garbage, it is assumed that it contains no more messages, and its
associated stream is automatically closed. When the stream is closed, any object
consuming it is thereby notified that there are no more clients requesting its services.

Thus, to summarize: a port is created with an associated stream (to an object).
Messages are sent to the port, and appear on the stream in any order. When the
port is no longer in use, the stream is closed, and the object may choose to terminate.

A simple example follows.
akl.open_port(P, S), akl.send(a, P), akl.send(b, P)
yields
P = (a port), S = [a, b]

Here we create a port and a related stream, and send two messages. The messages
appear in S in the order of the send operations in the composition, but it could just
as well have been reversed. The stream is closed when the messages have been sent,
since there are no more references to the port.

Ports serve three orthogonal purposes:

o communication and identification: The medium links the sender and receiver
and provides the sender with a unique identity of the receiver.

49

3.3 Basic Object-Oriented Style

e synchronization: Many-to-1 communication is enabled by allowing the receiver
to nondeterministically choose one of the incoming messages while leaving the
others waiting in the medium.

o buffering: Messages are stored in the medium until the receiver, residing in a
different branch of concurrent computation in form of a suspending clause, is
ready to pick them up.

Ports solve a number of problems that are implicit in the use of streams. The
following are the most obvious.

o If several clients are to access the same object, their streams of messages have
to be merged into a single input stream. With ports, no merger has to be
created. Any client can send a message on the same port.

e If objects are to be embedded in other data structures, creating, e.g., an array
of objects, streams have to be put in these structures. Such structures cannot
be shared, since several messages cannot be sent on the same stream by dif-
ferent clients. However, several messages can be sent on the same port, which
means that ports can be embedded.

e With naive binary merging of streams, message sending delay is variable. With
ports, message sending delay is constant.

e Objects based on streams require that the streams are closed when the clients
stop using them. This is similar to decrementing a reference counter, and has
similar problems, besides being unnecessarily explicit and low-level. A port is
automatically closed when there are no more potential senders, thus notifying
the object consuming messages.

e Messages to an object can be sequenced. For this purpose, AKL provides the
derived port operation akl.send(M,P0,P1). The behavior of this operation is
that P71 is bound to PO after message M is added to the stream associated
with P0.

AKL Built-In Port Objects

Object types in common use, such as arrays and hash tables, can be implemented
as built-in types of ports, with a corresponding built-in treatment of messages. This
may allow an efficient implementation of mutable data-structures, see [72]. Ports
can also serve as interfaces to files in order to enhance I/O operations.

20

AKL
Arrays

AKL provides the definition of the built-in array port object in order to obtain array
operations efficiently. The invocation akl.new_array(Size, Array) creates the object
Array of type array with the given Size starting from 0 position. It is also possible
to create arrays with a specific starting index by the invocation akl.new_array(Size,
Start, Array). The indices of the array run from the starting index plus the size
minus one. The elements of the array are initialized to [/. To store Value at position
Index in Array the message akl.send(set(Index, Value), Array)is used. To retrieve
Value at position Index in Array the message akl.send(get(Index, Value), Array) is
used. For more details we refer to [75].

Hash Tables

AKL provides the definition of the built-in hash table port object in order to ob-
tain hash table operations efficiently. The invocation akl.new_hash_table(HashTable)
creates the object HashTable of type hash table. It is also possible to create hash
tables with an initial size by the invocation akl.new_array(Size, Hashtable); the hash
table automatically expands to accommodate further elements. To store Value at
the key Key in HashTable the message akl.send(set(Key, Value), HashTable) is used.
To retrieve Value at key Key in HashTable the message akl.send(get(Key, Value),
Array) is used. For more details we refer to [75].

I/O

In AKL, ports play much the same role for input and output as “streams” in some
other systems, e.g., most Prolog implementations. A port can be associated with
a file or terminal, and messages can be sent to the port to obtain input or output
operations. For more details we refer to [75]. For example, the following operations
creates an 1/O port,

e io.stdin(Keyboard): creates a port Keyboard associated with the standard input
device.

o io.stdout(Screen): creates a port Screen associated with the standard output
device.

e io.fopen(File, Type, IOPort): creates a port [OPort associated with the file
File that is opened for access type Type.

ol

3.3 Basic Object-Oriented Style

3.3.3 Data Objects

Besides port objects, a process based objects, AKL can also support data objects
as a light-weight objects. AKL supports two types of data objects namely: im-
mutable objects and procedure abstractions. These objects become garbage when
their surrounding code, i.e. context, become also garbage.

Immutable objects are a special form of constructors of expressions, called records.
They have a static state which can only be accessed, e.g. line(StartPoint, EndPoint)
line segment in a graphics package. It provides a compact representation of objects
the cost of which is similar to AKL data structures, see [75].

A procedure abstraction provides objects with a light-weight message sending the
cost of which is similar to a procedure call.

Example 3.5 As an example for procedure abstraction objects, consider the fol-
lowing abstraction program that defines the representation of an object of a given
type. This representation has a minimal form of encapsulated state, an embedded
array cell. Message sending is a direct application to an abstraction. Also, messages
can be sequenced.

:- module abstraction.
:- public dispatch/5.
:- public new/2.

:- public send/2.

new(Object,State,Class):=
(C,Msg,Flag: true —
akl.new_array(1,C),
akl.send(set(0,State),C),
Object = (Msg,Flag)\abstraction.dispatch(Msg,Class,C,Object,Flag)).

dispatch(Msg,Class,C,0Object,Flag):=
(State0,Statel:akl.port(C) —
Flag = Object,
akl.send(set(0,State0,Statel),C),
akl.Class(Msg,State0,Statel)).

send(Msg,Object0):=
(true — akl.Object0(Msg,Objectl)).

send(Msg,Object0,0bject]):=
(true — akl.Object0(Msg,Objectl)).

52

AKL

a

Note, as functional languages, AKL allows the evaluation of recursive expressions

[81].

3.4 Syntactic Sugar

Analogously to what is usually done for functional languages, we now introduce
syntactic sugar that is convenient when the guards in choice statements consist
mainly of pattern matching against the arguments, as is often the case.

A definition of the form

p(X1, ..., Xn) :=
(gl % bl

PR

; gk'% br).

where % is either —, |, or ¢, may be broken up into several clauses
p(X1, ..., Xn) :— gl % bl.

p(X1, ..., Xn) - g % by.

which together stand for the above definition.

The main point of this transformation into clausal definitions is that the following
additional syntactic sugar may be introduced, which will be exemplified below: (1)
Free variables are implicitly hidden, but here the hiding statement encloses the right
hand side of the clause (i.e., to the right of “:=”), and not the entire definition. (2)
Equality constraints on the arguments in the guard part of a clause may be folded
back into the heads p(X1, ..., Xn) of these clauses. (3) If the remainder of the
guard is the null statement “true”, it may be omitted. (4) If the guard is omitted
and the guard operator is wait “#”, it may also be omitted. (5) If the guard operator
is omitted, and the body is the null statement “frue”, a clause may be abbreviated
to a head.

As an example, the definition

member(X,Y) :=
(YL:Y =[X]|Y]]? true
; X1, Y1: Y = [X1|Y1] 7 member(X, Y1)).

23

3.4 Syntactic Sugar
may be transformed to clauses

member(X,Y) -
Y = [X]|Y1]
7 true.
member(X, Y) -
Y = [X1|Y1]
7 member(X, Y1).

where hiding is implicit according to (1). The equality constraints may then be
folded back into the head according to (2), and the remaining null guards may be
omitted according to (3), giving

member(X, [X]Y1]) -
7 true.

member(X, [X1]Y1]) -
7 member(X, Y1).

which may be further abbreviated to
member(X, [X]|Y1]).
member(X, [X1]Y1]) -

member(X, Y1).

according to (4) and (5). We exemplify also with the append and merge definitions.

append([], Y, Z) -

- Y =7
append(X, Y, X) -
— X = [E[X1],
7 = [E|71],
append(X1, Y, Z1).
merge([], Y, Z) -
Y =7
merge(X, [], Z) -
X =7
merge([E|X], Y, Z) -
| 7= [E[Z1],

merge(X, Y, Z1).
merge(X, [E|Y], Z) :-
| Z=[E|Z1],
merge(X, Y, Z1).

o4

AKL

The examples should make it clear that some additional clarity is gained with the
clausal syntax, which prevails in the logic programming community. A few additional
remarks about the syntax is given below.

As syntactic sugar, the underscore symbol “.” may be used in place of a variable
that has a single occurrence in a clause. All occurrences of “_” in a definition denote
different variables.

A special syntactic sugar is provided for the common situation where a pair of argu-
ments represent the input and output version of some changing data that is passed
along from one procedure to another. An example is a program that accumulates
items in a list:

items(Tree,L):—
A= []7
prelude(Tree,A A1),
contents(Tree,A1,A2),
postlude(Tree,A2,A3),
L = A3.

In order to reduce the proliferation of variable names, a preprocessor allows you to
use the same variable name for all of the list variables as follows:

items(Tree,L):—
A =1,
prelude(Tree)-A,
contents(Tree)-A,
postlude(Tree)-A,
L =A.

Here each —A represents a pair of variables which are inserted as arguments. The
first variable in the pair are called the input argument and is syntactically equivalent
to an occurrence of A at that point. The second is a new variable, called the output
argument, and it is syntactically identified with A in the rest of the clause.

In an implementation of AKL, the character set restricts our syntax. The then
symbol “—7 is there written as “~>". For example, append/3 would be written as

append([], Y, Z) -
—>Y =17.
append(X, Y, Z) -
->X = [E|X1],
append(X1, Y, Z1),
Z = [E|Z1].

However, to make programs as readable as possible, we will continue to use “—".

3.5 Summary

3.5 Summary

Conceptually, a concurrent constraint programming is an ideal vehicle for object-
based programming. The modularity and simplicity of the object-oriented paradigm
are very suitable for concurrent computing while constraints is very suitable to
message sending.

AKL is a CCP language with deep guards [74]. The constraint system is an in-
dependent parameter of the language description. AKL offers a large potential
for parallel execution. AKL is a multiparadigm programming language. The basic
model is that of agents communicating over a constraint store allowing for different
readings, depending on the context, where agents compute functions or relations,
serve a user-defined constraints, or as object in object-oriented computing. A major
point of AKL is that its paradigms can be combined. AKL provides constructs for
don’t care nondeterminism and don’t know nondeterminism. From object-oriented
view AKL greatly facilitates communication between objects through ports, a novel
primitive in AKL, and provides means for light-weight representation of objects as
higher-order abstraction of object methods. AKL objects is encapsulated and their
message sending can be sequenced. AKL allows to use the clausal syntax for defini-
tions to have the familiar reading of the logic programming community. AKL uses a
flat, not hierarchical, module system with access control mechanisms for exporting
methods.

As its name suggests, AKL is a programming language kernel. AKL supports the
basic object-oriented style. This enables us to design and efficiently implement a
complete language on top of AKL with a proper linguistic support and semantics.
An incremental compilation facility is also designed and implemented.

I

26

AKL+

AKL+ is a concurrent object-oriented language based on the concepts of classes,
generic classes, metaclasses, multiple inheritance, delegation and abstractions of
classes and methods. Fig. 4.1 illustrates the AKL+ object-oriented system. It
is built on top of the concurrent constraint language AKL. Classes, methods and
instances of classes can be expressed as first-class values in the language which
may be passed as arguments, returned as results and stored in attributes of objects.
Objects are the run-time instances of classes, the behavior of these objects is defined
by methods associated with classes. State is an object and this has the advantage
that uniform access and encapsulation is achieved. The language provides for both
higher-order and data-driven programming techniques.

The architecture of the language allows it to support object-oriented programming
at two levels. The highest level consists of a set of standard classes for most com-
mon operations, such as creating objects. These classes act as the building blocks
of AKL+ classes and are designed to meet the needs of most users. They provide a
general-purpose object-oriented language that embody the default behavior of the
language. The second level is the functional interface to AKL+, which allows the
default behavior to be customized on which the programmer can build his applica-
tions.

In this chapter, we informally present AKL+ and its computation model. Several
examples show the main features of AKL+ as well as a number of programming
techniques. In Section 4.1 we describe the definition of classes and the implicit
behavior provided by AKL+. In Section 4.2 we discuss objects, message passing,
and synchronization. In Section 4.3 we describe the set of standard classes provided
by AKL+. Section 4.4 is devoted to discuss our schemes to support synchronization
constraints on message acceptance. In Section 4.5 we discuss our approach to handle
multiple inheritance, differential inheritance, and inheritance anomaly.

4.1 Classes

The notion of a class is central to AKL+: every object is an instance! of a class. An
AKL++ class is an object that determines the structure and behavior of the objects
that are its instances. While every object is an instance of a class, it is not necessary,
however, that a class has any instances. Thus, although AKL+ makes no distinction

'We use instance and object as synonyms.

4.1 Classes

E di spat cher
(:) cl ass

obj ect

=>» inherit
----- di spatch

—> nessage
del egat e

B

Figure 4.1: The AKL+ Object Oriented System

between classes that can and cannot be directly instantiated, it supports the use of
Mizins classes [85, 54]- whose purpose is solely to augment the structure or behavior
of other classes.

Classes are first-class objects and are themselves instances of classes. The class
of a class is called metaclass. The representation of an instance is controlled by
its derived metaclasses, which determines the actual storage structures that are
used. By programming at the metaclass level, it is possible to define alternative
representation for class instances.

4.1.1 Defining Classes

When a class is defined, a set of superclasses can be designated as classes from which
that class is to inherit structure and behavior. A class whose definition specifies such
a set of superclasses is said to be a subclass of each of those classes. The subclass-
superclass relationship among classes, and hence the inheritance relationship, is
transitive: a class inherits from its indirect as well as its direct classes. A class can
be neither a direct nor an indirect superclass of itself. Thus, a class hierarchy forms
a direct acyclic graph.

The behavior of instances of a class is determined by methods associated with that
class and its superclasses. The globally visible methods determines its interface.

28

AKL+

The state components of an instance is determined by attributes associated with its
derived class as well as its superclasses.

In AKL+, a class is declared by writing it in the form

:— class (class name).

:— supers [(supery), - -, (super,)].

:— attributes [(attribute;),-- -, (attribute;) |.

:— private [(selectory), - - -, (selector.) J.

(methody).

(methody).

(method,,).
with the exception of the class declaration, all parts of the class definition are
optional. The (class name) is an expression of the form (identifier)(Xy, -, X,),
n >= 0, and Xi,---, X, represent variables, when n=(0 arguments are omitted. The

(identifier) is an alpha-numeric symbol. (method;),- - -, (methody),(m >= 0), are
method definitions.

We can define a class in terms of an existing class. The new class is called the
subclass, and the existing class is called the superclass. The superclasses of a class
are the classes given in the supers declaration of the class definition. When a class
(1 is defined to be a subclass of another class (., objects of class C} have access,
not only to the methods of () but also to others inherited from C,. Nevertheless,
it is possible to be selective about what is inherited (directly or indirectly) from a
superclass by writing the superclass in the following form

(super) — [(selectory), - -, (selectory)]

where (selector;)? consists of the functor (name) and arity (number of arguments)
of the excluded method that uniquely identify the method. Besides excluding a
method from an inherited class, it is possible to hide the definition of a method and
make it invisible. An invisible method of a class is the one that its selector is given
in the private declaration.

AKL+ makes it possible to declare a list of attributes (data items), with their
initializations. Attributes of a class are the attributes given in the attributes
declaration. The attribute initialization is a method that computes the attribute’s
initial value. At object creation time, the attribute initialization methods is applied
to determine the initial state of the object. The attribute declaration takes the form

“We use the Prolog functor/arity convention for identifying the method definition, so foo(X,Y)
and foo(X,Y,Z) are distinguished.

29

4.1 Classes

(attribute;) = (X)\\(statement)

where (attribute;), an alpha-numeric symbol denotes an attribute name, will be
assigned its initial value returned through the (output) argument X after applying
(statement). Note that the definition of the initialization method is bound to an
attribute’s storage (state variable), tagged with the attribute name, which we call
method abstraction. The difference between a class method and a method abstraction
is that a class method belongs to a context, the class in which the definition textually
appears, while a method abstraction has no statically bound context. A method
abstraction takes the general form

M = (Xy,..., X,)\\(statement)
and may have the syntactic sugar
M(Xy,...,X,) = (statement)

The variables X1, ..., X, must be different and are called formal parameters. These
variables have a scope limited to (statement).

Not only we can define a method abstraction as first-class value but also we can
define a class as first-class value. An abstraction of a class takes the form

X = # (class name)

such that the (class name) can be passed along to any method or class. Its meth-
ods can be activated by direct application to this parameter. Defining classes and
methods as abstractions provides for all higher-order programming techniques. The
class abstraction and dynamic binding greatly facilitates delegating to methods from
outside of their context. Like class abstraction, method abstraction can be passed
along as parameters. The difference between the application of the class abstraction
and the application of the method abstraction is the requirement of a method name
in the application of a class abstraction.

The behavior of an object is given by method definitions of the form

(edentifier)(Xy, -, X,) 1= (statement)

The (identifier)(Xy, -+, X,) is called the head of the method and (statement) is
called its body. The (identifier) is an alpha-numeric symbol denotes the functor of
the methods and n denotes its arity. The variables Xi,..., X, must be different
and are called formal parameters.

The method definition has the normal control structures of the AKL procedure
definition (see Section 3.2):

60

AKL+
e a composition statement of the form
(statement), ..., (statement)

builds a composite agent from a sequence of agents. An agent correspond to
statement being executed concurrently. Its behavior is to replace itself with
the concurrently executing agents corresponding to its components.

e a hiding statement of the form
Xy, ...y X, ¢ (statement)

introduces variables with local scope. The behavior of a hiding statement is
to replace itself with its component statement, in which the variables Xy, ...,
X,, have been replaced by new variables.

e a choice statement of the form

((statement) % (statement)
;.

; (statement) % (statement))

The symbol % is one of —, ¢, | and to these correspond conditional choice,
nondeterminate choice, and commit choice of clauses, respectively. The com-
ponents of the choice statement are called (guarded) clauses, the components
of a clause guard and body, and a clause may be enclosed in hiding.

AKL+ inherits the concurrent constraint programming of its host language. The
range of constraints that may be used in a program is defined by the current con-
straint system, which in AKL, in principle, may be any first-order theory. Atomic
statements in method body are described below. Variables that appear in these
statements are called actual parameters. Their occurrences in programs are some-
times referred to as calls.

Reserved variables. In AKL+, each method is executed in the context of a class,
called “base class”. This class may not be the class where the method is defined.
The current contextual class is used to determine dynamically which methods are
called. This leads to a mechanism called dynamic binding. Dynamic binding means
that the association between a method call and the code executed has to be done at
run-time [19]. Within a method, the base class is referred to by the reserved context
variable Self and the state is referred to by the reserved variable State. Selfis bound
to the abstraction of the dispatch table of the base class which when applied on a
method invokes its method definition. A base class is either a target object’s class,
the class of the object that received the message, or the called class of a method

61

4.1 Classes

invocation. State is bound to the current state of the object through which values
of an attribute name can be updated, returned, or passed around.

Procedure call. From the object-oriented system perspective, calling a procedure
in a module behaves like calling a method in a class. An invocation to the AKL
procedure definition p/n which is defined in module m takes the form

m.p(X1,..., X,)

Two kinds of method calls. Method definitions can be called in two ways: method
delegation and method invocation. The difference between a method invocation and
delegation is that the called class of the method invocation will be the base class
of the invocation while the base class of the method delegation will depend on the
context, denoted by the reserved variable Self, of the calling definition. This affects
the dispatching of methods in case of base class application. In Simula [38], this
notion of context is called the qualification of reference.

Method delegation. A delegation to a method definition takes the form

p(Xla"'7XTL) # q

where ¢ is a class name. The method p/n may be defined in ¢ or in any ancestor
class of ¢. Within p/n, the Self variable will be bound to the same context as the
calling definition. In other words, Self will be passed as is to the called definition.
Delegation preserves Self.

Method invocation. An invocation of a method definition takes the form

p(Xl,...,Xn) <# q

The method p/n may be defined in ¢ or in any ancestor class of ¢. Within p/n, the
Self variable will be bound to the abstraction of the called class.

Class application. An application of the method p/n to the class abstraction @
takes the form

p(Xla"'7XTL) # Q

where () is a variable that is to be bound to a class abstraction. A key feature is
the possibility to call methods of the base class, so-called base-class reference, see
Fig. 4.2. Simply, the base-class reference is an application of a method to Self which
takes the form

p(X1,..., X)) # Self

62

AKL+

nmsg # Sel f,

Figure 4.2: base-class reference

and may have the syntactic sugar
p(Xl, e ,Xn)

Method application. An application of a method abstraction bound to a variable

Y

, with the actual parameters Xi,..., X, takes the form

Y(X1,..., X,)

Message sending. A class can have a create method, e.g. new, for generating
instances, see Section 4.3.2. An instance incorporates both the data representing
its current state and has access to methods to perform its processing. Methods can
send messages to other objects, or, using the self attribute, back to their target
object, see Fig. 4.3. The message send takes the form

p(X1,...,X,)" Object
At any point in time, the object holds a state called its current state. When an object

is applied to a message, the object advances to a possibly new state by applying the
method identified by the message.

message; messagesp message,,

Stateg, —~ = State;, — State,,

In AKL+, state is an object able to access and update attribute values only through
messages. Consequently, encapsulation of state and uniform access are realized.
Two standard classes are provided with AKL+: state_array and state_hash. The
general behavior of these classes is described in Section 4.3.1. Each class can choose
to inherit from any of them. For each attribute definition, a set of methods is
implicitly defined. The behavior of these methods is discussed in Section 4.1.2.

63

4.1 Classes
et _self(abi). % =
msg" Cbj , _ /

Ce sel f-reference

Figure 4.3: self-reference

The initial class. All classes derive directly or indirectly from an initial class that
provides functionality as if it had at least the following definitions:

e a creator method for creating an instance of a given class.

e a destructor method that is to be activated when the instance is no longer in
use.

e a state creator method for creating a state object.

e a state initializer method for determining the initial state of an instance at its
creation time.

e an attribute self that refers to the target object.

In AKL+, ur_object is a predefined initial class which derived from the standard
state class state_hash and the standard object type class cell, see Section 4.3. In
this case, definitions that realizes the above functionality are given by the methods:
new/1 as a creator, close/0 as a destructor, new_state/1 as a state creator, and
initialize_attributes/3 as a state initializer.

It should be noted that users can also define and implement alternative state repre-
sentation and object type classes for class instances by the virtue of programming
at the meta level.

4.1.2 Attribute Methods

Many popular object-oriented languages, e.g. Smalltalk, Flavors [108], and Objective-
C [120], allow free access to inherited instance variables by descendant classes, thus
denying the designer the freedom to compatibly change the representation of a class

64

AKL+

without affecting clients. It is encountering that several newer languages (Com-
monObjects [132], Trellis/Owl[125], and C++) correct this deficiency by restricting
access to inherited instance variables. Where access to inherited instance variables
is needed, it should be provided in the form of operations. In AKL+, The state is
a first class-object which has a behavior describing how attributes are referenced,
initialized, accessed, and updated. An example of a definition of a counter class
follows.

Example 4.1 Consider the class counter with class ur_object, an initial class, as
a superclass. Class counter defines the attribute val and the method inc/0 that
increments the current value of val by one. The prefixes get_, set_, and init_ of an
attribute name with arity one are chosen for attribute access, update, and initialize
methods, respectively. Consequently, the attribute wval is accessed, updated, and
initialized by sending the messages get_val/1, set_val/1, and init_val/1 to an object
of class counter, respectively.

:- class counter.
:- supers [ur_object].

:- attributes [val=(V)\\(V=0)].

inc :=
(true — get_val(V),
math.inc(V,V1),
set_val(V1)).

The attributes definition of class counter implicitly defines the following methods:

e the attributes reference method domain/1. This method returns a list of all
attribute names.

e the attribute initialization methods: init_self/1 for the self attribute inherited
from ur_object and init_val/1 for the val attribute. For example, sending the
message init_val(X) to the object O of class counter through:

init_val(X)~ O

binds X with 0.

4.1 Classes

e the attribute property method: attribute_property/4. This method tabulates
the method abstractions of initialize, access, and update methods of each
attribute. An activation of this method given such an attribute will return
these abstractions. An application of any of these abstractions to its argument
will execute the corresponding definition. For example, sending the message
attribute_property(val,Init,Get,Set) to the object O of class counter through:

attribute_property(val,Init, Get,Set)~ O

binds [Init with (V)\\init_val(V), Get with (V)\\get_val(V), and Set with
(V)\\set_val(V), respectively.

The method attribute_property// is very useful in defining generic attribute
access and update methods where the attribute name may not known until
run-time. Simply, the following is the definition of the methods get/2 and
set/2 that realizes this behavior:

get(A,V):=
(true — attribute_property(A,_Init,Get, Set),
Get(V)).

set(A)V):=
(true — attribute_property(A,_Init, Get,Set),
Set(V)).

4.1.3 The Default Behavior

Sometimes it is useful to declare a class with a default behavior. Default behavior
is a catch-all method. It is automatically invoked when the received message is not
previously defined or inherited in the class. In AKL+, default behavior is provided
in the form of message not understood and user-defined default methods.

Message not understood. For each class, this method is implicitly defined unless
a user default method is defined or inherited. The message not understood method
is very useful in exception handling. It reports that the message is not understood
by the class that handles the message.

Example 4.2 Consider delegating the method add(3) from class countUp to the
class counter when the base class is countUP

:- class countUp.
:- supers [ur_object].

66

AKL+

add(3) # counter

This will report the following

Message not understood: add(3)
Self: countUp
Handler: counter

which indicates that the message add(3) cannot be understood by class counter, the
handler, when the base class, referred to by Self, was countUp. In other words, since
the message add/1 is not part of the counter interface, counter cannot serve this
message. g

User-defined default method. The method $default/1 is chosen to denote a
user-defined default method. For example, the following default method delegates
the unkown messages to the target object

"$default’(Msg) :=
(true — get_self(Obj),
unkown(Msg)~Obj).

Or as a syntactic sugar, the user-defined default method can be recognized when it

has as its head an AKL+ variable.

4.1.4 The Class Membership Method

A definition of the method typeof/1 is implicitly defined for each class definition.
This method is used to determine the identity of the class of an object. In other
words, the class membership property that belongs objects to their classes can be
asked about by sending these objects the message typeof/1. For example, sending
the message typeof(Type) to the object C of class counter will bind Type to counter.
The support of this method by AKL+ is very useful. A main usage of this method, is
the possibility of defining class-specific methods [15]. When a class-specific method
is invoked the appropriate method is executed on the basis of the identity of the
target classes.

Example 4.3 consider the following definitions for classes representing geometric
solids:

67

4.1 Classes

:- class solid.
:- supers [ur_object].

:- class sphere.
:- supers [solid].
:- attributes [radius=(V)\\(V=0)].

:- class cube.
:- supers [solid].
:- attributes [edge=(V)\\(V=0)].

:- class cone.
:- supers [solid].
.- attributes [radius=(V)\\(V=0),height=(V)\\(V=0)].

We might define class-specific behavior for spheres, cubes and cones as follows:

volume(V):=
(true — get_self(GeometricSolid),
typeof(ClassType)~ GeometricSolid,
volume(ClassType,V,GeometricSolid)).

volume(SolidClass,V,GeometricSolid):=

(SolidClass = sphere | get_radius(R)~GeometricSolid,
V is 4/3%3.14*R*R*R

; SolidClass = cube | get_edge(E)~GeometricSolid,
V is E¥XE*E

; SolidClass = cone | get_radius(R)~GeometricSolid,
get_height(H)~GeometricSolid,
V is 3.14*R*R*H/3).

These method definitions result in the creation of the class-specific method volume/[1-
3]. When this method is applied to an instance of sphere, cube, or cone, the appro-
priate method is selected and called. 0

4.1.5 Method dispatcher

A definition of the method dispatcher is implicitly defined for each class definition.
The clauses of the method dispatcher is the entry point to the method handler.
When a message M, is sent to object O of class C, we apply the method dispatch(M)
on class C.

68

AKL+

Example 4.4 The following is the definition of dispatch/1 for class counter

dispatch(Msg) :=
(Msg = attribute_property(_,-,_,-) — Msg # counter

The

4.1.

Msg = domain(_) — Msg # counter

Msg = get_self(_) — Msg # counter

Msg = inc — Msg # counter

Msg = init_self(.) — Msg # counter

Msg = set_self(_) — Msg # counter

Msg = typeof(_) — Msg # counter

Msg = initialize_attributes(_,_,_) — Msg # state_hash
Msg = new_state(_) — Msg # state_hash

Msg = new(_) — Msg # ur_object

true — typeof(Class),

akl.stdout(S),

io.format(’~“nMessage not understood: “w “nSelf: “w “nHandler: ~w ~“n’,

[Msg,Class,counter],S,)) .

method dispatcher is discussed in Section 5.3 and Section 6.3.2.

6 Generic Classes

A class gains a generic property by associating it with parameters. The parame-

ter passing of a class parameter is not resolved at compile time and all references

are bound at run-time. In this sense a parameterized class is considered a generic
class. The scope of this parameter is the class methods. A parameter of a param-
eterized class lies in four categories: class abstraction, constant, object, or method
abstraction. There are situations in which we can make good use of parameterized

classes:

e an inheriting class may inherit from the same class in several different ways,

using different parameters.

the farther of passing a parameter up in the class hierarchy the more general
the class hierarchy is.

when the parameter is a class abstraction, both objects of this class can be
created and methods of this class can be invoked in the parameterized class
methods.

the dynamic binding of class parameters makes it possible to execute different
code at different points in time.

69

4.1 Classes

Example 4.5 A good example for showing the usefulness of generic classes is a
general sorting algorithm. Consider the following definition of a class sorter that
sorts a list of elements into an ascending order:

:- class sorter.
:- supers [ur_object].
.- private [insert/3].

sort(L0, L):=
(L0=[—L=]
; LO = [El |List] — insert(El, List1, L),
sort(List, Listl)).

insert(El, L0, L):=
(L0 =[] — L =[E]
; LO=[E | L],
Fl < E — L = [ELE | L1]
:L0=[E|Ll] - L=[E]|L2,
insert(El, L1, L2)).

Imagine different classes that needs sorted list according to several criteria such as
ascending, descending, cartesian product of two domains, and so on. Sorting the
list with respect to any criterion only differs in the way the elements of the list are
compared. So, good software design is to write one general sorting algorithm and
several comparing algorithms and pass the appropriate comparison for each sorting
application. Using a parameterized sorter class it is possible to generalize the above
sorting algorithm in four different ways. Figure 4.4 shows that the alternatives a,
b, and ¢ require to ensure a naming convention of the desired method or operator
in both the general algorithm (sorter) and the passed parameter. However, this is
not the case with alternative d since we pass the abstracted comparing method and
all is to be done is to apply this method without the need to have such a naming
convention. The designer is free to choose which alternative deems appropriate to
his application.

Note that passing the comparing function to the sorting algorithm is one way to
emulate higher order functions [90]. 0

Generic classes are interested in its own right. The generality of classes is increased
through the addition of parameters [114], so that various instantiations of a class
parameter correspond to different uses. Applications can be “tuned” by choosing
different parameter values. Moreover, They provide contextual variables without
having to add such variables as additional context arguments to each method clause
that potentially uses or passes these arguments.

70

AKL+

:- sorter(Operator). :- sorter(d ass).
sort(L1,L2) := sort(L1,L2) :=
conpar e(Oper at or, E1, E2, YesNo) , | ess(E1, E2, YesNo) # O ass

conpar e(Op, E1, E2, YesNo) : =
(p ='< -> EI<E2

(a) (b)

Obj ((E1,E2,YesNo)\\less(E1,E2,YesNo)#descending ’
1- sorter(Qbj). :- sorter(Method).
sort(L1,L2) := sort(L1,L2) :=
| ess(E1, E2, YesNo) "Obj , Met hod(E1, E2, YesNo) ,

passing an object passing a method

(d) (d)
Figure 4.4: The passing of parameters to a parameterized class

4.1.7 Metaclasses

Earlier discussions described objects as instances of classes. A class contains the
description of the structure and behavior of its instances. In most object-oriented
languages, classes are factories that create and initialize instances. For example, an
instance of class counter can be created through:

neW(Counter) <# counter

Here a class is treated as an object that can instantiate (create instances) other
objects. Therefore, there are two types of objects:

1. class objects—objects that can act as templates and create instances of them-
selves.

2. terminal objects—objects that can only be instantiated but cannot instantiate
other objects.

71

4.2 Objects

If the class describes the attributes and methods that are applicable to its instances,
who or what class describes the state and the general behavior (object type) of the
class as an object? More specifically, what is the class of the class?

MetaClass is a class that describes the characteristics of another class. Several, but
not all, object-oriented languages support the concept of a metaclass, for example,
C++ doesn’t support metaclasses. AKL+ supports metaclasses for two purposes:
creating object types and creating the object’s state.

In supporting metaclasses, existing object-oriented languages pursue either [84]:

1. Ezplicit support for creating and instantiating metaclasses. For example, Ob-
jVlisp [35]. This object-oriented language treats objects, classes, and meta-
classes as objects. In ObjVlisp, the user takes the burden of instantiating
classes and metaclasses in two separate steps; to manipulate three levels of
objects.

2. Implicit support of metaclasses. Smalltalk was the first object-oriented lan-
guage to introduce metaclasses. They are hidden form the user. In Smalltalk,
metaclasses cannot be declared and created explicitly. Metaclasses are anony-
mous and do not have an existence independent of their classes. Thus there is
one-to-one correspondence between classes and metaclasses and the definition
of metaclasses is intertwined in the definition of the class.

There are at least two advantages in treating classes as objects in AKL+. The first
is that classes can be used for storing group information. If a class is treated as an
object, then information global to all the attributes of the class can be stored in the
state class. Access and update methods associated with the class can be used to
retrieve or update values of the class attributes. For example, discussed in Section
4.3, the classes state_hash and state_array are important pieces of global information
that can be used by instances or other clients of the class.

The second advantage (and most common usage) of class objects is their use in
creation of new instances of the class, see Section 4.2.2. The message new/I! which
may be sent to class objects to create instances can do the initialization of the
attributes values of the newly created instance.

4.2 Objects

Objects are independent entities which are capable of responding to a request for
processing. Objects are dynamically created during run-time. An object must incor-
porate both the data representing its current state and has access to the methods to
perform its processing. An object should be encapsulated such that it is accessible
only via an interface supporting its defined operations, see Fig. 4.5.

72

AKL+

State
L7 My
Interface{-\-----> m,
AN Implementations
AN of
my
I']’]1Y mz, I'T]3

Figure 4.5: An object
4.2.1 Message Sending vs Method Call

Objects are concurrent agents that communicate with each other by sending mes-
sages. The behavior of an object is described in a class by a set of operations called
methods. An object has a state containing attribute/value pairs that may change
over time. A method is executed if the object receives a message. Methods are
definitions that provide the functional abstraction of the state transition:

Method : message x Self x state — state‘

Fig. 4.6 illustrates an object receiving three messages out of its funnel. The object
applies the appropriate method to its state, dispatches the method, resulting in a
new state. The reserved context variable Self is bound to the abstraction of the base
class. Thus we can set the value of the attribute val for an object O of class counter
to 100 by sending the message:

set_val(100)~ O

This message sending selects the method of O with the functor set_val and arity one.
This method is applied to Self, O’s current state, resulting in a state whose attribute
val is of value 100. Each method has in addition to Self another two reserved context
variables for the incoming and the outgoing state indicated by the accumulator pair ®
State. The method execution results in applying to the current state the method that
matches the method functor and arity. The state that results from this application
is used for further computation. A method clause maintains a threaded state in
order to keep the consistency of the object’s internal state. Each method serializes
the method calls on the availability of an object’s state. By state threading, the
state is released when the last method call in a method’s body has been promoted.
Hence, only one of the state-using sections in a method body can at the same time
be entered. An alternative to the method call is the self-reference message sending.
The effect, however, is quite different. The method call is performed immediately

3An accumulator pair is a syntactic variable that indicates a pair of arguments. The first
argument is called the input argument and the second is the called the output argument.

73

4.2 Objects

In State ‘H Out State

Method

execution

Figure 4.6: The method execution

In State ‘I Ktsmte In State ‘H Out State

method call

self-reference

Figure 4.7: Method call vs self-reference

on the current state, whereas other messages may be taken and change the state
before the self-reference message is received. Fig. 4.7 depicts the difference.

Messages to objects are always dynamically bound since objects are dynamically
created and will not be known until run-time. A method call to a named class is
statically bound and invoking a method in this manner is more efficient than invoca-
tions relying on dynamic binding. Dynamic binding, also called late binding, is one
of the most frequently cited advantages of the object-oriented style of programming.
Dynamic binding means the system binds message selectors to the methods that
implement them at run-time (instead of compile time). The particular method used
in the binding depends on the context, the current base class. This provides us with
the ability to execute different code at different points in time. An important use
of dynamic binding in object-oriented languages is the ability to apply methods of
the base class and send messages back to the target object.

74

AKL+

new(bj) #C,

Cdispatcher

O

ObjState

Figure 4.8: Creating an object

4.2.2 Creating and Destroying Objects

Like many other object-oriented languages, objects (instances) of a class are created
through invoking the method new/1, ala Smalltalk, to this class. The new/1 method
creates a new object and sends an initialization message to its state object before
handing it back to the caller, who requested the new object. Fig. 4.8 illustrates
creating an object Obj of class C. Obj has an encapsulated state as well as a context,
an abstraction of its base class C. For example, the following statement will create
a newly initialized object of class counter. This object has a type of class cell and
state of class state_hash.

neW(Counter) <# counter

An object refers to itself through the attribute self. The value of this attribute can
be used for self-reference sort of message passing.

Not only classes can create instances of its own but also it can create instances
of other classes. This powerful features allows the class to create instances from
different contexts.

Example 4.6 Consider the following declaration of class car_washer. Its attribute
car_queue is initialized to an instance of class resource with a context resource rather
than car_washer. Hence, all invocations on the base class through the attribute
car_queue is executed in the context of resource.

:- class car_washer(NoOfWorkers,ServiceTime,Out,Scheduler).

:- supers [simulation(Scheduler)].

.- attributes [car_queue=(Q)\\(new(Q)<# resource(Scheduler),
avail_workers=(N)\\(N=NoOfWorkers)]).

4.2 Objects

Buffer

Figure 4.9: An example of object sharing

Note that “method invocation” of new/1 is necessary in order to create an object
whose base class is resource. O

Destroying an Object. Similar to Smalltalk, an AKL+ object becomes garbage
and storage is reclaimed, if there are no more objects or variables referencing an
object. It is also possible to explicitly dispose an object when no longer needed, e.g.
objects derived from the standard class object, by sending the message close/0 to it.
In this sense objects in AKL+ greatly simulate real life objects.

4.2.3 Sharing Objects

With object sharing, multiple applications or objects share a common object [40].
Object sharing is realized in AKL+ by passing an object as a parameter to classes
at creation time of their instances. For example, consider the class buffer_sync, see
Example 4.7, that defines a buffer object with two operations put/1 to store an item
and get/1 to remove an item, see Fig. 4.9. To create, a shared buffer object Buffer
of class buffer_sync to the objects Prod and Cons of classes producer and consumer,
respectively, we write the composition

new(Buffer) <# buffer_sync(3),
new(Prod) <# producer(Buffer),
new(Cons) <# consumer(Buffer),

76

AKL+

At any time, Prod object can produce an item by sending the message put/1 to the
object Buffer while the Cons object can remove an item by sending the message
get/1 to the same object Buffer.

4.2.4 Synchronization

In object-oriented concurrent computing every object runs concurrently with oth-
ers. An interaction between objects is divided into two parts: information exchange
and synchronization [160]. Information exchange is to influence other object. Syn-
chronization is to control the timing of information exchange among objects and
to control the order of object execution. Thus, in order to perform coordinated
computing, objects must be able to synchronize. AKL+ is very flexible to support
various types of synchronization. AKL+ provides the following basic mechanisms
for synchronization of concurrent activities:

1. Messages synchronized by passing them in a batch. With batch, we can send
several messages to an object via a single message sending. A message batch
guarantees that the elements are executed in the given order without inter-
vening messages sent from elsewhere. For example, if you want to guarantee
that the object C of class counter is set to 0, incremented twice, and then ask
for its value without giving someone else the chance to access C, you write

send_batch([set_val(0),inc,inc,get_val(X)])~ C

which is guaranteed to bind X with 2. In AKL+, The method send_batch/1 is
provided to process a message batch. This method is defined in the standard
class object.

In a concurrent framework this ability to specify a block of messages to be
processed is quite useful in real life [80]. For example, to transfer an amount
of funds between two accounts, the withdrawal will be processed just before
the deposit.

2. Messages synchronized by serializing them. With message serialization, the
messages are connected into a chain which preserves their relative order. How-
ever, it does not guarantee that some other messages may come between any
two messages. This technique of synchronizing messages sent to an object is
similar to the constructor akl.send/3 used for sending messages to the AKL
port primitive. For example, if we want to serialize sending the messages
set_val(0),inc,inc, and, get_val(X) to the object C of class counter, we may
write the composition

7

4.3 Objects

78

set_val(0)" C,
inc” C|
inc” C,
get_val(X)~ C,

..ete. ..

This will bind X with 2 only if there is no other message that changes the
state of C'is executed before the execution of the message get_val(X)" C.

Without the ability to serialize messages to an object, it is difficult to model
even simple things as concurrent objects. For example, a computer terminal or
displaying device because the order of text lines which are sent by a terminal
handling program must be preserved when they are received.

3. objects synchronized by the exchange of messages between a sender and a re-

cetver objects. The basic technique is illustrated as follows:

:- class acknowledge(Receiver).
:- supers [ur_object].

get_self(Sender),
callback(()\\(ack(Ack,InfoOut)"~Sender),Infoln)~Receiver

ack(Ack,Reply) :=
(Ack = ok —

The idea is that the sender of a message sends the message callback to the
receiver with the message abstracting the acknowledge from the receiver and
suspends until a call back is received. The identity of the sender is held
in the abstraction such that when the receiver applies the abstraction, the
acknowledge is executed on the sender side.

. Objects Synchronized by satisfying constraints on the acceptance of their mes-

sages. When a concurrent object is in a certain state, it can accept only a sub-
set of its entire set of messages in order to maintain its internal integrity. Such
a restriction on acceptable messages is called the synchronization constraints
of the concurrent object [97]. This synchronization mechanism is discussed in
Section 4.4.

AKL+

4.3 Standard Classes

In AKL+ a set of comprehensive standard classes define the default behavior of the
system. These classes are the most general classes. They are provided for most
common operations, such as creating an object. These classes act as the building
blocks of AKL+ classes which are designed to meet the needs of most programmers.
AKL+ standard classes are classified into two categories: state representation stan-
dard classes and object type standard classes. The objects created by the standard
classes are first-class values: they may be created interactively at any time by a
program, passed around as arguments, returned as values, and stored in the at-
tributes of objects. The programmer of the language can use, specialize, or extend
some of these classes to define an initial class for the class hierarchy at the topmost
level of the class hierarchy. Fig. 4.10 depicts a conceptual view of an initial class.
For example, the aforementioned class ur_object is an initial class with the standard
superclasses cell and state_hash. 1t has the attribute self that can be used for dele-
gating messages back to the target object. That is, when an object Obj receives a
message, say message, sending messages to Obj during the course of executing the
message message is through retrieving the value of the attribute self, then sending
the desired message to this value. The following is the definition of ur_object

:- class ur_object.
:- supers [cell,state_hash].
.- attributes [self=(V)\\(V=nil)].

new(Obj) :=
(true — new(Obj) # cell,
set_self(Obj) ~ Obj).

4.3.1 State Representation Classes

State class is a model or pattern that defines the creation of state object and the
initialization of attributes. State object is a simple object able to access and update
attribute values. Attributes in AKL+ are placeholders to data-items. Attributes of
a class are the attributes given in the attributes declaration. The attribute initial-
ization is specified by a method abstraction that returns the attribute’s initial value.
It is often not satisfactory that objects are created without initializing them. After
creating an object, the message sending to get any of its attribute value results in
an object error, since the attribute has no value. Even always sending an initializing
message like in

79

4.3 Standard Classes

Initial Class Object type Class State rep. Class

(\ (\ (N\

— 000
1

domain
] ity

i
i

attributes property
Methods

| — - J

Figure 4.10: A conceptual view of an initial class
set_attribute(Initial Value)~ O

does not help in general since concurrent execution does not prevent other mes-
sages from being received before set_attribute(InitialValue). Therefore, in AKL+,
attributes are initialized with object creation.

AKL+ provided two standard state classes: the state_hash class and state_array
class as important pieces of global information that can be used by instances or
other clients of the class. These standard classes greatly improve the efficiency in
manipulating attributes.

The state_hash class. This class is provided in order to obtain hash table opera-
tions for the state. This representation is based on the built-in hash table port object
of AKL that supports these operations efficiently. Each attribute will be a key in
a hash table and each key’s value will be the value of the corresponding attribute.
The state_hash class provides a considerable efficiency in the constant (key/value)
access of the attributes values. The following is the definition of state_hash standard
class:

.- class state_hash.

new_state(S):=
(true — domain(Attributes),
list.length(Attributes,Size),
akl.new_hash_table(Size,HashTable),
initialize attributes(Attributes)-HashTable,
S = HashTable).

initialize attributes(Attributes)-HashTable:=
(Attributes = [] — true

80

AKL+

; Attributes = [A
Init(V),
akl.Set(V,Self)-HashTable,
initialize attributes(As)-HashTable).

As] — attribute_property(A,Init, Get,Set),

where:

e new_state/1 is the method defined to create an empty hash table state object.
The empty state is initialized such that the returned object from new_state/1
will be a newly initialized state object.

e initialize_attributes/3 is the method defined to initialize attributes. For each
attribute, the attribute_property/j is invoked to determine its initialize and
update methods. The attribute’s initial value returned from the initialize
method is passed to the update method to set the attribute’s initial value.

The methods get/2 and set/2, discussed in Section, 4.1.2 can be defined efficiently
in terms of state_hash objects as follows:

set(Att,V) :=
(true — set(Att,V)"State).

get(Att,V) :=
(true — get(Att,V)"State).

The state_array class. This class is provided in order to obtain array operations
for the state. This representation is based on the built-in array port object of AKL
that supports these operations efficiently. The system automatically generates an
array index for each attribute. The prefix attribute_ of an attribute name with arity
one is chosen for the method that returns this index. For example, the index of the
attribute val can be returned through the method attribute_val/1. The value of an
attribute is the element stored at its index in the array. The state_array class is an
alternative representation of state to state_hash class. The state_array class provides
a considerable efficiency in the constant (indexed) access of the attributes values.
The following is the definition of the state_array standard class:

.- class state_array.

new_state(S):=
(true — domain(Attributes),
list.length(Attributes,Size),
akl.new_array(Size,Array),

81

4.3 Standard Classes

initialize attributes(Attributes)-Array,
S = Array).

initialize attributes(Attributes)-Array:=
(Attributes = [] — true
; Attributes = [A|As] — attribute_property(A,Init, Get,Set),
Init(V),
akl.Set(V,Self)-Array,

initialize attributes(As)-Array).

4.3.2 Object type Classes

AKL+ supports the basic object-oriented style by allowing the definition of both port
based objects and cell based objects as an abstraction for describing the concurrent
activity. A port object is a process that acts as a consumer of a communication
medium while a cell object is a data structure. A port object is an active object
which is a medium linking the sender with the receiver through a stream. The
sender leaves its message on the stream and proceeds. This incurs an inevitable
memory overhead, in this case a list construction. Clearly, for light-weigh objects,
such as window components, one would prefer to execute the appropriate method
directly on the sender’s side without suspension or scheduling the message to the
object. For the efficiency reasons, AKL+ supports cell based objects as a very
fine-grain (light-weight) objects and switch to port objects only for heavy weight
objects.

AKL+ provides three standard object type classes: the object class for creating port
objects, the cell class for creating objects as data-structure, and a sync_object class
for synchronizing the acceptance of messages to the objects. These standard classes
create objects with encapsulated state.

The object class. This class is based on the AKL port objects, see Section 3.3.2.
The following definition exhibits the behavior of this class:

:- class object.

close:=
(true — akl.stdout(S),
io.format(’Object Terminated “n’)-S).

send_batch(MsgList):=
(MsgList = [] — true
; MsgList = [Message|Rest] — Message,
send_batch(Rest)).

82

new(Object):=
(true — akl.open_port(Object,Stream),
new_state(S),
O = (M)\\(object(M) # object),
akl.O(Stream,Self)-S).

object(Stream) :=
(Stream = [] — close
; Stream = [close|_Stream] — close
; Stream = [Message|Next] — Message,
object(Next) # object).

where:

AKL+

e new/1 is the method defined to create a newly initialized port object. To set

a communication medium, a stream is created.

e object/1 is the method defined for processing a stream of messages. When
an object receives a message, the appropriate method from its dispatcher is
applied to its state, resulting in a new state. The new state will be used for

further computation.

e send_batch/1is the method defined for processing a batch of messages in a con-
secutive order. These messages will be executed in a non interleaved manner.

Sending a batch of messages is discussed in Section 4.2.4.

e close/0 is the method defined to report the termination of the port object.

The cell class. This class defines a representation of a concurrent construct that

provides a minimal form of encapsulated state. This representation suffices to ef-
ficiently express a very fine-grain (light-weight) objects in AKL+. The following

definition exhibits the behavior of the cell class:

:- class cell.
new(Object) :=
(true — new_state(S),
meta.cell(C),
set(0,9)°C,
meta.create_cell_object(C,Self,Object)).

83

4.3 Standard Classes

Object
State

Synchronization Dependence
Constraints
Data

Evaluate and
Methods

Pending queue

Figure 4.11: The structure of a synchronized object

The method new/1 defines the creation of cell objects. Cell object is an abstraction
with a state which is able to synchronize its operations. The method new/1 creates a
new state S and a memory cell C. The state S is encapsulated within the memory cell
C. Then, an abstraction is created to hold the memory cell and the class dispatcher.
The primitive operations of the AKL+ cell construct are defined in module meta,
discussed in Section 6.5

The sync_object class. This class is provided for specifying objects that require
satisfying constraints on its acceptable messages, and characterize the behavior of an
object with respect to message acceptance. The receiving object may be of any other
two object types described above. For example, the following definition combines
this behavior with the standard class object.

:- class sync_object.
.- attributes [message_queue=(V)\\(V=[])].

new(Object):=
(true — akl.open_port(Object,Stream),
new_state(S),
O = (M)\\(object(M) # sync_object),
akl.O(Stream,Self)-S).

object(Stream) :=
(Stream = [] — close
; Stream = [close|_Next] — close
; Stream = [Message|Next] — sync(Message)-Next,
object(Next) # sync_object).

84

AKL+

wake(MethodSet,NewMethodSet,Q,New(Q,Stream,Next):=
(MethodSet = NewMethodSet —
NewQ = Q,
Next = Stream
; true — collect_wake(NewMethodSet,Q,New(Q,Stream,Next)).

collect_wake(NewMethodSet,Q,New(Q,Stream,Next):=
(Q=[— NewQ = [|
Next = Stream
; Q = [Message|QRest],
akl.record name(Message,F),
akl.record size(Message,N),
sets.set_member(F/N,NewMethodSet) —
Streaml = [Message|Stream],
collect_wake(NewMethodSet,QRest,New(},Stream1,Next)
; Q = [Message|QRest] —
New(Q = [Message|NewQs],
collect_wake(NewMethodSet,(QRest,NewQs,Stream,Next)).

close:=
(true — get_message_queue(Q),

close(Q)).

close(Q):=
(Q =[] — akl.stdout(S),
io.format(’** Object Terminated successfully **~n’)-S
; true —
io.format(’Object Terminated—the following messages not processed™n~w ~“n’,[Q])).

where:

e new/1 is the method defined to create a newly initialized synchronized object.
By synchronized object, we mean object that can accept or delay a message
according to a synchronization constraints on its message acceptance.

e object/1 is the method defined for processing a stream of messages. When an
object receives a message, it invokes the controller, see Fig. 4.11, which makes
sure that the incoming request are scheduled according to the synchronization
constraints of the object. If an invocation request cannot be scheduled right
away, it is put into a pending queue (message_queue) by the controller. The
controller may attempt to (re)schedule invocation requests in the pending
queue at a later point in time (e.g. after each method invocation).

4.4 Synchronization Constraints

States of a bounded buffer

partially full

[& put/l get/1 @]

Figure 4.12: Message acceptance of a bounded buffer

e wake/6 is the method defined for (re)scheduling the invocation requests when
the acceptance condition is changed.

e collect_wake/5 is the method defined for collecting the (re)scheduled requests
from the pending queue.

e close/[0-1] is method defined to report the termination of the object.

The basic synchronization schemes is discussed in Section 4.2.4 and the synchro-
nization of message acceptance is discussed in 4.4.

4.4 Synchronization Constraints

Synchronization constraints is a mechanism used for maintaining the internal in-
tegrity of the concurrent object. It allows an object to accept only a subset of its
messages in a certain state. A well-known example is a bounded buffer with meth-
ods put/1 and get/1, where put/1 stores an item in the buffer and get/1 removes the
oldest one; then the synchronization is that one cannot get/1 from a buffer whose
state is empty and cannot put/1 into a buffer whose state full is likewise prohibited,
see Fig. 4.12. The satistaction of constraints is not achieved automatically; the
user must somehow program the methods to implement the object behavior that
satisfy the synchronization constraints. A method that may be invoked according
to the synchronization constraints is said to be enabled. Synchronization code is the
portion of code where such synchronization is controlled.

In order to program synchronization code, a concurrent object-oriented language
provides some primitives and/or general schemes for object-wise synchronization,
such as method guards [36]. In [98], the scheme for achieving object-wise synchro-
nization using those primitives in the language is called synchronization scheme of
the language.

86

AKL+

Inheritance is the key structuring mechanism in object-oriented languages. In con-
current object-oriented languages, it is desirable to inherit synchronization con-
straints whenever possible, to avoid reimplementation of superclass synchronization
constraints in subclasses [52]. However, the possibility of inheriting the synchro-
nization code may become difficult and result in restricting the reusability. This
problem and our proposal to its solution are discussed in Section 4.5.3.

The main advantage to the synchronization constraints schemes in AKL+ is the
clean separation of concurrency control and the method specification such that they
can be inherited, overridden, or extended separately without affecting each other.
One schemes can be integrated and composed with other schemes.

AKL++ provides two types of synchronization schemes: synchronizers and transitions
comparable to Matsuoka’s synchronization schemes [98]. The programmer writes
down explicit specification of what we call the accept method set. The accept method
set is an enumeration of the methods whose invocations do not violate the assertion
that must hold for a given state of the object. That is, the set of method selectors
(the method functor and its arity) of the acceptable methods of each state. All the
states must be identifiable within the synchronization code of classes, with which
users control the accept set depending on each state. Only one accept method set
will be enabled for execution in the next state of the object. The programmer
defines the synchronizer/transition that specifies the synchronization constraints
that is used to compute the next accept method set. An occurrence of a message
selector as an element of this set means that its method is enabled. A message not
satisfying the constraints is buffered until such time when the object’s state satisfies
the constraints.

4.4.1 Accept Method Set

The accept method set is a finite set of method selectors for an instance of a class,
for which the associated methods are acceptable for its current state. Each set
naturally satisfies the following condition: for any element in the set, the method
corresponding to the element is already defined at that class or its superclasses.
Each method can be associated with an identifier, for example, the accept method
set of the bounded buffer when it becomes full is {get/1}. The method mset/2 is

chosen to define the accept method set of class instances.

Primitive accept method set construct has the form [Selector, ...] . There are
also some primitive set operations, such as union, difference, etc. For example, the
partially full state of the bounded buffer is the union of the empty set and the full
set. The current accept method set of an object can be obtained through retrieving
the value of the attribute mset. The initial value of this attribute is specified by:

mset(Setld, MSet):=

87

4.4 Synchronization Constraints

(Setld = initially —

).

where the (output) argument MSet will return the initial accept method set and
initially is a special keyword that is used to indicate which accept method set is
enabled initially upon object creation.

4.4.2 Synchronizers

A synchronizer is a combination of a guard specification (an activation condition
for a method), enabling specifier and a list of accept method sets. In essence, this
synchronization scheme is similar to a guarded method but is more flexible in that
a single guard can be assigned to multiple methods in the accept method sets. The
following definition exhibits the behavior of the standard class synchronizers:

.- class synchronizers.
:- supers [sync_object].
:- attributes [mset=(V)\\mset(initially,V)].

sync(Message)-Stream:=
(true — get_mset(MethodSet),
sync(Message,MethodSet)-Stream).

sync(Message,MethodSet)-Stream:=

(akl.record_name(Message, Functor),
akl.record_size(Message, Arity),
sets.set_member(Functor/Arity,MethodSet) —
Message,
synchronizer(MethodSet,NewEnables),
interpret_mset(NewEnables,NewMethodSet),
get_message_queue(Q),
wake(MethodSet,NewMethodSet)-Q-Stream,
set_message_queue(Q),
set_mset(NewMethodSet)
true —
get_message_queue(Q),
New(Q = [Message|Q)],

set_message_queue(NewQ)).

interpret_mset(NewEnables,NewMethodSet):=
(NewEnables = [_|.] —

88

AKL+

list.sort(NewEnables,NewMethodSet)
; true — mset(NewEnables,NewMethodSet)).

where:

e sync/[3-4] is the method defined for executing or delaying an invocation re-
quest by the receiving object according to the current accept method set. The
current accept method method set is indicated by the attribute mset. If the
method selector of the invocation request is an element of this set, the method
is executed; otherwise, the method is delayed (enqueued). After invoking the
method, the synchronizer/2 method is invoked to compute the new accept
method set. Then, the message-queue is scanned to reschedule the delayed
messages that its methods become enabled in the new accept method set.

o interpret_mset/2 is the method defined to determine the accept method set. If
the accept method set is indicated by an identifier the method mset is invoked
and the enabled methods is returned; otherwise, the enabled methods is the
one at hand and is returned.

Example 4.7 Consider the definition of the bounded buffer, buffer_sync, class with
synchronizers. It is a first-in first-out buffer that can contain at most MaxzSize items.
It has two public methods put/1 and get/1. The method put/1 stores one item in
the buffer, an array, and get/1 removes the oldest one. Two attributes in and out
that act as indices into the buffer. Upon creation, the buffer is in the empty state
and the only message acceptable is put/I; arriving get/1 messages are not accepted
but kept in the message queue unprocessed. When a put/I message is processed, the
buffer is no longer empty and can accept both put/I and get/1 messages, reaching
a “partial” (non-empty and non-full) state. When the buffer is full, it can only
accept get/1, and after processing the get/1 message, it becomes partial again. The
method mset/2 defines the possible accept method set of the bounded buffer with
their identifiers. The method synchronizer/2 specifies the enabling of methods for
each state of the bounded buffer.

:- class buffer_sync(MaxSize).

:- supers [synchronizers,state_hash].

:- attributes[in=(V)\\(V=0),out=(V)\\(V=0),size=(V)\\(V=0),
buffer=(Array)\\ (akl.new_array(MaxSize,0,Array))].

mset(Setld,Mset):=
(Setld = initially — mset(empty,Mset) # buffer_sync(MaxSize)
; Setld = empty — Mset= [put/1]
; Setld = full — Mset = [get/1]
; Setld = partial —

89

4.4 Synchronization Constraints

mset(empty,Msetl) # buffer_sync(MaxSize),
mset(full, Mset2) # buffer_sync(MaxSize),
sets.set_union(Mset1, Mset2, Mset)).

synchronizer(MethodSet,Enables):=
(true — get_size(Size),
enable(Size,MaxSize,MethodSet,Enables)).

enable(Size,Max,MethodSet,Enables):=
(Size > 0, Size < Max — Enables = partial
; Size = 0 — Enables = empty
; Size = Max — Enables = full).

put(Item) := / * store an item * /

get(Item) := / * remove an item * /

Note that the code for accessing the local array storage for insertion and removal
is omitted through out this chapter for brevity. However, this is the piece of code
that represents the part which is to be inherited rather than re-implemented, i.e.
overridden.

4.4.3 Transitions

Transitions can be used as an alternative to the synchronization scheme synchro-
nizers. A transition specifies the transitional behavior of an object’s accept method
set, that reflects the synchronization constraint dictated by the internal state of the
object.

The transitions are specified on a method-by-method basis, via method transition /3.
Each class can have a default transition, indicated by the keyword default. The
following definition exhibits the behavior of the standard class transitions:

:- class transitions.
:- supers [sync_object].
:- attributes [mset=(V)\\mset(initially,V)].

sync(Message)-Stream:=
(true — get_mset(MethodSet),
sync(Message,MethodSet)-Stream).

90

AKL+

sync(Message,MethodSet)-Stream:=
(akl.record name(Message, Functor),
akl.record_size(Message, Arity),
sets.set_member(Functor/Arity,MethodSet) —
Message,
MsgSelector= Functor/Arity,
transition(MsgSelector,MethodSet,NewEnables),
interpret_mset(NewEnables, NewMethodSet),
get_message_queue(Q),
wake(MethodSet,NewMethodSet)-Q—Stream,
set_message_queue(Q),
set_mset(NewMethodSet),
; true — get_message_queue(Q),
New(Q = [Message|Q],
set_message_queue(New(Q))).
interpret_mset(NewEnables, NewMethodSet):=
(NewEnables = [|.] —
list.sort(NewEnables,NewMethodSet)
; true — mset(NewEnables,NewMethodSet)).

where:

e sync/[3-4] is the method defined for executing or delaying an invocation re-
quest by the receiving object according to the current accept method set. The
current accept method method set is indicated by the attribute mset. If the
method selector of the invocation request is an element of this set, the method
is executed; otherwise, the method is delayed (enqueued). After invoking the
method, the transition/3 method is invoked to compute the new accept method
set. Then, the message-queue is scanned to reschedule the delayed messages
that its methods become enabled in the new accept method set.

e interpret_mset is the method defined to determine the accept method set. If
the accept method set is indicated by an identifier the method mset is invoked
and the enabled methods is returned; otherwise, the enabled methods is the
one at hand and is returned.

Example 4.8 Consider the definition of the bounded buffer, buffer_trans, class with
transitions. It has the same definition of attributes, put/1, get/1, enable/4, and
mset/2 of Example 4.7. The method transition/3 specifies the enabling of methods
for each state on a method-by-method basis. The example shows the possibility of
having a default transition.

91

4.5 Inheritance

.- class buffer_trans(MaxSize).

transition(M,MethodSet,Enables):=
(M = default — get_size(Size),
enable(Size,MaxSize,MethodSet,Enables) # buffer_trans(MaxSize)
; M = getb/1 — transition(default,MethodSet,Enables)
; M = putb/1 — transition(default,MethodSet,Enables)).

4.5 Inheritance

Object orientation attempts to model real-world applications as closely as possi-
ble. Object orientation also attempts to achieve software reusability. The powerful
object-oriented concept that provides this capability is inheritance. This avoids
redesigning and recoding everything from scratch. According to Cox [37], “With-
out inheritance every class would be a free-standing unit, each developed from the

7

ground-up.” A class may inherit operations from superclasses and may have its

operations inherited by subclasses.

4.5.1 Class Inheritance

Inheritance of classes is established through explicit declaration of the inheritance
relationships. For example, the classes given in the supers declaration of the class
counter declares ur_object as a superclass of class counter, see Example 4.1. A class
can inherit from more than one superclass. For example, the class ur_object has two
superclasses: object and state_hash. Thus when an object O is created from class
counter. Then O is a member of class counter and every class reachable (through
superclass relationship) from counter. The interface of counter (the subclass) is a
superset of the interface of its superclasses.

Inheriting attributes. In all object-oriented languages, objects of a subclass must
retain the same type of information as objects of their superclass. Like CLOS
[21], AKL+ allows inheriting attributes of the superclass. Inheriting an attribute
automatically results in inheriting its attribute methods, see Section 4.1.2, so that
methods in the subclass can access and manipulate the attributes of its superclasses
through their accessor and update methods. For example, the class counter declares
the attribute val in addition to attribute self declared by its superclass ur_object.

Inheriting methods. As indicated earlier, a class defines both the structure and
behavior of a collection of objects. The behavior is specified by method definitions.

92

AKL+

In an inheritance hierarchy, a method defined for a class is inherited by its subclasses.
Thus, the inherited methods are part of the interface manipulating the objects of
the subclass.

Method Overriding. A subclass can override an inherited method. By overriding,
we mean that a method with the same selector is defined in the class. In other words,
a method called M in class C can be overridden by a method called M in a subclass
C” of C. Thus when a message with selector M is sent to an object O of class "
then M will be bound to the method with the selector in the most specialized class
of O.

In addition, a subclass can override an attribute access or update method that
implicitly defined by the system. The ability to override the attribute access and
update methods adds considerable flexibility to handle exceptions and special cases.

Example 4.9 The following class jug ensures that modifying the value of the con-
tents attribute will not exceed the maximum limit of the jug object, see Fig. 4.13.

:- class jug.
:- supers [ur_object].

.- attributes [contents=(V)\\(V=0),capacity=(V)\\(V=100)].

set_contents(V):=
(true — get(capacity,Max),
set_contents(V,Max).

set_contents(V,Max):=
(V=< Max — set(contents,V)"~State
; true — jo.format(’Error: jug will exceeds its limit “w™n’, [V]).

a

The checking of the validity of the update operation is defined as an active constraint.
Where the update is not performed if the constraint is violated. The definition of jug
does not impose a static declaration of a jug capacity. Moreover, it is also possible
to create objects with various capacity and the constraint violation checking is valid.
This phenomenon belongs to a data-driven programming technique called daemons.
Within AKL+ there are two types of events which may cause a daemon to be
summoned. These are:

1. accessing or updating attributes values.

2. creating new objects or closing an object.

93

4.5 Inheritance

contents

Jug

Figure 4.13: An example of method overriding

The methods which react to these events are a specialization of the most general
operations such that whenever one of the above events is encountered the daemon is
activated. Other than its special status with respect to certain events happening, the
daemon is specified and behaves just like any other methods in AKL+. For example,
the definition of set_contents/[1-2] in class jug specializes its default definition in
order to define an attribute update daemon. Daemons can also be defined as a
before or after actions depending on the way the daemon is reacted. For example, the
definition of set_contents/[1-2] in jug class is a before daemon whereas the definition
of new/1 in ur_object is an after daemon. Note that the method new/1 of ur_object
delegates to the overridden method new/1 of its superclass cell.

4.5.2 Differential Inheritance

Inheritance typically extends the interface of a subclass through defining new meth-
ods. Inherited methods can also be overridden explicitly through excluding some
of the inherited methods in the subclass definition, so-called differential inheritance
[102]. For example, assume the following methods have been defined for the class
bag:

:- class bag.

insert(...) :=...
delete(...) := ...
union(...) :=...

difference(...) := ...
cartiesianProduct(...) := ...
numberOfOccurances(...) 1= ...

A bag is a collection of objects that can have duplicates (that is, the same object
can occur in a bag more than once). To evaluate the number of occurrences of an

94

AKL+

object in a bag we use the method numberOfOccurances which is a message sent to
a bag object with an element object as argument. For example, the message:

numberOfOccurances(O)"B

will return the number of occurrences of the object O in the bag B.

We want to create the subclass set that will inherit from bag. A set is also a
collection, except an object can occur at most once in the collection. Therefore, the
subclass set specializes bag through overriding the method insert: before performing
the actual insert we will check if the object is already in the set. If yes, we will
return a message saying “object already in the set.” Thus insert has an entirely
different implementation in set.

With numberOfOccurances there is a problem. Conceptually, this method must not
be part of the interface of set. The value of numberOfOccurances for set objects is
either 0 (the element is not in the set) or 1 (the element is in the set). Instead, we
can have a predicate isElement that returns true if an object is in a set. What is
most important is that it is highly desirable to exclude numberOfOccurances trom
the interface of the class set.

There are two basic ways for excluding inherited methods:

1. Override the method and send a diagnostic message when it is invoked on an
object of a subclass. This strategy is very general and can be used with almost
any object-oriented language, since most languages support method overriding
in the inheritance hierarchy. For example, the declaration of numberOfOccu-
rances will be:

:- class set.

:- supers |bag].

insert(...) :=...

numberOfOccurances(...) := /* a diagnostic message */

The disadvantage of this strategy is that it is at best a “hack”: the method is
still (a useless) part of the interface of the subclass and can lead to unnecessary
name collisions when considering multiple inheritance [133].

It should be noted that Hiding the method and making it subclass invisible
will not solve the problem. For example, consider the private declaration of
numberOfOccurances in class bag:

:- class bag.

4.5 Inheritance

:- private [numberOfOccurances/1].

insert(...) :=...
delete(...) ;= ...
union(...) :=...

difference(...) := ...
cartiesianProduct(...) := ...
numberOfOccurances(...) 1= ...

The problem that may arise is that the method numberOfOccurances could
not be inherited by all subclasses of class bag.

2. specify explicitly that the inherited method should not be inherited. This is
supported through the Differential Inheritance feature of our language. For
example, the declaration of the class set will be:

:- class set.
.- supers [bag-[numberOfOccurances/1]].
insert(...) :=...

This possibility is much cleaner. It enables better modeling since the interface
of a class is cleanly captured.

AKL++ supports the exclusion of an inherited operation with the ability of the sub-
class to directly invoke the excluded operation to the named superclass.

4.5.3 Synchronization Constraints and Inheritance

Objects are instantiated from classes. Classes may be hierarchically organized ac-
cording to an inheritance relation. Synchronization constraints are specified on per
class basis and all objects instantiated from the same class have synchronization
constraints with similar functionality.

Having separate specification of synchronization constraints is generally desirable to
avoid the “inheritance anomaly”. The term “inheritance anomaly” has been coined
by Satoshi Matsuoka and Akinori Yonezawa [97, 99]. The anomaly manifests itself
as subclasses in which specification of correct synchronization constraints require re-
definition of method behavior that would otherwise be reusable. The anomaly may,
for example, occur if synchronization constraints are specified as part of method
behaviors. In that case, superclass synchronization constraints cannot be changed

96

AKL+

in subclasses without also changing the methods of which the synchronization con-
straints are part. Different proposals have led to different synchronization schemes,
the basic language features for programming the synchronization on message ac-
ceptance. Matsuoka noticed that the occurrence of the anomaly depends on the
synchronization scheme of the language. That is, the re-definition would be re-
quired for the language that adopted certain synchronization scheme, while it could
be safely inherited in another language that adopts an entirely different synchro-
nization scheme. There are two directions in providing synchronization schemes
[77]. One approach uses the method guards where a guard (activation condition) is
attached to each method. Each method is responsible for ensuring certain condition
before executing its body. The other approach uses what is called interface control,
where a method execution is initiated only when the method is allowed to access
the internal state of the object, i.e. enabled. The “anomaly” has been illustrated by
a number of counter examples in the literature. For a more elaborated discussion of
the inheritance anomaly and its causes, refer to [99]. We adopt those examples to
illustrate the characteristic of our support of the synchronization constraints.

The approach taken in AKL+ is based on method guards, a very suitable synchro-
nization scheme to our computation model, where a method choice is committed if
its guard is reduced to true. The approach is developed from Matsuoka’s proposal to
support synchronization schemes for resolving the anomaly. However, our approach
differs in the following:

e The programmer has the flexibility to program the synchronization schemes
as well as constraints on the acceptable set of messages that suits his problem.

e The object synchronization is naturally considered as a behavior of the con-
current object. This includes not only the synchronization scheme but also
the acceptance constraints on messages.

e There is no separate inheritance rules for accept method sets, synchronizers,
and transitions.

e The acceptance of messages depends on dynamic operation on the accept
method set, e.g. union, difference, etc. This will result in minimizing code
re-definitions when multiple methods are affected, e.g. locking arbitrary oper-
ations.

AKL+ provides two synchronization mechanisms namely: synchronizers and tran-
sitions, discussed in Sections 4.4.2 and 4.4.3. There are two situations in which the
anomaly can appear with method guards: history-only sensitiveness of acceptable
state and modification of acceptable states [99]. To clarify history-only sensitiveness
anomaly, consider creating a class gb_buffer, a subclass of bounded buffer. gb_buffer
has one additional method gget/1. gget/1 is almost identical to get/1 with the sole

97

4.5 Inheritance

exception that it cannot be accepted immediately after the invocation of put/1. Such
a condition for invocation cannot be distinguished with method guards and the set
of attributes available in bounded buffer alone; we need to define extra attribute
after_put. As a consequence, both get/1 and put/1 must be redefined. The following
example shows that our approach can solve this problem.

Example 4.10 The following is the definition of class gb_buffer with class buffer_trans
as a superclass, see Example 4.8, using our approach.

:- class gb_buffer(MaxSize).
:- supers [buffer_trans(MaxSize)].

mset(Setld,Mset) :=
(Setld = partial — mset(partial,Msetl) # buffer_trans(MaxSize),
sets.set_union(Mset1, [gget/1], Mset)
; Setld = after_put — mset(partial,Mset) # buffer_trans(MaxSize)
; true — mset(Setld,Mset) # buffer_trans(MaxSize)).

transition(M,MethodSet,Enables):=
(M = put/l — get_size(Size),
enable(Size,MaxSize,MethodSet,Enables)
; true — transition(default,MethodSet,Enables) # buffer_trans(MaxSize)).

enable(Size,Max, MethodSet,Enables):=
(Size > 0, Size < Max — Enables = after_put
; Size = Max — Enables = full).

gget(Item) := / * remove an item * /

Note that only the mset/2 that are needed to distinguish between the acceptable
constraints for gget/2 is redefined. 0

To clarify the second type of anomaly, consider the lock class, which is an abstract
Mizin class. Direct instances of lock are not created; rather, the purpose of lock is
to be “mixed-into” other classes in order to add the capability of locking an object.
In lock, a pair of methods lock/0 and unlock/0 have the following functionality: an
object upon accepting the lock/0 message, will be “locked”, i.e. will suspend the
reception of further messages until it receives and accepts the unlock/0 message. Its
synchronization constraint is localized, i.e. it is not affected by methods of the class
it is being mixed to. when lock class is mixed into the definition of the bounded
buffer to create the class lb_buf, we are likely to assume that it would not affect the
definition of other methods. However, this is not the case, we must add an attribute
locked which indicates whether the current object is locked or unlocked. Then, the

98

AKL+

inherited methods such as put/1 and get/1 must be overridden in order to account
for locked. Note that the anomaly occurred because lock/0 and unlock/0 methods
modify the synchronization constraints of the methods that are already defined, in
this case both put/1 and get/1. The following example shows that our approach can
solve this problem. Another example is described in Section 7.4.

Example 4.11 Consider the following definition of class write_lock and with sub-
class write_lock_buffer. write_lock defines a two-level lock where the method lock/0
locks the object exclusively so that no other methods can access it until it receives
a corresponding unlock/0) message, write_lock_buffer class is a bounded buffer that
allows locking.

.- class write_lock.

.- attributes [lock _var=(V)\\(V=unlocked lock),method_set=(M)\\(M=[])].

mset(Setld,Mset):=
(Setld = locked — Mset = [unlock/0]
; Setld = unlocked — get_method_set(Mset)).

transition(M,MethodSet,Enables):=
(M = default — get_lock_var(LOCK_VAR),
enable(LOCK_VAR,MethodSet,Enables) # write_lock
; true — transition(default,MethodSet,Enables) # write_lock).

enable(LOCK_VAR,MethodSet,Enables):=
(LOCK_VAR = locked_lock — Enables = locked,
set_method_set(MethodSet)
; LOCK_VAR = unlocked lock — Enables = unlocked).

lock:=
(true — set_lock_var(locked lock),
io.format(’— lock —— ~n’)).

unlock:=
(true — set_lock_var(unlocked lock),
io.format(’—— unlock — ~n’)).

:- class write_lock_buffer(MaxSize).
:- supers [buffer_trans(MaxSize),write lock].

mset(Setld,Mset):=

(Setld = locked — mset(locked,Mset) # write_lock
; Setld = unlocked — mset(unlocked,Mset) # write_lock

99

4.5 Inheritance

; Setld = always — Mset = [lock/0]

; true — mset(Setld,Mset1) # buffer_trans(MaxSize),
mset(always, Mset2),
sets.set_union(Mset1, Mset2, Mset)).

transition(M,MethodSet,Enables):=
(M = lock/0 — transition(M,MethodSet,Enables) # write_lock
; M = uanlock/0 — transition(M,MethodSet,Enables) # write_lock
; true — transition(M,MethodSet,Enables) # buffer_trans(MaxSize)).

Note how the dynamic operation on the accept method set allows easy re-use of
existing lock code.

4.5.4 Multiple Inheritance

Inheritance is characterized as single or multiple depending on the number of classes
a class can inherit. Single inheritance is simple but restrictive. Single Inheritance
forces designers to choose to inherit from one of several equally attractive super-
classes and then duplicate the code from other superclasses that could not be inher-
ited. Single inheritance result in a strict tree hierarchy. Multiple inheritance on the
other hand is complex but allows a more natural definition of relationships between
classes. Multiple Inheritance results in a Directed Acyclic Graph(DAG) of classes
(inheritance graph). In this graph each class is a node and there is a directed arc
from each class to each of its parents. Figure 4.14 shows an inheritance graph with
multiple inheritance. There are four important use of multiple inheritance [130]:

o Multiple independent protocols: This covers situations where a class is created
by combining completely independent superclasses.

o MixIn-based inheritance: Here several classes are specifically created for sub-
sequent combination. These special classes are also known as mizins [54].

o Submodularity: This covers situations where while creating a system, modu-
larity of subparts is noticed and factored out for good system design.

However, with the power of multiple inheritance also comes complexity. When a
class inherits from more than one parent there is the possibility for conflicts, which
are methods with the same name or selector but different or unrelated semantics
inherited from different superclasses [86]. Meyer makes the following two important
observations about this problem [107]. First, it is a syntactical problem rather than a

100

AKL+

ur _obj ect
poi nt
hi st ory_poi nt bounded_poi nt

\/

bounded_hi st ory_poi nt

Figure 4.14: An example of multiple inheritance

fundamental property of inheritance and classes. The problem is due to a confliction
in the choice of names. Second, the problem is not with parent classes. Each parent
class is consistent as it stands. The problem is caused by the common descendant
class that combines the incompatible parent classes. Therefore, the descendant is
the most logical place to resolve the problem.

A language that supports multiple inheritance must provide strategies to resolve the
conflict of unrelated methods. The following are the basic strategies for resolving
this conflict:

o linearization: This strategy specifies a linear, overall order of classes, and then
specifies that application of a class method or attribute starts from the most
specific class. One possible way of linearization to the point class hierarchy
depicted in Fig. 4.14 is shown in Fig. 4.15. This is the approach taken in
Flavors [108], CLOS [21, 82] and CommonLoops [20]. As pointed out by Snyder
[133], the main problem with this approach is the ordering of superclasses in
a class declaration has significant semantic implications.

o Forbidding conflicts—Renaming Strategies: This is the simplest and most ob-
vious strategy. An error is issued for totally unrelated attributes or methods.
This requires the programmer to rename the conflicting methods. The ap-
proach is similar to the one taken in Eiffel, Trellis/Owl.

o Qualifying attributes and methods: This strategy provides a straight forward
solution to the conflicts by the qualification of attribute or method names with
the name of the class. With this strategy, whenever there is an ambiguity in
the access or usage of an instance variable or method, it must be resolved
through qualifying the variable or method with the appropriate class name.
C++ uses this strategy in supporting multiple inheritance.

101

4.6 Summary

ur _obj ect

!

poi nt

I

bounded_poi nt

!

hi story_poi nt

!

bounded_hi st ory_poi nt

Figure 4.15: An example of linearized multiple inheritance

o Fzcluding operations: This strategy provides the ability for a subclass to ex-
clude an inherited operation. This facility is used in CommonObjects [132]. In
CommonObjects the inheritance graph is converted into a tree by duplicating
nodes.

In our support to handle multiple inheritance, we model the inheritance graph di-
rectly. In other words, we don’t flatten the inheritance graph into a linear chain,
and then deals with this chain using the rules for single inheritance. Operations are
inherited along the inheritance graph, excluding differentially inherited and private
operations encountered, until redefined in a class. If a class inherits operations with
the same selector from more than one superclass, a default (implicit) differential
inheritance is applied; excluding all the methods with the same selector occurring
further on the right. Inheriting an operation is not a strict depth-first traversal of
the inheritance graph since a definition for a differential inheritance operation will
affect the inheritance path.

The attribute specification of classes are inherited according to the same rules as
methods.

In AKL+ the designer is able to resolve the conflict in different ways. One way is to
redefine the operation in the subclass. An alternative way is to differentially inherit
the conflicting operation.

4.6 Summary

AKL+ and its computation model are informally presented. Several simple examples
are used to illustrate the main features and programming techniques. Classes can

102

AKL+

be defined with attributes, methods, access control of methods, and superclasses.
Classes can be parameterized. A parameter of a parameterized class lies in four
categories: class abstraction, constant, object or method abstraction. The passing
of a class parameter is not resolved at compile time but rather all references are
bound at run-time. This is due to the dynamic binding of parameters with the actual
code. Mechanisms for resolving multiply inherited definitions, such as differential
inheritance, are supported. A set of implicit behavior is defined for each defined
class. These are supported for error handling, attributes manipulation, and class
membership. Classes, methods and instances of classes can be expressed as first-
class values in the language which may be passed as arguments, returned as results
and stored in attributes of objects. Defining classes and methods as abstractions
provide for all higher-order programming techniques. State, which is an object, is
encapsulated and attributes are only accessible via message sending. Objects can
be explicitly allocated or destroyed using meta level operations provided by the
language. Objects can share a common object by passing it as a parameter to their
classes at creation time. AKL+ achieves a uniform message sending which means
that objects of different types can receive messages in the same manner.

Two implicit arguments are passed to every method: the base class so that method
calls to this class can be applied and an accumulator pair to account for the incoming
state and the outgoing state that suffices to achieve state change. The body of a
method threads the input state of the method through the method calls and returns
it as the output state. The target object is available under the special attribute self
so that methods can send messages back to their target object.

One of the most important design issues, in AKL+, is to supply programmers with
the minimum set of efficient and effective built-in standard classes (library). This
fulfills the users computational needs as it provides him with a simpler, and easier-
to-use computing environment.

The language is very flexible to support data-driven programming like, specifying
daemons, default methods, and class-specific methods. A daemon can be specified
as an active constraints on attributes values or as a method triggered when an
object is no longer in use. A default method is automatically invoked when there
is no message selector matches with any methods of the interface. A class-specific
method makes it possible to call methods on the basis of the identity of classes.

The language supports the basic synchronization schemes that achieve the concur-
rency control for a concurrent object. This is realized by providing the concurrency
control mechanisms for sending messages in a batch, serializing messages, acknowl-
edgment of messages between a sender and a receiver objects, and by specifying the
synchronization constraints for an object to accept or delay its messages according
to its current state.

103

4.6 Summary

The concept of inheritance anomaly has been introduced into object-oriented con-
current programming in [97] and further defined in [98, 99]. It was shown that
existing synchronization schemes are weak in one or more of these anomalies. The
appearance of these anomalies has a great significance because, from now on, any
forthcoming proposals for language tools in object-oriented concurrent programming
can and should be demonstrated to successfully solve these critical cases. In our lan-
guage, we have provided two standard protocols, transitions and synchronizers, to
support synchronization schemes for resolving the anomaly.

R

104

Definition of AKL+

AKL+ is a concurrent language supporting object-oriented programming. It is built
on top of AKL (Agents Kernel Language) [74]. AKL is the base for a formal defini-
tion of AKL+. The semantics of AKL+ is defined in this chapter by their stepwise
translation (expansion) to AKL.

This chapter is organized as follows. In Section 5.1 we present the abstract syntax of
AKL+. In Section 5.2 a simple example is used to illustrate how a class is translated
into AKL. In Section 5.3 we give the translation rules to expand a class definition

into AKL.

5.1 Definitions and Programs

We use the following notations in describing the syntax of programs: letters in bold
are keywords, letters between (and) are nonterminal symbols, letters between '

!/

and ' are terminal symbols, and the symbol | separates alternatives.

Assume given sets of variables, constraint names, procedure atom names, method
atom names, module names, attribute names, and class names. A constraint atom is
an expression of the form ¢(Xy, ..., X,,) where ¢is a constraint name and Xi,..., X,
are variables. Two primitive constraint atoms are provided directly: fail and true
which indicates the failure and success, respectively. Similarly, procedure atom and
method atom are expressions of the form p(Xi,..., X,,) where p is either a procedure
atom name or a method atom name and X1, ..., X,, are different variables. An atom
is a constraint atom, procedure atom, or a method atom. The name of an atom
is called functor. The variables in an atom are called parameters. The number of
parameters—determined by p or ¢ is called the arity of the atom. The selector is an
expression of the form p/n which uniquely identifies the definition.

We assume an equality constraint name of the form = provided by the underlying
constraints system, e.g. X = 1, is often called a binding, suggesting that the variable
X is “bound” to I by the constraint. A variable, e.g. Y, bound to a definition is
called an abstraction. An application (call) to this abstraction is an expression of the
form Y (Xy,...,X,), where X;,..., X,, are the actual parameters of the definition.

A declaration of a procedure as visible, is an expression of the form :- public p/n.
A call to p/n defined in module mod is an expression of the form mod.p(X1,..., X,).

5.2 A Simple Example

A class atom is an expression of the form ename(Xy, ..., X,) where X1,..., X,, are
variables of global scope to the class definition. A declaration of superclasses is an
expression of the form :- supers [Super; — [dy, - ,d], ..., Super, — [dyi, -, d,]],
where Super; is a class atom, and d; is a method selector.

A declaration of a hidden (invisible) method is an expression of the form :- private
[di,---,d,], where d; is a method selector.

A declaration of attributes is an expression of the form :- attributes [a; = mq,...,a, =
my], where a; is an attribute name and d; is a method abstraction.

Sending a message to an object is an expression of the form p(X;,..., X,)" O, where
O is a variable and p/n is a method atom.

A class abstraction is an expression of the from Y = #¢, where Y is a variable and
q is a class atom. An application to this abstraction is an expression of the form

p(X1,..., X,)#Y, where p/n is a method atom.

A method invocation is an expression of the form p(Xi,..., X,) <# ¢, where ¢ is a
class atom and p/n is a method atom. A method delegation is an expression of the
form p(Xi,...,X,)# ¢, where ¢ is a class atom and p/n is a method atom.

The remaining (abstract) syntactic category pertaining to programs is shown in Fig.

5.1.
A hiding statement introduces variables with local scope.

The clauses of a choice statement have the same guard operator. To the guard opera-
tors correspond conditional choice (=), committed choice ("), and nondeterminate
choice (’?") statements, respectively. The symbol ’;’ separates clasuses within the
choice statement. The parameters of a head atom are called formal parameters. A
head of a definition introduces variables of local scope to its definition.

A program is a finite set of classes and module definitions, satisfying the condition
that every method atom, procedure atom, module name and class atom occurring
in the program has a definition.

5.2 A Simple Example

The class expansion is transparent to the user. Every defined class will translate to
a definition of an AKL module with the same name as the functor of the class atom.

As a simple example that shows how AKL+ code expanded to AKL code, consider
the definition of the class ord_list that follows. This class has four method defini-
tions: insert_element/1, insert/3, insert_auz/5, and less/3 and an attribute list for
storing an ordered list. The method insert_element inserts an element in list. The

106

Definition of AKL—+

set of definitions of classes and modules)
module heading)(set of procedure de finitions)
class heading)(set of method definitions)

: =" module {module name)

set of public definitions)

: —' public (selector)

functor)'['(arity)

: —' class (class atom)

(program,) =
(module de finition) =
(class definition) =
{

module heading) =

(public definition) =
(selector)
(class heading)

(
(
,<
5
5

—" supers (sequence of class atoms)
: —" attributes (set of attribute declarations)
: —' private (set of selectors)

(procedure definition) = (definition)

(method definition) = (definition)

(de finition) = (head) ' :=" {body)

(head) = (procedure atom) | (method atom)
(body) = (statement)

(statement) atom) | (composition) | (hiding)

abstraction application) | (method invocation)

method delegation) | (message send)

constraint atom) | (procedure atom) | (method atom)
statement)’) (statement)

set of variables)' ! (statement)

sequence of clauses with the same guard operator)

atom,)
composition)
hiding)

choice)

set of vars)' ' (statement)(guard operator)(statement)
_)/ | ! |/ | /?/

clause)

guard operator)
aggregate)
abstraction)

{
{
{
{
2
2ch0ice> | (aggregate) | (abstraction)
{
{
{
{
{
;

aggregate({variable)') (statement)’) (variable))
method abstraction) | (class abstraction)
procedure abstraction)

{
{
{
{
{
{
{
{

vartable) ' =" (nameless de finition)
vartable) ' =" '#' (class atom)

{
{
2
évamabl@ =" ((set of variables))'\" (body)
{
{
{

method abstraction)
class abstraction) =
procedure abstraction)

abstraction application)

{
{
{
(class application) | (method application)
procedure application)

class application) method atom) '#' (variable)

method application) vartable)((sequence of variables))
procedure application) = 'akl.(variable)((sequence of variables))
method invocation) (method atom) ' < #' (class atom)
method delegation) = (method atom) '#' (class atom)
(method atom) """ (variable)
({

{

)
)
w
Q
Q
)
w
)
3
=
Il

nameless de finition)
attribute declaration) =

set of variables)) '\\' (body)

!/

{
{
{
{
{
2
(attribute name) ' =" (nameless de finition)

Figure 5.1: Abstract syntax of AKL+ program
107

5.2 A Simple Example

method insert/3 inserts an element in an ordered list yielding a new ordered list as
a result. The method insert_auz/5 is an auxiliary definition of insert/3; hence, it is
a private one. The method less/3 defines the criterion which compares two elements
in order to insert an element at the correct position. The activation of insert/3 by
insert_auz/5 and the activation of insert_auz/5 by insert/3 are local invocations.
The less/3 invocation is an application to the base class. For instance, when the
insert/3is invoked and the base class, bound by the reserved variable Self, is ord_list,
the less/3 of ord_list is invoked, i.e. the less/3 invocation by the insert/3 definition
is determined through the dispatcher of the base class. The expression “-State” is
a syntactic variable that indicates a pair of arguments which couples variables that
are needed to cater the incoming and the outgoing state.

:- class ord_list.
.- private [insert_aux/5].

.- attributes [list=(V)\\(V=][])].

insert_element(El):=
(true ? get(list, LO),
set(list, L),
insert(ELLO,L)).

insert(El, L0, L):=
(LO=[— L =[E]
; LO = [E|L1] — less(ELE,YesNo) # Self,
insert_aux(El, E, YesNo, L1, L) # ord_list).

insert_aux(El, E, YesNo, L1, L):=
(YesNo = yes — L = [EL,E|L1]
: YesNo = no — L = [E|L2],
insert(El, L1, L2) # ord_list).

less(I1, 12, YesNo):=
(Il < 12 — YesNo = yes
; true — YesNo = no).

The above definitions are expanded to AKL code, as follows:

:- module ord_list.
:- public dispatch/5.
:- public typeof/5.

:- public less/5.

108

Definition of AKL—+

:- public insert_element /5.

:- public insert/5.

:- public init list/5.

:- public domain/5.

:- public attribute_property/5.

typeof(typeof(Class),Myself,Self)-State:=
(true 7 Class = ord_list, Myself = ord_list).

init_list(init list(V),Myself,Self)-State:=
(true ? V =1]).

attribute_property(attribute_property(Att,MethlInit,MethGet,MethSet),
Myself,Self)-State:=
(Att = list — MethlInit = (V,Self)-State\Self([init list(V)])-State,
MethGet = (V,Self)-State\Self([get list(V)])-State,
MethSet = (V,Self)-State\Self([set list(V)])-State).

domain(domain(X),Myself,Self)-State:=
(true 7 X = [list]).
insert_element(insert_element(El),Myself,Self)-State:=
(true 7 Self([get(list,L0)])—State,
Self([set(list,L)])-State,
Self([insert(ElLLO,L)])-State).

insert(insert(El L0,L)Myself,Self)-State:=
(L0 =[] — Myself = ord_list, L = [El]
; LO = [E|L1] — Myself = ord_list,
Self(less(ELE, YesNo))-State,
insert_aux(insert_aux(ELE,YesNo,L1,L),ord list,Self)-State).

insert_aux(insert_aux(ELE,YesNo,L1,L),Myself,Self)-State:=
(YesNo = yes — Myself = ord_list, L = [ELE|L1]
; YesNo = no — Myself = ord_list, L = [E|L2],
insert(insert(ElL1,12),ord list,Self)-State).

less(less(11,12,YesNo),Myself,Self)-State:=
(Il < 12 — Myself = ord_list, YesNo = yes
; true — Myself = ord_list, YesNo = no).

dispatch(Msg,Myself,Self)-State:=

(Msg = insert_element(Argl) — insert_element(Msg,Myself,Self)-State
; Msg = insert(Argl,Arg2,Arg3) — insert(Msg,Myself,Self)-State

109

5.3 Expansion to AKL Code

; Msg = less(Argl,Arg2,Arg3) — less(Msg,Myslef,Self)-State
Msg = typeof(Argl) — typeof(Msg,Myslef,Self)-State

Msg = init list(Argl) — initlist(Msg,Myself,Self)-State

Msg = attribute_property(Argl,Arg2,Arg3,Argd) —

attribute_property(Msg,Myself,Self)-State

Msg = domain(Argl) — domain(Msg,Myslef,Self)-State).

The ord_list class is expanded with additional definitions: typeof/5, dispatch/5
init_list/5, domain/5, attribute_property, and public definitions. The expansion of
classes and their method codes will be discussed in the following section.

5.3 Expansion to AKL Code

The expansion of AKL+ definitions to AKL definitions is based on a source-to-source
transformations. The operational and declarative semantics of AKL+ programs is
given in terms of their translations to AKL!. The method of defining a language se-
mantics by translating the language into another (formal) language has been used to
give semantics to the object-oriented language called Vulcan [79] in terms of trans-
lations to the language Concurrent Prolog [126] and the object-oriented language
Oz [61] in terms of translations to the language kernel Oz [131], among others.

The expansion of a class definition into AKL code is based on transformation rules.
Each kind of transformation is defined by a rewrite rule, D = D', that substitutes
the definition D', on its right hand side, for the definition D, on its left hand side.
The definition to which a method expand takes five arguments:

Method : Message x Myself x Self x State — State‘

The first argument is the received message (a method atom), the second argument
is the class name of the class being defined, the third argument is an abstraction of
the base class, the fourth argument is the state at the time of message reception,
and the fifth (output) argument is the state that results from the method activation.

Notations

In the transformation rules that follows, the following notations are used:

!The definition of AKL is given in [58, 74, 50, 51].

110

Definition of AKL—+

In State Out State

| \
1 \
| \
n l (®
m method activation / \
I
o In State/ Out State I I ! @ Il’
—> state thread)
/
n ! o 4

Figure 5.2: State threading through the body of a method
e goal = goal(X,Y)

denotes the transformation produced by augmenting goal by the two argu-
ments X and Y.

o goal = goal-7

denotes the transformation produced by augmenting goal by the accumula-
tor pair Z. An accumulator pair is a syntactic variable that indicates a pair of
arguments. The first argument is called the input argument and the second is
the called the output argument. The concept of the accumulator pair is very
useful in state threading where a pair of arguments represent the input and
output version of some changing data that is passed along from one definition
to another, see Fig. 5.2. For example, the definition

p(...)-State:=
(true —
q(...)-State,
r(...)-State).

is equivalent to

p(...,Stateg,State,):=
(true —
q(...,Stateg,Statey),
r(...,Statey,State,)).

Here —State represent a pair of variables which are inserted as arguments. This
has the effect of reducing the proliferation of variable names and implicitly
expressing the threading of the state arguments through the definition.

111

5.3 Expansion to AKL Code

dy,
e the sequence of definitions dy,---,d, is denoted by: <
dy,

Program transformation rule

program = program’

Where program is an AKL+ program and program’ is an AKL program.

Class transformation rule

Class definition = module definition

Class heading transformation rule

Class declaration transformation rule

de finition’

:- class Class :>{ : — module m }

where Class is the class atom of the class being defined, and m is its functor.
definition’ is the expansion of the method definition:

typeof(X) := true ¢ X = Class

Attributes declaration transformation rule

Let ay,. .. ,a, represent the attributes defined in the class being defined. Let a,,11,...,a,,
represent its inherited attributes.

definition; '

definitiona; '
- attributes [a; =(X1)\\b1,. .. ,a,=(X, \\b.] =¢ ...
definitiona, '
definitiony '
where a; is an attribute name. definition,’ is the expansion of the method defini-
tion:

112

Definition of AKL—+

domain(X) :=true ? X = [aq,... a1,

definitiona; ' is the expansion of the method definition:
inita; (X;) :=true ? b,
de finitiony ' is the expansion of the method definition:
property(A,Init,Get,Set) :=
(A =ay — Init = (V)\\inita,,

Get = (V)\\getay,

Set = (V)\\setay,

g e

;A =a, — Init = (V)\\inita,,
Get = (V)\\geta,,
Set = (V)\\seta,)

Method definition transformation rule

[ny !
head := body ;»{ head” :=body }

: — public p/n

where head translates to head’ according to the head transformation rule and body
translates to body’ according to the statement transformation rule. p is the functor
of head’, and n its arity that corresponds to the arguments: Message, Myself, Self,
State, and (output) State of the expanded definition. The public definition is to be
defined if the definition is visible so that definitions can call it from within other

modules.

Head transformation rule

head = head(Myself,Self)-State
where head refers to a method head.

113

5.3 Expansion to AKL Code

Statement transformation rules

Composition transformation rule

statement, statement = statement’ statement’

Where statement translates to statement’ according to the statement transformation
rules.

Hiding transformation rule

X1,..., X, : statement = X1,..., X, : statement’

where Xi,..., X, are variables that have a scope limited to the statement being
defined and statement translates to statement’ according to the statement transfor-
mation rules.

Choice transformation rule

(statement % statement (statement’ % statement’
M =9 -
s statement % statement) s statement’ % statement’)

Where % is a guard operator and statement translates to statement’ according to
the statement transformation rules.

Clause transformation rule
X1,..., X, : statement % statement = Xi,..., X, : statement’ % Myself = Class,
statement’

where % is a guard operator, Xi,..., X, are variables that have a scope limited to
the statement being defined, Class is the class atom of the class being defined, and
statement translates to statement’ according to the statement transformation rules.

Aggregate transformation rule

aggregate(X,statement, L) = aggregate(X,statement’,L)

where statement translates to statement’ according to the statement transformation
rules.

114

Definition of AKL—+
Method abstraction transformation rule
7 = (X1,...,Xp)\\statement = 7 = (Xy,...,X,,S¢elf)-State\statement’

where statement translates to statement’ according to the statement transforma-
tion rules.

Procedure abstraction transformation rule

7 = (X1,...,X,)\statement = 7 = (X41,..., X,)\statement’

where statement translates to statement’ according to the statement transformation
rules.

Method delegation transformation rules

o goal # Class = goal(Class,Self)-State

where Class refers to the class atom of the class being defined and goal is a
method atom defined locally in Class.

e goal # Class = dispatch(goal, Class,Self)-State

where Class refers to the class atom of the class being defined and goal is a
method atom not defined locally in Class.

e goal # Class = m.dispatch(goal,Class,Self)-State

where Class refers to a class atom other than the class being defined and m is
its functor.

Method wnvocation transformation rules

o goal <# Class = Self’ = (M)-State\ m.dispatch(M, Class,Self’)-State,
goal(Class,Self')-State

where Class refers to the class atom of the class being defined and m is its
functor, and goal is a method atom defined locally in Class.

o goal <# Class = Self’ = (M)-State\ m.dispatch(M,Class,Self’)-State,
dispatch(goal,Class,Self’)-State

where Class refers to the class atom of the class being defined and m is its
functor, and goal is a method atom not defined locally in Class.

5.3 Expansion to AKL Code

o goal <# Class = Self' = (M)-State\ m.dispatch(M, Class,Self')-State,
m.dispatch(goal,Class,Self')-State

where Class is a class atom other than the class being defined and m and is
its functor.
Message send transformation rule

goal” Object = meta.send(goal)-Object

where Object is a variable, goalis a method atom, and meta is the run—time module,
described in Section 6.5.

Method application transformation rule
goal(Xy, ..., X,) = akl.goal(X,..., X, Self)-State

where goal is a variable.

Class abstraction transformation rule

7 = #Class = 7 = (M)-State\ m.dispatch(M, Class,Self)-State,

where Class is a class atom and m is its functor.

Class application transformation rule
goal # Class = Class(goal)-State

Where Class is a variable and goal is a method atom.

The Method Dispatcher

A definition of the method dispatcher is to be defined for each class definition. A
clause of which is the entry point to the definition of a method atom. It is used for all
method activations, except for invocations of local definitions. A method activation

116

Definition of AKL—+

is either a method invocation, a method delegation, a method application, or a class
application. Like the method definition, a dispatcher definition takes five arguments:

Drispatch : Message x Myself x Self x State — State‘

When the dispatcher is activated, the received message Message is matched with
a method head pattern to select the target method definition. The (*—7) control
structure is used for selecting among messages which definition to execute. This
definition is activated with the message itself, the class atom of the target method,
the abstraction of the base class, and the incoming state, resulting in the outgoing
state, respectively. The dispatcher will be described using the notational conventions
that identifiers beginning with a lowercase letter are constants; those with an initial
upper-case letters are variables. The dispatcher head has the following form:

dispatch(Msg, Myself,Self)-State

The dispatcher body consists of several statements of the following form, one for
each method:

e if the method msg;/n is defined locally, the statement is an expression of the
form:

Msg = msgi(Args,..., Arg,) —
msg; (Msg, Myself,Self)-State.

e if the method msg;/n is inherited from an ancestor class, say Ancestor, the
statement is an expression of the form:

Msg = msgi(Args,...,Arg,) —
Myself = Class,
Handler = Ancestor,
ancestor.msg; (Msg, Handler,Self)-State.

Where Class is the class atom of the class being defined, Ancestor is the class
atom of the ancestor class that msg; /n is inherited from, and ancestor is the
functor of Ancestor. Class and Ancestor must be present to cater for sharing
of class parameters.

Inheritance can be thought of as constructing a new definition of the method dis-
patcher from existing ones. Definitions are inherited along the inheritance graph,
excluding differentially inherited and hidden definitions encountered, until redefined

117

5.4 Summary

in a class. If a class inherits definitions with the same selector from more than one
superclass, a default (implicit) differential inheritance is applied; excluding all the
method definitions with the same selector occurring further on the right. Inheriting
a definition is not a strict depth-first traversal of the inheritance graph since an
exclusion of a definition by the differential inheritance mechanism will affect the
inheritance path.

5.4 Summary

We have presented the syntax of AKL+. The semantics of AKL+ is described in
terms of translation to AKL. The translation is based on a source-to-source trans-
formations. Each kind of transformation is defined by a rewrite rule. Inheritance is
described by the incremental definition of the method dispatcher in such a way that
the interface of a class is cleanly captured.

R

118

Implementation

AKL+ is an object-oriented language built on top of the AKL language. The AKL+
classes translate to AKL code at compile time in such a way that a method dispatches
in a constant time. Fig. 6.1 illustrates the compiler and the run-time extensions of

AKL.

A good programming language alone is not sufficient for economic software produc-
tion. The programming environment has a significant influence on the productivity
of software engineers [122]. We have designed and implemented an essential part of
a software development environment, namely incremental compilation facility which
keeps files up to date, a la UNIX make tool [49]. A primarily feature of the incre-
mental compilation facility is that the work needed after a change is proportional
to the “size” of the change rather than to the size of the program.

The AKL+ language and our incremental compilation facility have been imple-
mented on Unix-based workstations and they are parts of the official release of the
AKL system developed at SICS (Swedish Institute of Computer Science). The AKL
system, AGENTS, is available from SICS for research and educational purposes
(contact agent-request@sics.se).

In this chapter, we present the implementation aspects of the general incremental
compilation facility and our language. In Section 6.1, we describe an algorithm for
a general incremental compilation facility. The algorithm specifies dependencies as
functions to (re)create the target files. In Section 6.2, we describe an algorithm
for the dependency that computes multiple inheritance. In Section 6.3, we describe
the dependency for expanding a class definition into AKL and show how it is based
on the semantics of the preceding chapter. In Section 6.4, we briefly mention the
dependency provided by AKL to expand the AKL code into the AKL abstract
machine. In Section 6.5, we describe the AKL+ run-time module.

6.1 The Incremental Compilation Facility

The general incremental compilation facility is provided in order to bring a target
file up to date with respect to those files on which it depends, which are called
dependencies. All files reachable (directly or indirectly) are compiled and loaded.
Since each dependency is a target, it may have dependencies of its own. The initial
target file may be a source file or a project file. Source files are either akl files with

6.1 The Incremental Compilation Facility

aaklo

aaklol

@

b.aklo

supers [al

b.aklol

@

AKL+ Run-time System

AKL + Translated Code

AKL Run-time Kernel
+

Object-oriented Run-time

apam ainterna

b.pam b.internal

AKL Compiler

AKL Translated Code

AKL Run-time Kernel

AKL Run-time System

Compiler and run-time expansions of AKL

Figure 6.1:

120

Implementation

?- use(m).

use('path/mod1’)

use(mod1)

[~ mod.goal,
goal#class,

use(modl).
override(mod,path).

source file project file

e ——
Figure 6.2: Finding the source files

“.akl” or object-oriented files with the extension “.aklo”!. A project

file specifies additional top level files and overrides the default placement of modules

the extension

and classes. The project file has the extension “.proj”. The entries in that file can

have the following forms:

e use(source): specifies that source.akl (or source.aklo) is used.

e override(source,path): specifies that module (or class) source is to be found at
path.

It should be noted that the order of the lines in the project file should not matter,
e.g. the override is valid even if it mentioned after the use specification.

The Incremental Compilation Algorithm

When the user enters agents to start AGENTS, he may issue the command use(RootFile),
see Appendix A, and the system will automatically compile and load all files needed
for RootFile. This is described by the following algorithm:

1. finding the source files:
All reachable files from RootFile are to be found directly or indirectly as follows,
see Fig. 6.2:

e if a module is included it is to be searched for all other used modules and
classes.

'We will identify files by their extensions.

121

6.1 The Incremental Compilation Facility

e if a class is included it is also to be searched for all other used modules
and classes, but it will also refer to its superclasses which are also to be
included.

2. constructing the class dependency graph:

Each node of this graph corresponds to a subclass or superclass. Each edge
is a class dependency relationship (superclass—subclass). This graph is stored
as a usual list of pairs (Node-Node). If any subgraph of this graph forms a
cycle, the system will report an exception indicating those nodes, i.e. classes,
that forms the cycle; then return to the top-level.

3. determining the files dependencies:
There are a number of file dependencies. The possible dependencies are given
below with the command that is to be used to (re)create the files
e classl: (sub.aklo, super.aklol) — sub.aklol
class2: (x.aklo,x.aklol) — x.akl

o fcompile: x.akl — x.pam
e load: x.pam — x.internal
For (A — B) we say that B is invalid if A is newer than B. The age of the

“internal” file? is the time when it was loaded. A non-existing file is considered
to be very old.

4. construct the file and the function graph, see Fig. 6.1:
Each node of this graph is either:

e a file: file(FileName)
e a function: function(FunctionName,InputFileList,OutputFileList)

The starting point for the graph is the list of source files.
Each edge of this graph is a file dependency relationship:

For an akl file named a.akl the following edges are added to the graph:
file(*a.akl’)—function(fcompile,[’a.akl’],[’a.pam’])
function(fcompile,[’a.akl’],[’a.pam’])file(’a.pam’)
file(’a.pam’)—function(load,[’a.pam’],[’a.internal’])

function(load,[’a.pam’],[’a.internal’])file(’a.internal’)

For an aklo file named b.aklo the following edges are added to the graph:

?This file is not a physical file. We use it to indicate dependency of loading the executable AKL
code into memory by the AKL run-time routines.

122

Implementation

file(’b.aklo”)—function(class1,[’b.aklo’ ’super.aklol’], ['b.aklol’])
file(’super.aklol’)-function(classl,[’b.aklo’,’super.aklol’], [’b.aklo1’])
(there might be several super.aklol files)
function(classl,[’b.aklo’,’super.aklol’], ['b.aklol’])—file(’b.aklo1’)
file(’b.aklo”)—function(class2,[’b.aklo’,’b.aklol’],['b.akl’])
file(’b.aklol”)~function(class2,[’b.aklo’,’b.aklol’],[’b.akl’])
function(class2,[’b.aklo’,’b.aklol’],[’b.akl’])file(’b.akl’)

and then the nodes for the akl file ’b.akl’ as above

This graph is stored as a usual list of pairs (Node-Node).

5. find the triggered functions:

The function is triggered if at least one of its input files is newer than one of
its output files.

6. extract the subgraph reachable from the triggered nodes.
7. do a topological sort of the remaining graph.

8. execute the functions in the order found by the topological sort.

In order to achieve a speed up and avoid redundancy in finding the source files, the
source file is scanned and the following information is stored in a “.used” file:

e a list of all directly reachable modules and classes.

o a list of edges of the class dependency graph that represent the class depen-
dency of the class being processed to its superclasses.

When finding source files, it suffices to read this file after checking its validity. This
means that this file will be updated if its corresponding source file is update too.

The class! function is discussed in Section 6.2, The class?2 function is discussed in
Section 6.3, and the feompile function is briefly mentioned in Section 6.4.

6.2 Applying the Inheritance Mechanism

A method is executed if the object receives a message. Conceptually, when the
method that services this message is not defined in the target object’s class, this in-
volves a bottom up (specialized to general) search for the appropriate method in the
class hierarchy. AKL+ supports different strategies for resolving the conflicts that

123

6.2 Applying the Inheritance Mechanism

may arise due to multiple inheritance. An effective strategy is to use the differential
inheritance mechanism to selectively exclude any of the inherited methods such that
the class dispatcher is cleanly captured. However, if such a conflict is encountered a
default (implicit) differential inheritance is applied; excluding all the methods with
the same name occurring further on the right. It is possible to control the access
of the class methods and make them invisible to the instances of the class and its
subclasses. The subclass-superclass relationship among classes forms a direct acyclic
graph. Inheriting a definition is not a strict depth-first traversal of the inheritance
graph since a definition of a differentially inherited operation will affect the inheri-
tance path. Since efficiency is one of our prime motivations, the class dispatcher is
computed at compile time and this will result in dispatching methods in a constant
time rather than searching the class hierarchy each time a method is invoked. This
run-time overhead is unpredictable and dependent on the depth of the inheritance
path.

The result of applying the inheritance mechanism to a class is a file with the exten-
sion “.aklo1”. This file will contain the class information, the inherited information,
and the optimization information of the state access and update method invocations
that are needed to construct the expansion of the class to AKL code and by its sub-
classes to construct their own “.aklol” files. The structure of the “.aklol” file is the
term table/9. The following is the description of the elements of this term:

o class-Id: the class atom as given in the class declaration.
o superclasses: the superclasses as given in the supers declaration.

o defined attributes: the attributes as given in the attributes declaration.

e private methods: an ordered set of the private methods as given in the private
declaration.

e defined methods: an ordered set of the defined and generated (implicit) meth-
ods of the class. An element of this set is the term method_functor/method_arity;
where method_functor is the functor of the defined method and method_arity
is its arity.

o inherited methods: a list of the methods inherited by the class. An element
of this list is the term ancestorclass-1d/ancestor methods; where ancestorclass-
Id is an ancestor class identifier and ancestor methods is an ordered set of
the inherited methods from this ancestor. An element of this set is the term
method_functor/method_arity; where method_functor is the functor of the in-
herited method and method_arity is its arity.

o inherited attributes: a list of the inherited attribute definitions.

e state: a tag to indicate which standard state representation class that is used.

124

Implementation

o flag: a flag to indicate which state invocations is to be optimized.

Operations on these terms are based on ordered sets, a list with ordered elements,
which provides efficiency in speeding up these operations rather than using the
unordered representation [115].

The Multiple Inheritance Algorithm

Applying the inheritance mechanism involves the “.aklol” files of the superclasses
and the class source file (“.aklo”). This means that each class will have a correspond-
ing “.aklo1” file. This will have the effect of removing the redundancy in computing
the inherited information each time a subclass is defined as well as facilitating the
incremental compilation by working on separately compiled units. The following
algorithm describes how to generate this file:

1. obtain class-1d, superclasses, defined attributes, private methods, and defined
methods terms from the working class definition.

2. find the “.aklol” files of the superclasses of the working class, i.e. obtain
table/9 for each superclass.

3. compute the working class information:

(a) add entries of the generated methods to the defined methods:

o add the class membership method.
o add the attribute methods.

(b) sort the defined methods.
(c) sort the private methods.

(d) compute the set difference between the defined methods and the private
methods yielding the defined methods as the difference, i.e. after excluding
the private methods.

4. compute the working class inherited information:

A temporary ordered set is used, combined methods, for computing all the
defined and inherited methods of the working class. Initialize this set to the
defined methods of the working class. Initialize the inherited methods and the
inherited attributes of the working class to the empty set, i.e. [].

(a) accumulate the superclasses inherited attributes definitions to the working
class defined attributes yielding the working class inherited attributes.

125

6.2 Applying the Inheritance Mechanism

(b) compute the inherited methods:

For each superclass apply the following:

1.

il.

1il.

v.

vi.

Vil.

Viil.

IX.

obtain the superclass defined methods and inherited methods from the

superclass table/9.

if the working superclass is associated with a differentially inherited

methods, ezcluded methods, apply the following:

A. sort the set of the excluded methods of this superclass.

B. compute the set difference between the superclass defined meth-
ods and the excluded methods yielding the superclass defined meth-
ods as the difference.

compute the set difference between the superclass defined methods

and the combined methods yielding the superclass defined methods as

the difference.

compute the set union between the combined methods and superclass

defined methods yielding the combined methods as the union.

. obtain the superclass-Id from superclasses.

add superclass-Id and the superclass defined methods to the working
class inherited methods.

obtain the superclass class-Id from the superclass table/9.

unify the superclass-1d with the superclass class-1d yielding the most

general unifier (mgu) of the two terms.

For each element of the superclass inherited methods, apply the fol-

lowing:

A. apply the substitution of the mgu to the ancestorclass-1d.

B. if the working superclass is associated with differentially inherited
methods, excluded methods, compute the set difference between
the ancestor methods and the excluded methods yielding the an-
cestor methods as the difference.

C. compute the set difference between the ancestor methods and the
combined methods yielding the ancestor methods as the difference.

D. add ancestorclass-Id and the ancestor methods to the working
class inherited methods.

E. compute the set union between the combined methods and su-

perclass ancestor methods yielding the combined methods as the
union.

5. compute the optimization information of the state access and update method

invocations:

If neither of the standard state representation is used, set state and flag to
none. Otherwise, apply the following:

126

Implementation

(a) set the state to the identifier of the standard state class.

(b) compute the intersection between the combined methods and the set
[get/2,set/2] yielding generic access and update set.

(c) set the flag to the complement of the generic access and update set.

6.3 Expansion to AKL Code

The expansion of AKL+ definitions into AKL definitions is based on transformation
rules. The definition of these rules is given in Section 5.3. Some of these rules are
optimized for the purpose of implementation efficiency. Every defined class will
translate to several AKL definitions belonging to a unique module with the same
name as the functor of the class name. This means that there cannot be two classes
having the same name even if they have different arities (number of arguments).

The incremental compiler uses the “.aklol” file of the working class generated from
applying the inheritance mechanism, and the source code of this class provided by
the “.aklo” file to generate the module definition to which the class is expanded.
This definition will be stored into the “.akl” file of the working class.

6.3.1 Examples of a Class Expansion

In the following we will use examples to show how classes are expanded into AKL.

Example 6.1 Consider the class ord_list that is defined in Section 5.2. Now, the
following is its expansion.

:- module ord_list.

:- public dispatch/4.

:- public typeof/4.

:- public less/6.

:- public insert_element /4.

:- public insert /6.

:- public init_list /4.

:- public domain /4.

:- public attribute_property/7.

typeof(Class,Self)-State:=
(true ? Class = ord_list).

init_list(V,Self)-State:=

127

6.3 Expansion to AKL Code

(true 7 V = []).

attribute_property(Att,MethInit, MethGet,MethSet,Self)-State:=

(Att = list —
MethlInit = (V,Self)-State\method_apply(Self,[init list(V)])-State,
MethGet = (V,Self)-State\method_apply(Self,[get list(V)])-State,

MethSet = (V,Self)-State\method_apply(Self,[set list(V)])-State).

domain(domain(X),Self)-State:=
(true 7 X = [list]).

insert_element(El,Self)-State:=
(true ? method_apply(Self,[get(list,L0)])-State,

method_apply(Self,[set(list,L)])-State,
method_apply(Self,[insert(El,L0,L)])-State.

insert(El,LO0,L,Self)-State:=
(10 [L= [El

)

L0 = [E |L1] — method_apply(Self,[less(EL E,YesNo)])-State,
insert_aux(ELE,YesNo,L1,L,Self)-State).

insert_aux(ELE,YesNo,L1,L,Self)-State:=
(YesNo = yes — L = [ELE |L1]

)

YesNo = no — L = [E |L2],
insert(El,L1,L2,Self)-State).

less(11,12,YesNo,Self)-State:=
(I1 < 12 — YesNo = yes
;true — YesNo = no).

dispatch(Msg,Self)-State:=
(Msg = insert_element(Argl) — insert_element(Argl,Myself,Self)-State

’
’
’
’

)

128

Msg = insert(Argl,Arg2,Arg3) — insert(Argl,Arg2,Arg3,Self)-State

; Msg = less(Argl,Arg2,Arg3) — less(Argl,Arg2,Arg3,Self)-State
; Msg = typeof(Argl) — typeof(Argl,Self)-State

; Msg = init list(Argl) — initlist(Argl,Myself,Self)-State

; Msg = attribute_property(Argl,Arg2,Arg3,Argd) —

attribute_property(Argl,Arg2,Arg3, Argd, Myself,Self)-State
Msg = domain(Argl) — domain(Argl,Myself,Self)-State
true — method_apply(Self,[typeof(Class)])-State,
akl.stdout(S),

io.format(’“nMessage not understood: “w “nSelf: “w “nHandler: ~w™n’

[MSG,Class,ord list],S,.)).

Implementation

a

Example 6.2 Consider the definition of class ord_list_descending, a subclass of
ord_list, that follows. Note that sending the message insert/3 to objects of this
class will result in inserting the element in descending order. This is because the
less/3 is delegated to the base class which is sort_descending in this case.

:- class ord_list_descending.
:- supers [ord_list].
less(I1, 12, YesNo):=
(I1 > 12 — YesNo = yes
; true — YesNo = no).

The expansion of this class is as follows.

:- module ord_list_descending.
:- public dispatch/4.

:- public typeof/4.

:- public less/6.

:- public init_list /4.

:- public domain /4.

:- public attribute_property/7.

typeof(Class,Self)-State:=
(true 7 Class = ord_list_descending).

init_list(V,Self)-State:=
(true 7 V =)).

attribute_property(Att,MethInit,MethGet,MethSet,Self)-State:=
(Att = list —
MethlInit = (V,Self)-State\method_apply(Self,[init list(V)])-State,
MethGet = (V,Self)-State\method_apply(Self,[get list(V)])-State,
MethSet = (V,Self)-State\method_apply(Self,[set list(V)])-State).

domain(domain(X),Self)-State:=
(true 7 X = [list]).

less(11,12,YesNo,Self)-State:=

(I1 > 12 — YesNo = yes
; true — YesNo = no).

129

6.3 Expansion to AKL Code

dispatch(Msg,Self)-State:=
(Msg = less(Argl,Arg2,Arg3) — less(Argl,Arg2,Arg3,Self)-State
; Msg = insert(Argl,Arg2,Arg3) — ord_list.insert(Argl,Arg2,Arg3,Self)-State
; Msg = typeof(Argl) — typeof(Argl,Self)-State
; Msg = init list(Argl) — init list(Argl,Myself,Self)-State
; Msg = attribute_property(Argl,Arg2,Arg3,Argd) —
attribute_property(Argl,Arg2,Arg3, Argd, Myself,Self)-State
Msg = domain(Argl) — domain(Argl,Myself,Self)-State
; true — method_apply(Self,[typeof(Class)])-State,
akl.stdout(S),

io.format(’“nMessage not understood: “w “nSelf: “w “nHandler: ~w™n’,

[MSG,Class,ord list_descending],S,.)).

O

Example 6.3 Assume that the class ord_list is parameterized by a class abstraction
that defines the method less/3, as follows.

:- class ord_list(Order).
.- private [insert_aux/5].

.- attributes [list=(V)\\(V=][])].

insert_element(El):=
(true ? get(list, L0),
set(list, L),
insert(ELLO,L)).

insert(El, L0, L):=
(L0 =[] — L =[E]
; LO = [E|L1] — less(ELE,YesNo) # Order,
insert_aux(El, E, YesNo, L1, L) # ord_list(Order)).

insert_aux(El, E, YesNo, L1, L):=
(YesNo = yes — L = [EL,E|L1]
: YesNo = no — L = [E|L2],
insert(El, L1, L2) # ord_list(Order)).

less(I1, 12, YesNo):=

(Il < 12 — YesNo = yes
; true — YesNo = no).

130

Implementation

The expansion of this class is as follows.

:- module ord_list.

:- public dispatch/5.

:- public typeof/5.

:- public less/7.

:- public insert_element /5.

:- public insert /7.

:- public initlist/5.

:- public domain/5.

:- public attribute_property/8.

typeof(Class,Myself,Self)-State:=
(true ? Class = ord_list).

init list(V,Myself,Self)-State:=
(true ? V =]).

attribute_property(Att,MethInit,MethGet,MethSet,Myself,Self)-State:=
(Att = list —
MethlInit = (V,Self)-State\method_apply(Self,[init list(V)])-State,
MethGet = (V,Self)-State\method_apply(Self,[get list(V)])-State,
MethSet = (V,Self)-State\method_apply(Self,[set list(V)])-State).

domain(domain(X),Myself,Self)-State:=
(true 7 X = [list]).

insert_element(El,Myself,Self)-State:=
(true ? method_apply(Self,[get(list,L0)])-State,
method_apply(Self,[set(list,L)])-State,
method_apply(Self,[insert(El,L0,L)])-State.

insert(El,L0,L,Myself,Self)-State:=
(L0O=[— L =[E]
.10 = [E [L1] —
Myself = ord_list(Order),
method_apply(Order,[less(ELE,YesNo)|)-State,
insert_aux(ELE,YesNo,L1,L, Myself,Self)-State).

131

6.3 Expansion to AKL Code

insert_aux(ELE,YesNo,L1,L,Myself,Self)-State:=
(YesNo = yes — L = [ELE |L1]
; YesNo = no — L = [E |L2],
insert(El L1,L2 Myself,Myself,Self)-State).

dispatch(Msg,Myself,Self)-State:=

(Msg = insert_element(Argl) — insert_element(Argl,Myself, Myself,Self)-State
Msg = insert(Argl,Arg2,Arg3) — insert(Argl,Arg2,Arg3,Myself,Self)-State
Msg = less(Argl,Arg2,Arg3) — less(Argl,Arg2,Arg3, Myself,Self)-State
Msg = typeof(Argl) — typeof(Argl,Myself,Self)-State
Msg = init list(Argl) — initlist(Argl,Myself,Myself,Self)-State
Msg = attribute_property(Argl,Arg2,Arg3,Argd) —
attribute_property(Argl,Arg2,Arg3, Argd, Myself, Myself,Self)-State
Msg = domain(Argl) — domain(Argl,Myself,Myself,Self)-State
true — method_apply(Self,[typeof(Class)])-State,
akl.stdout(S),
io.format(’~“nMessage not understood: “w “nSelf: “w “nHandler: “w™n’,

[MSG,Class,ord list],S,.)).

6.3.2 The Class Expansion

The transformation rules given in Section 5.3 provide the definitions of general
rewrite rules for expanding definitions. These rules can be optimized for an efficient
implementation. In the implementation, the definition to which a method expands
depends on whether or not the class being defined is parameterized:

Message x Myself x Self x State — State f parameterized class

Method : { Message x Self x State — State otherwise

Where the argument Message is the received message (a method atom), the argu-
ment Myself is the class atom of the class being defined, the argument Self is an
abstraction of the base class, the argument State is the state at the time of message
reception, and the (output) argument State is the state that results from the method
activation.

The difference arises from the need to expand the parameterized class methods with
a parameter that will hold the class parameters which is not needed in case of a
non-parameterized class. This definition is further optimized when considering the
first argument indexing of the method code. In the following sections a variant

132

Implementation

of the transformations rules and the method dispatcher that flavors efficiency are
discussed.

In order to avoid redundancy, the transformation rules that follows consider only
the rules that differs from the ones given in Section 5.3.

Method definition transformation rule

[g !
head := body ;»{ head” = body }

: — public p/n

where head translates to head’ according to the head transformation rule and body
translates to body’ according to the statement transformation rule. p and n are the
functor and arity of head’, respectively. The public definition is to be defined if
the definition is visible so that definitions can call it from within other modules.
All methods of a class are visible from outside unless they are declared to be hid-
den (invisible) by a class private definition. Every visible method takes a public
definition. The arity of head’ is determined as follows:

44 arity of parameterized class
| 3+ arity otherwise

Where arity is the arity of head, 3 corresponds to the arguments: Self, State, and
(output) State and 4 corresponds to the arguments: Myself, Self, State, and (output)
State.

Head transformation rule

o p(X1,....X,) = p(Xy,..., Xy, Myself,Self)-State

If the class being defined is parameterized.

o p(X1,....X,) = p(Xy,..., X,,Self)-State

If the class being defined is non-parameterized.

Clause transformation rule

The rule

X1,..., X, :statement % statement = Xy,..., X, :statement’ % Myself = Class,
statement’

133

6.3 Expansion to AKL Code

Where % is a guard operator, Class refers to the class atom of the class being defined,
Xi,..., X, are variables that have a scope limited to the statement being defined,
and statement translates to statement’ according to the statement transformation
rules.

is augmented with the rules

o Xi,.... X, :statement % statement = Xy,..., X, :statement'% statement’

If the class being defined is non-parameterized.

o Xi,...,X, : statement % statement = Xy,..., X, : statement’'% statement’
If the class being defined is parameterized and its parameters is a subset of
{X1,..., X, }.

o Xi,..., X, : statement, %statement, = X1,..., X, : statement,’ %statement,’

If the class being defined is parameterized and its parameters is not used in
statement; or statements.

The basic idea is that only clauses of methods that potentially uses or passes any of
the class parameters will translate with the following (binding) statement to unfold
the class parameters:

Myself = Class

Where Class refers to the class atom of the class being defined. Class has to be
present to cater for sharing of class parameters.

Method delegation transformation rules

o p(X1,....X,) # Class = p(Xq,..., X, Myself,Self)-State
It Class refers to the class atom of the class being defined and the method
atom p(Xi,...,X,) is defined locally in the parameterized class Class.

o p(X1,...,X,) # Class = p(X1,...,X,,Class,Self)-State

It Class refers to the class atom of the class being defined with different pa-
rameterers and the method atom p(Xi,..., X,) is defined locally in the pa-
rameterized class Class.

o p(X1,....X,) # Class = p(X1,..., X,,Self)-State

It Class refers to the class atom of the class being defined and the method
atom p(Xi,...,X,) is defined locally in the non-parameterized class Class.

134

Implementation

o goal # Class = dispatch(goal, Myself,Self)-State
If Class refers to the class atom of the class being defined and goal is a method
atom not defined locally in the parameterized class Class.

o goal # Class = dispatch(goal,Class,Self)-State

It Class refers to the class atom of the class being defined with different pa-
rameters and goal is a method atom not defined locally in the parameterized
class Class.

o goal # Class = dispatch(goal,Self)-State
If Class refers to the class atom of the class being defined and goal is a method
atom not defined locally in the non-parameterized class Class.

o goal # Class = m.dispatch(goal,Class,Self)-State
If Class refers to a parameterized class other than the class being defined and
m is its functor.

o goal # Class = m.dispatch(goal,Self)-State

If Class refers to a non-parameterized class other than the class being defined
and m is its functor.

Method invocation transformation rules

o p(X1,...,X,) <# Class = Self’ = (M)-State\ m.dispatch(M,Class,Self’)-State,
p(X1,. .., X, Myself,Self’)-State

It Class refers to the class atom of the class being defined and m is its functor,
and the method atom p(Xi,...,X,) is defined locally in the parameterized
class Class.

o p(X1,...,X,) <# Class = Self’ = (M)-State\ m.dispatch(M,Class,Self’)-State,
p(X1,..., X, Class,Self’)-State

It Class refers to the class atom of the class being defined with different pa-
rameters and m is its functor, and the method atom p(Xy,..., X,) is defined
locally in the parameterized class Class.

o p(X1,...,X,) <# Class = Self’ = (M)-State\ m.dispatch(M,Self’)-State,
p(X1,..., X,,Self’)-State

If Class refers to the class atom of the class being defined and m is its functor,
and the method atom p(Xi,..., X,,)is defined locally in the non-parameterized
class Class.

6.3 Expansion to AKL Code
o goal <# Class = Self' = (M)-State\ m.dispatch(M, Class,Self')-State,
dispatch(goal, Myself,Self’)-State

It Class refers to the class atom of the class being defined and m is its functor,
and goalis a method atom not defined locally in the parameterized class Class.

o goal <# Class = Self' = (M)-State\ m.dispatch(M, Class,Self')-State,
dispatch(goal, Class,Self’)-State

It Class refers to the class atom of the class being defined with different pa-
rameters and m is its functor, and goal is a method atom not defined locally
in the parameterized class Class.

o goal <# Class = Self' = (M)-State\ m.dispatch(M,Self’)-State,
dispatch(goal, Self’)-State

If Class refers to the class atom of the class being defined and m is its functor,
and goal is a method atom not defined locally in the non-parameterized class

Class.

o goal <# Class = Self' = (M)-State\ m.dispatch(M, Class,Self’)-State,
m.dispatch(goal,Class,Self')-State

It Class refers to a parameterized class other than the class being defined and
m and is its functor.

o goal <# Class = Self' = (M)-State\ m.dispatch(M,Self’)-State,
m.dispatch(goal, Self')-State

It Class refers to a non-parameterized class other than the class being defined
and m and is its functor.

Class abstraction transformation rule

o 7 = # Class = 7 = (M)-State\m.dispatch(M,Class,Self)-State

It Class refers to a parameterized class and m is its functor.

o 7 = # Class = 7 = (M)-State\ m.dispatch(M,Self)-State

It Class refers to a non-parameterized class and m is its functor.

The Attributes Transformation

Attributes transformation result in several method definitions: attributes reference,
attributes initializations, attributes properties besides attributes access and update

136

Implementation

methods if any of the standard state classes is inherited by the class being defined. A
user defined state is possible whereas the definition of attributes access and update
methods should be provided by user. For simplicity, we will describe this trans-
formation in terms of the AKL+ definitions. The expansion of these definitions to
AKL code is straightforward according to the transformations rules discussed so far.

AKL+ supports two alternative representations of the object’s state: hash table
provided by the standard class state_hash, and array provided by the standard class
state_array, see Section 4.3.1. Classes can choose to inherit any of them.

Attributes with their initialization methods are given in the attributes declaration
of the class definition as follows:

- attributes [a;=(X1 \\b1,...,a,=(X,)\\b,/

where a;,1 <1 < n, is an attribute name and b; is its initialization method.

Assume m —n > 0 inherited attributes. Then, this definition expands to the follow-
ing method definitions:

L. domain(X) := true ? X = [aq,... a4,/

where [ay,...,a,], n < m, is a list which enumerates the defined and inherited
attribute names. An activation of this method will return this list.

2. mit_ai (XZ) ;= true ¢ bz
where init_a;/1,1 < i < m, is the initialization method associated with the

attribute a; and X; is its (output) argument. An activation of this method
will return the initial value of this attribute.

3. attribute_property(A,Init,Get,Set) :=
(A =ay, — Init = (V)\\ initay,
Get = (V)\\ get_ay,
Set = (V)\\ set.ay,

g e

;A =ay, — Init = (V)\\ init_a,,,
Get = (V)\\ get_anm,
Set = (V)\\ set-a,,)

where the definition of the method attribute_property// tabulates the method
abstractions of initialize, access, and update methods of each attribute. An
activation of this method given such an attribute will return these abstractions.

137

6.3 Expansion to AKL Code

An application of any of these abstractions to its argument will execute the
corresponding definition.

4. for a user defined state, the user is responsible to provide the access and update
methods: get_a;/1 and set_a;/1, respectively, for each a;,1 < i < m, attribute.

5. for a standard state class the attributes access and update methods are added,
one for each a;,1 <1 < m, attribute:

e for the hash table state representation, each attribute will be a key that
is used to access its value. The definition of a class that inherits from
the standard state class state_hash adds the definition of the following
methods:

— get_a;(V):= true 7 get(a;,V) State
— set_a;(V):= true 7 set(a;,V) State

where the methods get_a;/1 and set_a;/1 are the methods added for direct
attribute (key) access and update of the attribute a;’s value.

e for the array state representation, the compiler generates an index (nu-
meric value) for each attribute and all attribute access are performed
through this index. The definition of a class that inherits from the stan-
dard state class state_array adds the definition of the following methods:

— attribute_a; (Index) := true ¢ Index = array_index
— get_a;(V):= true ? get(array_index,V)" State
— set_a;(V):= true ¢ set(array_index,V)" State

where the methods get_a;/1 and set_a;/1 are the methods added for di-
rect attribute (indexed) access and update of the attribute a;’s value.
The array_indez is the numeric value corresponding to the attribute a;.
attribute_a; /1 refers to the array index of the attribute a;.

Attribute access, update and initialization methods are like any other methods, they
may be specialized in subclasses. The definition of each of which will be taken from
the most specialized definition. It is not only possible to specialize the access and
update methods for an attribute but also it is possible to specialize the generic access
and update methods for all attributes. The get/2 and set/2 methods are chosen
for specifying the generic specialization of the access and update methods of all
attributes. As classes can be defined as Mizins where the access and update method
activations may call the attribute access and update methods of each attribute or
may call the generic attribute access and update methods, the compiler detects
whether the definition of the generic method is absent. If so, the compiler optimizes
the generic access and update method activations as follows:

e for the standard state class state_array, these activations are transformed ac-
cording to the following rules:

138

Implementation

— set(a;, V) = set_a; (V)
— get(a;, V) = get_a;(V)

e for the standard state class state_hash, these activations are transformed ac-
cording to the following rules:

— set(a;, V) = set(a;, V)" State
— get(a;, V) = get(a;, V)" State

The Method Dispatcher

The method dispatcher is the entry point to the method handler. It is used for
all method invocations, except for cases where it can be determined at compile
time that the method call is to a method that is locally defined in the class. The
dispatcher is implemented as a conditional choice statement that will select the
appropriate handler of the method which is a class that will service the method
call. The conditional statement is deterministic so that it enforces the inheritance
mechanism. The dispatcher will be described using the notational conventions that
identifiers beginning with a lowercase letter are constants; those with an initial
upper-case letters are variables.

As a consequence of variant expansion of class methods according to whether or not
the class is parameterized, the definition of the method dispatcher is as follows:

Message x Myself x Self x State —State if parameterized class

Dispatch : { Message x Self x State —State otherwise

Accordingly, the method head is one of the following forms:

o dispatch(Msg, Myself,Self)-State

If the class is parameterized.

o dispatch(Msg,Self)-State

If the class is non-parameterized.
The dispatcher body consists of several statements of the following form:

o if the method msg;/n is defined locally in a parameterized class, the statement
is an expression of the form:

139

6.3 Expansion to AKL Code

140

Msg = msg;(Args,... ,Arg,) —
msg; (Msg, Myself,Self)-State.

o if the method msg;/n is defined locally in a non-parameterized class, the state-

ment is an expression of the form:

Msg = msg;(Args,... ,Arg,) —
msg; (Msg,Self)-State.

if the method msg;/n is inherited from a parameterized ancestor class, say
Ancestor, to a parameterized class, the statement is an expression of the form:

Msg = msg;(Args,... Arg,) —
Myself = Class,
Handler = Ancestor,
ancestor.msg; (Msg, Handler,Self)-State.

where Class is the class atom of the class being defined, Ancestor is the class
atom of the ancestor class that msg; /n is inherited from, and ancestor is the
functor of Ancestor. Class and Ancestor must be present to cater for sharing
of class parameters.

if the method msg;/n is inherited from a parameterized ancestor class, say
Ancestor, to a non-parameterized class, the statement is an expression of the
form:

Msg = msgi(Args,... ,Arg,) —
ancestor.msg; (Msg, Ancestor,Self)-State.

where Ancestor is the class atom of the ancestor class that msg; /n is inherited
from, and ancestor is the functor of Ancestor.

if the method msg;/n is inherited from a non-parameterized ancestor class,
say Ancestor, the statement is an expression of the form:

Msg = msg;(Args,... Arg,) —
ancestor.msg; (Msg,Self)-State.

where ancestor is the functor of the ancestor class that msg;/n is inherited
from.

Implementation

A final clause is the default method that will be invoked if no matching method is
found. In the absence of a user-defined default method, $default/1, the following
final clause is automatically added:

true —
method_apply(Self,[typeof(Class)])-State,
akl.stdout(S),
io.format(’“nMessage not understood: “w “nSelf: “w “nHandler:"w™n’,

[Msg,Class,ord list],S,.)).

6.3.3 Efficiency

Object-Oriented languages have an undeserved reputation for inefficiency because
some early languages (Smalltalk and Lisp-based languages) were interpreted rather
than compiled [121]. The AKL+ language is a compiled language that expands
classes into AKL code. The language is provided with mature standard classes.
Two sets of standard classes are supported: object type classes and state classes.
The standard class object defines port based objects which are active (heavy weight)
objects communicated through ports. The standard class cell defines data objects
which are very fine-grained (light weight) objects that provides a minimal form
of encapsulated state. An association of the synchronization constraints on mes-
sage acceptance protocol to any of the other types is possible. The standard class
sync_object specifies an association between a port based object and any of the stan-
dard protocols. Two standard protocols are provided: synchronizers and transitions.
The main advantage of these protocols is the clean separation of concurrency con-
trol and the method specification such that they can be inherited, overridden, or
extended separately without affecting each other. Moreover, one scheme can be inte-
grated and composed with other schemes. Two standard state representation classes
are supported which provide efficiency in representing the object’s state and its ac-
cess and update operations on attributes. The hash table representation described
by the standard state class state_hash, provides a direct attribute (key) access to the
attribute’s value. The array representation described by the standard state class
state_array, provides a direct attribute (indexed) access to the attribute’s value.

One aspect of object-oriented languages that seems inefficient is the use of method
resolution at run-time (also known as dynamic binding) to invoke methods. Method
resolution is the process of matching an operation on an object to a specific method.
This would seem to require a search up the inheritance graph at run-time to find the
class that implements the operation. AKL+ optimizes the look-up mechanism to
make it more efficient; a method dispatches in a constant time once its target class
becomes determinate regardless of the depth of the inheritance graph or the number
of methods in the class. Moreover, the dispatch table is cleanly captured and will
only contain the relevant information where all the excluded entries are removed.

141

6.5 Expansion to AKL Abstract Machine(PAM)

The good programming styles that are employed on the AKL level can also be
employed on the AKL+ level. This language efficiency is realized by:

1. class representation as a special light-weight AKL module. This representation
facilitates efficient encapsulation of class primitives and enhances the code
execution through direct accessing of the class primitives.

2. the method dispatcher exploits the first argument indexing of the AKL com-
piler, leading to direct access to the method clauses.

3. as a consequence to 1) & 2) the AKL first argument indexing for methods is
preserved.

4. the unfolding of class parameters is only performed for the method clause that
uses or passes any of these parameters.

5. preserving the last call optimization in recursive methods: the tail primitive
is expanded into tail recursive code. A tail recursive primitive is a definition
that invokes itself, i.e. calls a definition to itself in the class being defined.
The expanded code will invoke the expanded code directly instead of calling
the dispatcher. Hence, the tail recursive primitive definition is expanded into
tail recursive AKL code.

6. enforce the override mechanism by applying the AKL conditional choice prim-
itive to the class dispatcher.

7. a method invocation during the execution of a message to an object may be
directly applied to the state without the need to schedule this message to the
target object.

6.4 Expansion to AKL Abstract Machine(PAM)

The AKL implementation was based on a compiler. The AKL program is to be
compiled to a high level abstract machine similar in spirit to the Warren Abstract
Machine (WAM) [148, 59]. By keeping the abstract machine close to WAM, it was
possible to adapt the Prototype Abstract Machine (PAM) with minor changes only,
and is still written in Prolog. Since the target is not a real machine, AKL supports
an emulator of the abstract machine. The AKL compiler takes an AKL program
as input produces abstract machine instructions as output. We have omitted the
description of PAM since it doesn’t concern our work, for more details see [74, 72].

142

Implementation
6.5 The AKL+4 Run-time

In order to achieve a run-time uniform message sending for objects in AKL+, we
have defined the module meta. This module consists of definitions that execute
message sending no matter to whichever object type the message is sent. Messages
to objects are always dynamically bound since objects are dynamically created and
their types will not be known until run-time. The following is the description of this
module.

:- module meta.

:- public send/3.

:- public send_cell/3.

:- public cell/1.

:- public create_cell object/3.

send(Msg)-Obj:=
(akl.port(Obj) — akl.send(Msg)-Ob]
; akl.abstraction(Obj) — send_cell(Msg)-Obj).

send_cell(Msg,Object,NewObject) :=
(true — akl.Object(Msg,NewObject)).

cell(C) :=
(true — akl.new_array(1,C)).

create_cell_object(C,Class,Object) :=
(true — Object=(Msg,NewObject)\call_method(Msg,C,Class,Object,NewObject)).

call_method(Msg,C,CD,Object,NewObject) :=
(true — exchange(NewState,State,C,NewC),
set_flag(NewC,Object,NewObject),
akl.CD(Msg,State,NewState)).

exchange(New,0ld,C,New(C) :=
(true — akl.send(set(0,01d,New),C,NewC)).

set_flag(NewC,Object,NewObject) :=
(akl.port(NewC) — NewObject = Object).

Where:

e send/3: is a generic definition to the message sending such that a message
is automatically sent to an object according to the type of the target object.

143

6.6 Summary

For objects derived from the standard class object, the message is to be sent
through the primitive akl.send/3 of the underlying language. For objects de-
rived from the standard class cell, the send_cell/3 primitive is defined for this
purpose.

o send_cell/3: is defined for applying the message directly to the cell object.
o cell/1 is defined to create a cell object that will hold the state.

o create_cell_object/3 is defined to create the cell construct as an abstraction.
This abstraction calls call_method/5 that holds the cell and the method dis-
patcher. Messages sent to the cell object are applied to this abstraction.

o call_method/5: is defined for dispatching methods of a cell object. The state
is read and the new state is written simultaneously to the cell. The cell object
is ready to accept messages just after the new cell is created.

o cxchange/3: is defined to read the state and write the new state of the cell.

o set_flag/3: is defined to synchronize the accessing of the cell upon receipt of
message

6.6 Summary

Concepts and implementation aspects of an incremental compilation facility have
been presented. The logical structure of object-oriented software systems is very
similar regardless of the programming language used. Only the notation is different
in Eiffel, Smalltalk, C++, and AKL+ for example. However, programs written in
these languages consist of classes and methods and use the inheritance mechanism.
Therefore the concepts presented so far are applicable and advantageous to all of
these languages. This means that the presented programming environment should
be usable with most other object-oriented languages. In fact, it was designed with
these considerations in mind to support various languages with minor changes.

Obviously each programming environment has to have a part specialized for the
supported language. We tried to bundle all language-specific code into a separate
dependency, the language-dependent translator, which may be replaced completely
and easily by another language-dependent version. Efficiency is one of our prime
goals. This is realized through the schemes developed for the optimization of the
code to which a class is expanded, and the efficiency offered by the set of standard
classes.

S

144

Programming Examples

This chapter presents examples for typical problems in object-oriented concurrent
computing. The examples are based on message passing among concurrent objects.
The structure and behavior of these objects are described in our programming lan-
guage AKL+ by their class definitions. Several programming techniques in concur-
rent object-oriented programming, which include call-back messages, searching an
object hierarchy, and concurrent objects synchronized by satisfying constraints on
the acceptance of their messages, are employed in the examples.

The chapter is organized as follows. In Section 7.1 the activities of a car washer is
taken as an example for demonstrating discrete-event simulation. In Section 7.2 a
moving point in a two dimensional space is taken as an example for demonstrating
region constraints. In Section 7.3 a car maintenance is taken as an example for
demonstrating fault diagnosis. In Section 7.4 the dynamic locking of a bounded
buffer is taken as an example for demonstrating the modification of acceptable states.

7.1 A Car Washer Simulation

Discrete event simulation is one of the major application areas of object-oriented
concurrent programming. In general, each physical or conceptual entity in simula-
tion is represented as an object. In this manner, a natural modeling for simulation
can be obtained. In this section, we consider a typical discrete event simulation
problem. We call it the car washer problem and its specification is given below.

Problem Description

There is a company where several workers wash cars. Everyday cars arrive at the
company one by one at random intervals. Every worker washes cars according to
the following rule:

1. if some workers are idle, the car will be washed.

2. otherwise (i.e. every worker is washing a car), the car will be washed by the
worker who will finish the current work earliest.

7.1 A Car Washer Simulation

%
ng
wash acar aworker

aworker

=

aworker

=

Figure 7.1: Existing interaction in the Car Washer problem
The classes

The design of our model for the car washer problem is characterized by being a
general-purpose package which could be extended easily to handle other discrete-
event simulation problems. Our simulation package consists of the classes randomize,
scheduler, queue, out, and simulation. Entities in the problem domain are identified
by the classes car_washer and car_generator. Fig. 7.1 illustrates the interactions
among various entities in the problem domain. Within the car washing certain
events can be recognized; the arrival of cars, their joining and leaving of a queue,
being served by a car washer, and finally leaving the car washer. Arrivals are of
random duration, and will be modeled accordingly. A single communal queue is
used for all the workers. The input parameters for each simulation are the number
of workers and the service time (a time taken by a worker to serve a car).

Note that we omit any description of a car since it only receives a message rep-
resenting an interaction for washing and sends nothing. The car do not have any
active role in the car wash problem. They are regarded as passive data (an AKL+
immutable object).

The following sections summarize the protocol (attributes and methods) for the
various classes in the car washer simulation.

146

Programming Examples
Randomize

The class randomize with class ur_object as its super is defined for generating random
numbers. Its state contains the attribute r. Its behavior consists of the methods:
next_random/1 and terminate/0. To compute the initial value of the attribute r,
the built-in procedure (agent definition) random/2 defined in the standard module
random is invoked. This agent generates a random number between 0 and 9. Then,
the attribute r is initialized to a stream, i.e. setting a communication medium
between the agent and the object. The next_random/1 generates a successive random
number. Method terminate/0 will close the stream, and the communication will no
longer exist.

:- class randomize.
:- supers [ur_object].
.- attributes [r=(Stream)\\random.random(10,Stream)].

next_random(R) :=
(true — get_r(
set_r(Stream))

[R|Stream)),

terminate :=
(true — get_r([])).

Scheduler

In discrete-event simulation, there is an implicit sequencing between activities based
on the simulated time for events. This is realized by limiting the inherent concur-
rency of events to ensure that next event will not start unless the activity of the
current event reaches an end. The class scheduler with class ur_object as its super
is defined for scheduling the events of the car washing. Its state contains the at-
tributes: counter initialized with 0, ready_queue initialized with an empty list, and
current_time initialized with 0. The attribute counter keeps information about the
currently ongoing activities. The attribute ready_queue, a priority queue, stores a
list of doublets (Scheduled event time, Alarm) ordered by increasing event time;
where Alarm is a method abstraction of a call-back message that starts the next
event. The current_time stores the simulation time. Its behavior consists of the
methods:

e initial_event/1: schedules the initial event of the simulation.

e hold/2: suspends a call-back message for a Duration units of simulation time.
This is implemented by scheduling ready_queue for the reactivation time of the
call-back message.

147

7.1 A Car Washer Simulation

current_time/1: returns the current simulated time.
register/0: records the start of an activity by incrementing counter by one.

unregister/[0-1]: records the end of an activity by decrementing counter by
one.

chk_next/1: determines whether or not the next event is to start.

alarm/1: picks the first element from ready_queue, i.e. selects the next event.
Then, advances the simulation time to the scheduled time of this event and
starts the next event by applying the method abstraction to this time.

.- class scheduler.

:- supers [ur_object].

.- attributes [counter = (N)\\(N=0), ready_queue=(Q)\\(Q=[]),

current_time = (T)\\(T=0)].

initial_event(Alarm) :=

(

true — register,

hold(0,Alarm)).

hold(Duration,Alarm) :=

(

true — get_current_time(T),

NT is Duration+T,
get_ready_queue(Q),
sort.add_element((NT,Alarm))-Q,
set_ready_queue(Q),

unregister).

current_time(T) :=
(true — get_current_time(T)).

register :=

(

true — get_counter(N),
N1 is N+1,
set_counter(N1)).

unregister :=

(

true — get_counter(N),
unregister(N)).

unregister(N) :=

148

(

N =0 — true

Programming Examples

; N> 0 — NI is N-1,
set_counter(N1),
chk next(N1)).

chk next(N) :=
(N =0 — get_ready_queue(Q),
alarm(Q)

; N> 0 — true).

alarm(Q) :=
(Q =] — true
; Q = [(T,Alarm)|QRest] — set_current_time(T),
register,
set_ready_queue(QRest),
Alarm(T)).

Queue

The class queue with class ur_object as its super is defined for the abstract data type
(ADT) queue operations, so-called FIFO queue. The principal properties of a FIFO
queue are that elements join and leave at opposite ends, namely at the end of the
queue and from the beginning of the queue, respectively. The most obvious way to
represent a queue in AKL+ is through difference lists [136]. This is because we need
fast access to both ends of the list, which this representation gives. The class queue
has the attribute contents for storing elements, e.g. cars, in the queue. Its behavior
consists of the methods: enqueue/1 for inserting a new element at the end of the
queue and the method dequeue/[2-4] for removing the oldest element from the front
of the queue.

:- class queue(Scheduler).
:- supers [ur_object].

.- attributes [contents=(Q)\\(Q=(X,X))].

enqueue(E):=
(true — get_contents(Q), Q=(F,[E|R]),
unregister”~Scheduler,

set_contents((F,R))).
dequeue(E,Flag):=

(true — get_contents(Q),
dequeue(Q,E,Flag)).

149

7.1 A Car Washer Simulation

dequeue(Q,E Flag):=
(Q= (X,X) | Flag = empty
; Q = ([ELFLR) | E1 = E,
Flag = partial,
set_contents((F,R)),
register~Scheduler).

Out

The class out with class ur_object as its super is defined for displaying information.
For simplicity, the class out has the method out/1 that displays results as soon as it
gets ready. In car washer simulation, this method displays the following information
about the car: the arrival time, rescheduled time, and the time after it gets the
service.

:- class out(Scheduler).
:- supers [ur_object].

out(E) :=
(true — unregister~Scheduler,
write.gwriteln(E)).

Simulation

The class simulation is the functional interface to the simulation package. It is a
generic class parameterized with a scheduler object. The power of the generic classes
makes it possible to have simulation according to different scheduling algorithms.
The default behavior of this class is to relay messages to the scheduler object.

:- class simulation(Scheduler).
:- supers [ur_object].

Msg :=
(true — Msg ~ Scheduler).

150

Programming Examples
Car Generator

The class car_generator with class stmulation as its super is defined for generating
cars at random duration. Its behavior consists of the methods: init/0 for initiating
a car arrival event of the simulation and generate/2 for processing the arrival of a
car and generating the arrival of the next car. Both init/0 and generate/2 methods
use the power of self-reference to define a method abstraction that sends a call-back
message. This method is scheduled for reactivation for a given duration. As soon
as the car is generated, it is sent to the Car Washer object.

:- class car_generator(CarWasher,Random,Scheduler).
:- supers [simulation(Scheduler)].

init :=
(true — get_self(S),
initial_event((T)\\(generate(T,1)"S))).

generate(CurrentTime, N) :=
(CurrentTime > 10000 — terminate”Random
; true — get_self(S),
register,
car([CurrentTime|, N)~CarWasher,
next_random(R)~Random,
N1 is N1,
hold(R, (T)\\(generate(T, N1)"S))).

Car Washer

The class car_washer with class simulation as its super is defined for serving cars. Its
state contains the attributes: car_queue initialized with an object of class queue for
keeping the waiting cars, avail_workers initialized by the number of workers that was
given as input parameter to the simulation. Its behavior consists of the methods:

o car/[2-3]. determines whether to serve the arrived car or insert it in car_queue
according to the availability of the workers.

o car_serviced/2: terminates the current event, i.e. a car is to leave the car
washer, and try to dequeue a waiting car from car_queue.

e next_car/3: schedules the dequeued car for arrival.

151

7.1 A Car Washer Simulation

:- class car_washer(NoOfWorkers,ServiceTime,Out,Scheduler).

:- supers [simulation(Scheduler)].

.- attributes [car_queue = (Q)\\(new(Q)<#queue(Scheduler)),
avail_workers = (N)\\(N=NoOfWorkers)].

car(TL, I) :=
(true — get_avail_workers(N),

car(TL,1, N)).

car(TL, I, N) :=

(N =0 — get_car_queue(Q),
enqueue(car(TL, 1))~Q,
set_car_queue(Q)

;i N >0 — NIis N-1,
set_avail_workers(N1),
get_self(S),
hold(ServiceTime, (ST)\\car_serviced([ST|TL],I)~S)).

car_serviced(TL, I) :=
(true — register,

get_avail_workers(N),
N1 is N+1,
set_avail_workers(N1),
out(car(TL, I))~Out,
get_car_queue(Q),
dequeue(E,Flag)~Q,
current_time(T),
next_car(Flag,E,T),
set_car_queue(Q),
unregister).

next_car(Flag,Car,T) :=
(Flag = empty — true
; Flag = partial, Car = car(TL,N) — car([T|TL], N)).

Program Output

The following listing was cut from a typical run of the simulation. In this run the
arrival of cars was used with a random number between 0 and 9 and the termination
of the simulation was used with 10000 unit of time. The input parameters for this
run of the simulation were as follows:

152

Programming Examples
e No of Workers: 3

e Service Time: 5

7- NoOfWorkers = 3, ServiceTime = 5,

new(Scheduler) # scheduler,

new(Random) # randomize,

new(Out) # out(Scheduler),

new(CarWasher) # car_washer(NoOfWorkers,ServiceTime,Out,Scheduler),
new(CarGenerator) # car_generator(CarWasher,Random,Scheduler),
init © CarGenerator.

)
5)
6)
7)
8)
9)
0)

153

7.1 A Car Washer Simulation

144,139],31)
145,140],32)
151,146],33)
154,149],34)
154,149],35)
162,157],36)
163,158],37)
168,163],38)
177,172],39)
178,173],40)
184,179],41)
187,182],42)
192,187],43)
192,187],44)
195,190],45)
197,192,190],46)
199,194],47)

203,198],48)

——— e e e — —— —— —— —— —— —

car([9865,9860],2167)
car([9866,9861],2168)
car([9870,9865,9861],2169
car([9870,9865,9864],2170
car([9871,9866,9865],2171
car([9875,9870,9868],2172
car([9877,9872],2173
car([9882,9877],2174
car([9883,9878],2175
car([9886,9881],2176
car([9887,9882],2177
car([9890,9885],2178
car([9898,9893],2179

(I

(I

(I

(I

(I

(I

(I

(I

(I

(I

(I

e e’ e e’

)
)
)
)
)
)
)
car([9898,9893],2180)
car([9903,9898],2181)
car([9911,9906],2182)
car([9911,9906],2183)
car([9918,9913],2184)
car([9921,9916],2185)
car([9929,9924],2186)
car([9938,9933],2187)
car([9940,9935],2188)
car([9949,9944],2189)
car([9958,9953],2190)

Programming Examples

[9967,9962],2191
[9972,9967],2192
[9981,9976],2193
[9986,9981],2194
[9993,9988],2195
[9999,9994],2196

car
car
car
car
car
car

SN TN TN TN N N

]’
]7
]7
]7
]7
]7

e e N N e N

yes

7.2 A Moving Point Constraints

Constraints are functional relationships between entities of an object model. The
term entity includes objects, classes, attributes. A constraint restricts the values
that entities can assume. The specification of constraints in AKL+ describes the
fact that the constraint must be satisfied in all objects of the class and its subclasses.
The following problem is taken from [47]. It will investigate the application of AKL+
to specify objects with constraints.

Problem Description

We would like to represent the object constraints for a class hierarchy. The particular
domain, that of a region constraint for a moving point class hierarchy, was chosen
to illustrate this technique.

For the domain of moving point, a point can move horizontally or vertically without
any specific constraints, keeps a record of its history, and obey a region constraints
with or without keeping a history of its moves.

The classes

From the above discussion objects with the following incremental behavior can be

identified:

1. a point that moves in a two dimensional space.
2. a movable point that records its moves.
3. a movable point that should satisfy a region constraints.

4. a movable point that both records its moves and should satisty a region con-
straints.

7.2 A Moving Point Constraints

g
x —pL]
y —pUd 4
out —{] I 3
VAN
[point J
history bounds
40* \:./
O/ ¥ X
[history_point J { bounded_point J
O
A e
O

[bounded_history_point J

Figure 7.2: The moving point class hierarchy

Fig. 7.2 illustrates the moving point class hierarchy. The following sections sum-
marize the protocol (attributes and methods) for the various classes in the moving
point problem.

Point

The class point with class ur_object as its super defines a movable point in a two
dimensional space. Its state contains the attributes: zinitialized with 0, y initialized
with 0, and out initialized with the standard output device. The attributes z and y
together store the position of the point. The out attribute will be used to synchronize
the display of output. Its behavior consists of the methods:

e location/2: returns the current location of the point.

e move?: changes the current location of the point.

o display/0: prints the current location on the given output device.
:- class point.

:- supers [ur_object].

- attributes [x=(X)\\(X=0),y=(Y)\\(Y=0),out=(S)\ \akl.stdout(S)].

156

Programming Examples

location(X,Y):=
(true — get x(X),
get-y(Y)).

move(X,Y):=
(true — set_x(X),
set_y(Y)).

display:=
(true — location(X,Y),
get_out(S),
io.format(’Point at: (“w, “w) n’,[X,Y])-S,
set_out(S)).

History point

The class history_point with class point as its super defines a point with a changeable
location which holds a list contains a record of all locations the point has had since
its creation. Its state contains the attribute h_item initialized with an empty list.
Its behavior consists of the methods:

e move/2: changes the current location of the point and updates the history
record of point movements.

e print_history/0: prints the history record of point movement on the given
output device.

e display/0: prints the current location and the history record of point movement
on the given output device.

:- class history_point.
:- supers [point].

.- attributes [h_item=(L)\\(L=[])].

move(X,Y):=
(true — move(X,Y) # point,
get_h_item(L),
set_h_item([(X,Y)|L])).

print_history:=
(true — get_out(S),
get_h_item(L),

157

7.2 A Moving Point Constraints

io.format(’with location history: “w~n’,[L])-S,
set_out(9)).

display:=
rue — displa oin
t display # point,
print_history # history_point).

Note that the computations performed in response to the message display/0 have
been factored so that the message display/0 is delegated to the superclass point
such that the overridden method display/0 is activated and the local processing is
performed by activating the local method print_history/0. As the two activations
are executed concurrently, the order of information displayed may vary. To display
the information in a specific order the attribute out, inherited from point, is used to
serialize the output displayed.

Bounded point

The class bounded_point with class point as its super defines also a point which has, in
addition to a location, lower and upper bounds for that location. Its state contains
the attribute bounds initialized with (0,0,0,0). Its behavior consists of the methods:

e move/2: changes the current location of the point if the given value lies within
bounds.

o check_constraint/4: tries to satisfy the region constraints for each activation

of move/2.

o print_bounds/0: prints the upper and lower bounds of the point on the given
output device.

e display/0: prints the current location of the point and its upper and lower
bounds on the given output device.

:- class bounded_point.
:- supers [point].

:- attributes [bounds=(B)\\(B=(0,0,0,0))].
move(X,Y):=
(true — get_bounds(Bounds),
check_constraint(Bounds,X,Y,_-YesNo)).

check _constraint(Bounds,X,Y,YesNo):=
(Bounds = (X0,X1,Y0,Y1),

158

Programming Examples

X >= X0,
X =< X1,
Y >= Y0,
Y =< Y1 — move(X,Y) # point,
YesNo = yes
; true — YesNo = no).

print_bounds:=
(true — get_out(S),
get_bounds((X0,X1,Y0,Y1)),
io.format(’with bounds— min: ("w, “w), max: (“w, “w)"n’, [X0,Y0,X1,Y1])-S,
set_out(9)).

display:=
(true — display # point,
print_bounds # bounded_point).

Bounded history point

The class bounded_history_point with classes history_point and bounded_point as its
supers defines also a point which has a location, lower and upper bounds for that
location, and a location history record. Its behavior consists of the methods:

e move/2: changes the current location of the point if the given value lies within
bounds.

e move_auz/3: if the constraint is satisfied, move/2 is delegated to history_point;
otherwise nothing is to be done.

o display/0: prints the current location, its upper and lower bounds, and the
history record of point movement on the given output device.

:- class bounded_history_point.
:- supers |history_point,bounded_point].
.- private [move_aux/3].

move(X,Y):=
(true — get_bounds(Bounds),

check_constraint(Bounds,X,Y,YesNo),
move_aux(X,Y,YesNo) # bounded_history_point).

move_aux(X,Y,YesNo):=

159

7.3 A Car Maintenance Fault diagnosis

(YesNo = yes — move(X,Y) # history_point
; YesNo = no — true).

display:=

(true — display # bounded_point,
print_history).

Program Output

The following output was taken from a typical run of a moving point.

?7- new(BHPoint) # bounded_history_point,
set_bounds((5,15,5,15))"BHPoint,
move(9,12)"BHPoint,

display "BHPoint,

move(1,2)"BHPoint,

display "BHPoint,

move(8,12)"BHPoint,

display "BHPoint.

Point at: (9, 12)

with bounds— min: (5, 5), max: (15, 15)
with location history: [(9,12)]

Point at: (9, 12)

with bounds— min: (5, 5), max: (15, 15)
with location history: [(9,12)]

Point at: (8, 12)

with bounds— min: (5, 5), max: (15, 15)
with location history: [(8,12),(9,12)]

yes

7.3 A Car Maintenance Fault diagnosis

This example investigates the application of AKL+ to the diagnosis of faults. It
is taken from LPA’s Prolog++ manual [146]. It is intended to illustrate the tech-
nique of progressively sending messages through a hierarchy of objects, starting
from objects at a general level down to objects at specific levels. It also shows that

160

Programming Examples

ur _obj ect

el ectrical nechani cal

fuel _system

Ll
l'ights starting engi ne
starter_notor spar ki ng cylinders

pl ugs di stributor

Figure 7.3: A car component hierarchy

it is easily to convert Prolog based object-oriented applications into AKL+. The
particular domain, that of car maintenance, was chosen to illustrate this technique.

Problem Description

We would like to represent the causal-effect relationship between faults and symp-
toms. The crucial factor in fault diagnosis is being able to quickly pinpoint the
general area of the problem, before focusing in on the root case. Identifying general
aspects of the problem can avoid going down blind alleys, and more importantly
avoids asking the user seemingly irrelevant questions.

For the domain of car maintenance, an automobile can be dissected into several
problem areas such as the fuel system, mechanical faults and electrical faults. Asso-
ciated with each area is a collection of faults which may occur, and the symptoms
which they cause. Some of the symptoms may be contradictory, in the sense that
two symptoms cannot possibly occur simultaneously.

The classes
From the above discussion two quite separate classes can be identified. The first

concerns itself with fault diagnosis, including the ability to move from general objects
down to specific objects. The second deals with the problem domain, in terms of the

161

7.3 A Car Maintenance Fault diagnosis

causal-effect relationships between actual faults and exhibited symptoms. Fig. 7.3
illustrates a hierarchy for identifying faults in automobiles. At the top most level
is the faults class containing the algorithm for finding faults, and which is inherited
by all of the other classes in the hierarchy. At any point, however, a class has the
option to override the default search algorithm with one that is specialized for its
problem area.

An instance of the component hierarchy is created with a double link that represents
the super-sub relationship. Thus, allowing to apply different search algorithms.

The following sections define the protocol (attributes and methods) for the fault
class and for the domain specific classes.

Faults

The class faults, a subclass of ur_object, contains the search algorithm for identifying
and reporting faults. The algorithm, since the class is at the top of the hierarchy,
is inherited by all of the domain classes. Its state contains the attributes: super to
specify its parents objects in the object hierarchy, and sub to specity its children
objects, and db to specify the class specific information of the problem domain.
The attributes super and sub is initialized with the empty list. The attribute db is
initialized with a hash table object for fast access. Entries of this object will contain
the following information:

o faults: takes on a list of unique fault numbers.
o fault(Number): takes on a text of the fault for a unique fault Number.
o symptoms: takes on a list of unique symptom numbers.

o symptom(Number): takes on a text of the symptom for a unique symptom
Number.

o contrary(Symptom): tabulates when one symptom is contrary to another, i.e.
they cannot coexist as symptoms.

o cffect(Effect): tabulates when a fault causes an Effect which is exhibited as a
symptom.

The behavior of faults consists of the methods:

e new/3: creates a newly initialized object. Given an object as super, updates
the attribute super of the new object to refer to its super object and updates
the attribute sub of the super object to refer to the new object.

162

Programming Examples

o set_db/2: updates the value at the given key of the hash table object.
o get_db/2: returns the value at the given key of the hash table object.
e init_db/2: initializes the hash table with default values.

e findall/0: finds and reports all faults.

e process_subs/1: progressively moves through the object hierarchy from general
problem areas down to specific problem areas.

e find/[0-3]: for each defined fault for this object, gets the effect, a list of symp-
toms, of this fault, and go through this list to verify its elements.

e contrary_symptom/3: accumulates the contrary symptoms of a particular fault.

o check_contrary/5: checks whether there are a contrary symptoms already ex-
hibited. If this is the case, the previous reply is considered. Otherwise, asks
about the contrary symptom and remembers the reply.

o check_my_symptom/5, check_my_symptom_auz/5: if the symptom was not pre-
viously asked nor the contrary symptom was found the symptoms will be
checked to determine whether it is already exhibited. If this is the case, the
previous reply is considered. otherwise, asks about the symptom and remem-
bers the reply.

e print/2: prints the fault and the location (a class in the domain) where it was

identified.

o exhibited/[6-7]. asks the user whether a particular symptom occurs and re-
members the answers to questions in order to avoid them being repeatedly

asked.
o writeseqnl/4, write_seq/3: displays questions on the standard output device.

e member_told/3: checks whether or not the question was previously asked. If
so, the answer is returned.

:- class faults.

:- supers [ur_object].

.- attributes [super=(V)\\(V=[]),sub=(V)\\(V=]]),
db=(DB)\\(akl.new_hash_table(HashDB),init_.db(HashDB,DB))].

new(Obj)-Super:=
(true — new(Obj) # ur_object,
get_super(A)~Obj,
set_super([Super|A])~Obj,

163

7.3 A Car Maintenance Fault diagnosis

get_sub(B)~Super,
set_sub([Obj|B])~Super).

set_db(A,V):=
(true — get_db(DB),
set(A,V) DB,
set_db(DB)).

get_db(A,V):=
(true — get_db(DB),
get(A,V)"DB).

init_db-DB:=
(true — set(faults,[])"DB,
set(fault(nil),[])"DB,
set(symptoms,[])"DB,
set(symptom(nil),[])"DB,
set(contrary(nil),[])"DB,
set(effect(nil),[])"DB).

findall :=
(true — get_sub(Subs),
process_subs(Subs)).

process_subs(Subs):=
(Subs = [Sub|Rest] — find~Sub,
findall~Sub,
process_subs(Rest)
; Subs =[] — true).

find :=
(true — get_db(faults,Faults),
find(Faults,[],-R)).

find(Faults)-R :=

(Faults = [] — true

; Faults = [FaultNum|Fs] — get_db(effect(FaultNum),SL),
contrary symptom(SL,CONSL,[]),
check_contrary_sym(CONSL,no,Abort)-R,
check_my sym(SL,Abort,Continue)-R,
print(FaultNum,Continue),
find(Fs)-R).

164

Programming Examples

contrary symptom(SL)-L :=
(SL =[] — true
; SL = [S|Ss] — get_db(contrary(S),S1),
[S1]-L,
contrary symptom(Ss)-L
; SL = [S|Ss] — contrary_symptom(Ss)-L).

check _contrary_sym(CONSL)-Abort-R :=
(CONSL =[] — true
; CONSL = [_S1]-Ss], Abort = yes — true
; CONSL = [nil|Ss] — check_contrary_sym(Ss)-Abort-R
; CONSL = [S1|Ss] — get_db(symptom(S1),Text),
exhibited(S1,Text)-Abort-R ,
check _contrary _sym(Ss)-Abort-R).

check_my_sym(SL,Abort,Continue,R0,RL) :=
(Abort = yes — R0 =RL,
Continue = no
; true — check_my sym_aux(SL,yes,Continue,R0O,RL)).

check_my_sym_aux(SL)-Continue-R :=
(SL =[] — true
; SL = [S1|Ss], Continue = no — true
; SL = [S1]Ss] — get_db(symptom(S1),Text),
exhibited(S1,Text)-Continue-R,

check_my _sym_aux(Ss)-Continue-R).

print(FaultNum,Continue):=
(Containue = yes — typeof(Where),
get_db(fault(FaultNum),Fault),
akl.stdout(S),
writeseqnl(’Location : 7, [Where])-S ,
writeseqnl(’Possible Fault : ’,[Fault])-S ;nl~S
; Continue = no — true).

exhibited(S,Text, Flag,Reply)-R :=
(true — member_told(told(S,Ans),R,YesNo),
exhibited(YesNo,S,Ans, Text,Reply)-R).

exhibited(YesNo,S,Ans,Text,Reply,RO,R) :=
(YesNo = yes — Reply = Ans, RO = R
; YesNo = no — yesno(Text,Reply),
Reply = Ans,

7.3 A Car Maintenance Fault diagnosis
R = [told(S,Ans)|R0]).

yesno(Text,R):=
(akl.stdout(S),
akl.stdin(In),
akl.data(Text),
io.write(Text)-S,nl"S,
io.read(yes)-In — R = yes
; true — R = no).

writeseqnl(Prompt,L)-S:=
(true — io.write(Prompt)-S,
write_seq(L)-S).

write_seq(L)-S:=
(L=[] — true
; L =[H|T] — io.write(H)-S, io.write(’ *)-S,
write_seq(T)-S , nl~S).

member told(Told,L, YesNo):=
(L=[] — YesNo = no
; L=[told(X,Y1)|],
Told = told(X,Y) — Y = Y1, YesNo = yes
; L=[_|Xs] — member_told(Told,Xs,YesNo)).

Domain Classes

As an illustration of one of the classes in the car maintenance system, the class
distributor is given below.

Distributor

The class distributor with class sparking as its super is defined. Its behavior consists
of the specialized method new/3 which sets the domain specific knowledge for its
newly created object.

:- class distributor.
:- supers [sparking].

new(Obj)-Super:=
(true — new(Distributor)-Super # sparking,

166

set_db
set_db
set_db
set_db
set_db
set_db
set_db
set_db
set_db
set_db
set_db
set_db
set_db
set_db
set_db
set_db
Obj = Distributor).

PSS-S =A==y

Program Output

faults,[’F10017,’F1002’,’F1003°])~ Distributor,

fault("F1001’), *Condensation in distributor cap’)”Distributor,
fault("F1002’), *Faulty distributor arm’)~Distributor,

fault("F1003’), "Worn distributor brushes’)~Distributor,
symptoms,[’S1001°,’S1002°,’S1003°,’S1004°])~ Distributor,
symptom(’S1001°), Starter turns, but engine does not fire’)" Distributor,
symptom(’S1002’), ’Engine has difficulty starting’)"Distributor,
symptom(’S1003’), ’Engine cuts out shortly after starting’)”~Distributor,
symptom(’S1004°), "Engine cuts out at speed’)”Distributor,
contrary(’S1002%),’S1001°)"~ Distributor,

contrary(’S1003),’S1001)"~ Distributor,

contrary(’S10017), nil)~Distributor,

contrary(’S1004’), nil)~Distributor,

effect(’F1001"), [’'S1001°])~ Distributor,

effect(’F1002"), ['S1001°,’S1004°])~ Distributor,

effect(’F1003"), ['S1002’,S1003°])~ Distributor,

Programming Examples

The following outputs were taken from two fault diagnosis runs. In these runs, an

instance of the car maintenance class hierarchy is created with an object of dis-

tributer set to the above domain specific knowledge and other domain classes with

their default values.

7- new(Faults) # faults,
new(Electrical)-Faults # electrical,
new(Fuel system)-Faults # fuel system,
new(Mechanical)-Faults # mechanical,
new(Lights)-Electrical # lights,
new(Starting)-Electrical # starting,
ew(Sparking)-Starting # sparking,

(

(

(

(

=

new(Starter_motor)-Starting # starter_motor,
new(Plugs)-Sparking # plugs,
new(Distributor)-Sparking # distributor,
new(Engine)-Mechanical # engine,
new(Cylinders)-Engine # cylinders,

findall~ Faults.

167

7.4 A Car Maintenance Fault diagnosis

Starter turns, but engine does not fire

yes.

Location : distributor

Possible Fault : Condensation in distributor cap

Engine cuts out at speed

yes.

Location : distributor

Possible Fault : Faulty distributor arm

yes

7- new(Faults) # faults,
new(Electrical)-Faults # electrical,
new(Fuel system)-Faults # fuel system,
new(Mechanical)-Faults # mechanical,
new(Lights)-Electrical # lights,
new(Starting)-Electrical # starting,
new(Sparking)-Starting # sparking,
new(Starter_motor)-Starting # starter_motor,
new(Plugs)-Sparking # plugs,
new(Distributor)-Sparking # distributor,
new(Engine)-Mechanical # engine,
new(Cylinders)-Engine # cylinders,
findall~ Faults.

Starter turns, but engine does not fire
no.

Engine has difficulty starting

yes.

Engine cuts out shortly after starting
yes.

Location : distributor

Possible Fault : Worn distributor brushes

yes

168

Programming Examples

full full full
| ock(put/1) unl ock(get/1)
panptial — = partial — = paygtial
unl ock(put/1) I ock(get/ 1)
empty empty empty
unl ock
| ock
full
partial
|:| unl ocked
empty
|:| | ocked

Figure 7.4: Conceptual illustration of the state modification of a bounded buffer object

7.4 A Bounded Buffer State Modification

This example investigates the application of AKL+ to the modification of acceptable
states of a concurrent object. It is intended to illustrate the dynamic locking of a
concurrent object operations which modifies these states. The particular domain,
that of bounded buffer, was chosen to illustrate this technique. The bounded buffer
is a classic example that is used in the literatures to illustrate the concurrency and
synchronization of a concurrent object operations.

Problem Description

We would like to represent the mixing of lock operations with a bounded buffer
operations such that the state modification anomaly, discussed in Section 4.5.3, is
avoided. The example is used in [98, 99] to illustrate this type of anomaly. The
problem is that in order to account for the locking of operations in a subclass of the
bounded buffer, the bounded buffer operations is affected such that methods of the
bounded buffer must be overridden in order to account for locked.

The classes
From the above discussion two quiet separate classes can be identified. The first

concerns itself with the locking of operations. The second deals with the problem
domain, a buffer that can lock its operations. The class write_lock defines a two-level

169

7.4 A Bounded Buffer State Modification

lock so that the whole object operations can be exclusively locked until they un-
locked. The locking of operations is extended in its subclass write_lock_op to allow
arbitrary locking of the bounded buffer operations. A bounded buffer buffer_trans
class with operations to store and retrieve elements is identified; then the synchro-
nization is that one cannot retrieve from a buffer whose state is empty and can-
not store into a buffer whose state full is likewise prohibited. The satisfaction of
these constraints is not achieved automatically; the user must somehow program
the methods to implement the object behavior that satisfy the synchronization con-
straints. The AKL+ transitions approach is chosen to specify these constraints.
The class write_lock_op_buffer is identified with the locking operations mixed from
write_lock_op. Fig. 7.4 illustrates the possible state modification of an object of
write_lock_op_buffer according to the locking of its operations. At any point in time,
it is possible to send a message that locks or unlocks the bounded buffer operations.

According to the transitions approach, the application is programmed with meth-
ods: mset/2 to specify the accept method set and their identifiers, transition/3 to
specifying the transitional behavior of the accept method set, and enable/[3-4] to
determine the current accept method set.

Write lock

The class write_lock defines the methods: lock/0 and wunlock/0. lock/0 locks the
object exclusively so that no other methods can access it until it receives a corre-
sponding unlock/0) message. Its state contains the attributes: lock_var to indicate
whether the current object is locked or not and method_set to store/restore the ac-
cept method set when the message lock/0/unclock/0 is received. The definition of
the class write_lock is given in Example 4.11.

Write lock operation

The class write_lock_op defines the methods: lock/1 and unlock/0. lock/1 locks a
given arbitrary set of object operations. wunlock/1 unlocks a given arbitrary set of
object operations. Its state contains the attribute lock_op_var to store the current
locked operations.

:- class write_lock_op.
:- supers [write_lock].

.- attributes [lock_op_var=(V)\\(V=[])].
lock(Op):=

(Op = [|] — getlock op_var(L),
set_lock_op_var(L1),

170

Programming Examples

sets.set_union(Op,L,L1),

io.format(*— lock("w) —— ~n’,[Op])
true — get_lock_op_var(L),

set lock_op_var(L1),
sets.set_union([Op],L,L1),
io.format(*— lock("w) —— ~n’,[Op])).

unlock(Op):=

(Op = [-|.] — getlock_op_var(L),
set_lock_op_var(L1),
sets.set_difference(L,Op,L1),
io.format(’—— unlock(“w) —— ~n’,[Op])
true — get_lock_op_var(L),
set lock_op_var(L1),
sets.set_difference(L,[Op],L1),
io.format(*—— unlock("w) —— “n’,[Op])).

Bounded Buffer

The class buffer_trans with the standard AKL+ classes transitions and state_hash as
its superclasses defines a bounded buffer operations. Its state contains the attributes:
in, out, and array. The attribute buffer is initialized with an array object for fast
access. The attributes in and out is initialized with 0, they are used as indices into
the buffer. Its behavior contains the methods: put/1 for storing an item in the buffer
and get/1 for retrieving an item from the buffer. The class is parameterized by its
maximum size, allowing for creating buffers with variable length at run-time.

:- class buffer_trans(MaxSize).

:- supers [transitions,state_hash].

:- attributes [in=(V)\\(V=0),out=(V)\\(V=0),size=(V)\\(V=0),
buffer=Array\ \ (akl.new_array(MaxSize,0,Array),
write_array.write_array—Array).

mset(Setld,Mset):=
(Setld = initially — mset(empty,Mset) # buffer_trans(MaxSize)
; Setld = empty — Mset= [put/1]
: Setld = full — Mset = [get/1]
; Setld = partial — mset(empty,Msetl) # buffer_trans(MaxSize),
mset(full,Mset2) # buffer_trans(MaxSize),
sets.set_union(Mset1, Mset2, Mset)).

transition(M,MethodSet,Enables):=

171

7.4 A Bounded Buffer State Modification

(M = default — get_size(Size),
enable(Size,MaxSize,MethodSet,Enables) # buffer_trans(MaxSize)

; M = get/1 — transition(default,MethodSet,Enables)

; M = put/1 — transition(default,MethodSet,Enables)).

enable(Size,Max, MethodSet,Enables):=
(Size > 0,Size < Max — Enables = partial
; Size = 0 — Enables = empty
; Size = Max — Enables = full).

put(Item) :=

(true — akl.stdout(S),
get_in(In),
get_size(Size),
get_buffer(Array),
Inl is (In+1) mod MaxSize,
set(In,Item)~Array,
Sizel is Size +1,
io.write(’— put(’)-S,
io.write(Item)-S,
io.write(’)—")-S,nl"S,
write_array.write_array—Array,
set_in(Inl),
set_size(Sizel)).

get(Item) :=

(true — akl.stdout(S),
get_out(Out),
get_size(Size),
get_buffer(Array),
Outl is (Out+1) mod MaxSize,
get(Out,ltem)~ Array,
Sizel is Size-1,
set(Out,[])~Array,
io.write(’— get()-S,
io.write(Item)-S,
io.write(’)—)-S,nl"S,
write_array.write_array—Array,
set_out(Outl),
set_size(Sizel)).

172

Programming Examples
Bounded Buffer with locks

The class write_lock_op_buffer with classes buffer_trans and write_lock_op as its super
defines a bounded buffer which can lock its operations. To make reuse of code, the
buffer_trans is defined as follows.

:- class write_lock_op_buffer(MaxSize).
:- supers [buffer_trans(MaxSize),write_lock_op].

mset(Setld,Mset) :=
(Setld = initially — mset(initially, Mset1) # buffer_trans(MaxSize),

mset(always, Mset2) # write_lock_buffer(MaxSize),
sets.set_union(Mset1,Mset2, Mset)
Setld = locked — mset(locked,Mset) # write_lock_op
Setld = unlocked — mset(unlocked,Mset) # write_lock_op
; Setld = always — Mset = [lock/1,unlock/1,lock/0]
; true — mset(Setld,Msetl) # buffer_trans(MaxSize),

mset(always, Mset2),

sets.set_union(Mset1, Mset2, Mset3),

get lock_op_var(Op),

sets.set_difference(Mset3,0p,Mset)).

transition(M,MethodSet,Enables):=
(M = lock/0 — transition(lock/0,MethodSet,Enables) # write_lock

; M = unlock/0 — transition(M,MethodSet,Enables) # write_lock
; true — transition(default,MethodSet,Enables) # buffer_trans(MaxSize)).

Note that methods put/1 and get/1 is reused and the synchronization code specifies
the locking and unlocking of the bounded buffer operations, (cf. [98, 99]).

Program Output

The following outputs were taken from three runs.

?- new(Obj) # writelock_op_buffer(3),
get(-)~Obj,

put(a)~Obj,

lock(get/1)~Obj,

put(b)~Obj,

lock(put/1)~Obj,

get(-)~Obj,

put(c)~Obj,

173

7.4 A Bounded Buffer State Modification

unlock(get/1)~Obj,
put(d)~Obj,
unlock(put/1)~Obj,
put(e)~Obj.

(1 01 [

— put(a)—

a [1 []

— get(a)—

(1 01 [

—— lock(get/1) ——
— put(b)—

[1b []

— lock(put/1) ——
—— unlock(get/1) ——
— get(b)—

(1 01 [

—— unlock(put/1) —
— put(c)—

1 0c

— put(d)—

d[1c

—— put(e)—

dec

** Object Terminated successfully **

yes

?- new(Obj) # writelock_op_buffer(3),
get(-)~Obj,

put(a)~Obj,
lock([get/1,put/11)~Obj,
put(b)~Obj,

get(-)~Obj,

put(c)~Obj,
unlock(put/1)~Obj,
put(d)~Obj,
unlock(get/1)~Obj,
put(e)~Obj.

174

10

— put(a)—

a [11[]

— get(a)—

0l

— lock([get/1,put/1]1) —
— unlock(put/1) ——
— put(b)—

[1b []

—— putb(c)—

Ibc

—— put(d)—

dbec

—— unlock(get/1) —
— get(b)—

d[1c

— put(e)—

dec

** Object Terminated successfully **

yes

7- new(Obj) # write_lock_op_buffer(3),

get(-)~Obj,
put(a)~Obj,

lock([get/1,put/11)~Obj,

put(b)~Obj,
get(-)~Obj,
put(c)~Obj,
unlock(put/1)~Obj,
put(d)~Obj,
unlock(get/1)~Obj,
put(e)~Obj,
get(-)~Obj,
put(f)~Obj,
lock~Obj,
put(g)~Obj,
put(h)~Obj,
unlock~Obj,
get(-)~Obj,
get(_)"Obj.

Programming Examples

7.5 Summary

(1 0 [

— put(a)—
a [] []

— get(a)—
(1 0 [

—— lock([get/1,put/11) ——
—— unlock(put/1) —
— put(b)—
[1b []

— put(c)—
Ibc

— put(d)—
dbec

—— unlock(get/1) ——
— get(b)—
d[1c

—— put(e)—
dec

— get(c)—
de []

— put(f)—
def

— lock ——
—- unlock —
— get(d)—
Jef

— put(g)—
gef

— get(e)—
g[1f

— put(h)—
ght

** Object Terminated successfully **

yes

7.5 Summary

We have described programming examples that cover a range of problems, each of
which illustrates different aspects of the language. They are:

176

Programming Examples

a discrete-event simulation of the activities of a car washer.

e a region constraints for a moving point in a two dimensional space.

a fault diagnosis for an automobile according to exhibited symptoms and
counter symptoms.

a state modification for a bounded buffer with respect to dynamic locking of

its operations.

These problems, which are small but not trivial, are general enough for the pur-
pose of showing the applicability of AKL+ both as a modeling language and as
a programming language. In particular, simulation is the most general concurrent
computing problem in the sense that any concurrent problem can be formulated as
a simulation. The bounded buffer example demonstrates that the AKL+ standard
protocols can successfully solve the state modification anomaly as specified in the
literatures.

R

177

Conclusion and Future Work

8.1 Conclusion

This thesis has been concentrated on issues in the design and implementation of two
essential parts of a software development environment, namely incremental compi-
lation facility and a new concurrent object-oriented programming language called
AKL+. The language was built on top of AKL supporting all features that are
needed for any object-oriented application. The incremental compilation facility
is a general tool providing flexible support to automatic incremental compilation
and loading of object-oriented programs which is essential for large object-oriented
applications.

Chapter 2 has given a survey to a wide range of object-oriented programming lan-
guages. We have classified these languages as conventional languages, actor based
languages, and logic based languages. The logic based languages are of our main
interest. In particular, those languages which are either logic based languages ex-
tended with object-oriented constructs or higher object-oriented languages built on
top of logic based languages. These languages have been discussed by examining the
design and implementation issues concerning classes, objects, state, and inheritance.
These issues have been examined because of their central roles in object-oriented
programming. At the end of Chapter 2, we have presented the main features of our
language and compared it with the most related ones. We have showed that AKL+
supports a more mature features which subsume features of these languages.

Chapter 3 has given a brief and informal summary of AKL and reviewed the basic
techniques that allows us to do object-oriented programming in AKL. AKL was
chosen as concurrent constraint logic programming element of our language. The
reasons for this include its use of deep guards, its use of don’t know nondeterminis-
tic capabilities of Prolog and the constraint logic programming languages with the
process-describing capabilities of concurrent logic languages such as GHC, and the
simplicity and flexibility in its support of multiple programming paradigms, such
as concurrent, object, functional, logic, and constraint programming. In addition,
AKL offers a large potential for automatic parallel execution. From object-oriented
view AKL greatly facilitates communication between objects through ports. AKL
is a programming language kernel which has enabled us to design and efficiently
implement a complete language on top of it.

Chapter 4 has informally presented AKL+ and its computation model. AKL+ is a
concurrent object-oriented language based on the concepts of classes, generic classes,

8.1 Conclusion

metaclasses, multiple inheritance, delegation and abstractions of classes and meth-
ods. Several simple examples have been used to illustrate the main features of the
language and various programming techniques such as higher-order and data-driven
programming techniques. Classes can be defined with attributes, methods, access
control of methods, and superclasses. Classes, methods and instances of classes can
be expressed as first-class values. Method definitions can be called in two ways:
“method delegation” and “method invocation”. The method delegation preserves
the base class reference. The target object is available under the special attribute
“self”. Objects can be allocated or destroyed dynamically. Objects can share a
common object. AKL+ has achieved a uniform message sending. A set of built-in
standard classes has been provided to supply programmers with the minimum set
of efficient and effective built-in standard classes (library).

The language has supported the basic synchronization schemes that achieved the
concurrency control for a concurrent object. AKL4 has provided two standard
protocols, “transitions” and “synchronizers”, to support synchronization schemes
for resolving the inheritance anomaly. The main advantage to the synchronization
constraints schemes in AKL+ is the clean separation of concurrency control and
the method specification such that they can be inherited, overridden, or extended
separately without affecting each other. Furthermore, one scheme can be integrated
and composed with other schemes.

AKL+ has supported multiple inheritance and modeled the inheritance graph di-
rectly. The designer is able to resolve any name conflicts due to multiple inheritance
in different ways. One way is to redefine the operation in the subclass. An alterna-
tive way is to use the differential inheritance feature of the language to exclude the
conflicting operation.

Chapter 5 has presented the syntax and semantics of AKL+. The semantics of
AKL+ has been described in terms of translation to AKL. The translation has been
based on a source-to-source transformations. Each kind of transformation has been
defined by a rewrite rule.

Chapter 6 has presented the implementation aspects of the general incremental
compilation facility and our language. The AKL+ run-time module that allows us
to achieve a run-time uniform message sending has been also described. We have
given an algorithm for a general incremental compilation facility. The algorithm
specifies dependencies as functions to bring a target file up to date with respect
to those files on which it depends. This incremental compilation facility should be
applicable and advantageous to all object-oriented software systems. A primarily
feature of the incremental compilation facility is that the work needed after a change
is proportional to the “size” of the change rather than to the size of the program.
We have given an algorithm for the dependency that computes multiple inheritance.
We have described the dependency for translating a class definition into AKL. We

180

Conclusion and Future Work

have briefly mention the dependency provided by AKL to translate the AKL code
into the AKL abstract machine.

Efficiency is one of our prime goals. This has been realized through the schemes
developed for the optimization of the code to which a class is expanded, and the
efficiency offered by the set of standard classes.

AKL+ is a compiled language that translates classes into AKL code. Efficiency of
the translated code has been realized through:(1) class representation as a special
light-weight AKL module, (2) the method dispatcher exploits the first argument
indexing of the AKL compiler, leading to direct access to the method clauses, (3)
the unfolding of class parameters is only performed for the method clause that
uses or passes any of these parameters, (4) preserving the last call optimization in
recursive methods, (5) enforce the override mechanism by applying the conditional
choice primitive to the class dispatcher, and (6) a method invocation during the
execution of a message to an object may be directly applied to the state without
the need to schedule this message to the target object.

Inheritance has been implemented by the incremental definition of the method dis-
patcher in such a way that the interface of a class is cleanly captured. The class
dispatcher is computed at compile time and this will result in dispatching methods
in a constant time rather than searching the class hierarchy each time a method is
invoked. This run-time overhead is unpredictable and dependent on the depth of
the inheritance path.

The standard class object has defined port based objects which are active (heavy
weight) objects communicated through ports. The standard class cell has defined
data objects which are very fine-grained (light weight) objects that provides a mini-
mal form of encapsulated state. The standard class state_hash has provided a direct
attribute (key) access to the attribute’s value. The standard class state_array has
provided a direct attribute (indexed) access to the attribute’s value.

The AKL+ language and our incremental compilation facility have been imple-
mented on Unix-based workstations and they are parts of the official release of the
AKL system developed at SICS (Swedish Institute of Computer Science).

Chapter 7 has presented small but complete AKL+ examples that cover a range of
problems in object-oriented concurrent computing, from its conception to realiza-
tion. These problems has showed the applicability of AKL+ both as a modeling
language and as a programming language. They are: a discrete-event simulation
of the activities of a car washer, a region constraints for a moving point in a two
dimensional space, a fault diagnosis for an automobile according to exhibited symp-
toms and counter symptoms, and a state modification for a bounded buffer with
respect to dynamic locking of its operations.

181

8.2 Future Work

Appendix A has described the commands of the interactive incremental compilation
facility.

Finally, the thesis contributed with the first concurrent object-oriented, logic-
based, system that has supported all needed features for any object-oriented ap-
plication, a number of implementation techniques for efficient implementation, and
the general incremental compilation facility which is essential for developing large
object-oriented application.

8.2 Future Work

We have several ongoing activities, all concerned with extending our thesis work to
be more powerful and applicable. In what follows we present some of these activities.

As has already mentioned, AKL+ definitions are translated to AKL definitions. This
expansion is usually transparent to the user. While debugging an AKL+ program,
however, the expanded representation may become exposed. Debugging an AKL+
in terms of the AKL code generated by the compiler is much more complicated
and unfriendly than debugging at a level which is more like AKL+ itself. It is far
more preferable to debug AKL+ queries in terms of AKL+ programs rather than
in terms of AKL programs. Unfortunately, since we compile AKL+ programs into
AKL, any AKL+ debugger would have to be able to “de-compile” the AKL code
into the AKL+ original. This is difficult to do for all cases; especially since our
aim in building the compiler is to produce fast AKL programs rather than easily
debugable programs. We may borrow some of the techniques used in the debugging
of languages like “C” and compile in debugging information to the AKL+ program
as we convert it into an AKL program.

Large software systems comprise many thousands of lines of source code. Sequential
reading and writing is inadequate for mastering this complexity. In particular, the
structure of object-oriented software systems makes it necessary to inspect many
locations in order to get the picture of the class hierarchy, of overridden methods,
and so on. Presenting structural information about complex object-oriented software
systems requires obtaining this information from different source files. In fact, the
environment was designed with these considerations in mind. As was mentioned
before, a separate file will store the class information and its inherited information.
A browsing tool that takes the advantage of this file is considered in the next release.

A promising avenue of research is being pursued in the logic programming context is
to provide the language with partial evaluator to remove the cost of some extra code.
A partial evaluator takes a partially specified query and program and evaluates only
some parts of the program as not everything is fully specified. The result is a new
program specialized to handle all instances of the original query. The intention is

182

that the generated program will execute more efficiently than the original one for
those instances. We need to investigate the design and implementation of a partial

evaluator for AKL+.

Research on object-oriented reflective concurrent computation has just started and
most research issues have not been investigated yet. A reflective computational sys-
tem is a computational system which exhibits reflective behavior. In a conventional
system, computation is performed on data that represent (or model) entities which
are external to the computational system. In contrast, a reflective computational
system must contain some data that represent or model the structural and com-
putational aspects of the system itself [150]. And such data must be maintainable
within the system itself, and more importantly, changes made to such data must
be causally reflected/connected to the actual computation being performed. One of
our future goals is to investigate the design of a reflective AKL+.

AKL+ supports all features that are needed for any object-oriented application.
Although, there is no experience yet in using AKL+ for a serious application. This
experience is necessary to evaluate the system and to discover its strengths and
weakness.

One of the most important future design goals for AKL+ is support for distributed
programming. object-oriented programming is a very suitable abstraction for dis-
tributed programming, since it naturally contains computationally independent en-
tries which communicate by message passing. However, extensions are required for
dealing with such things as the explicit mapping of objects to processors, transferring
objects from one cite to achieve load balancing, and recovery from failure.

S

183

A

Interactive Incremental
Compilation Commands

We give a summary of the available commands of the incremental compilation facility

discussed in Section 6.1.

’LLSG(ROO t) . Invokes the incremental compilation facility.

uSs€ . (Re)invokes the incremental compilation facility.

clean(Root) > Removes all the dependent/reachable files of Root.

clean : Removes all the dependent /reachable files of the current Root.

automake(Status) :

If Status is “on”, the incremental compilation facility is activated such that
system makes sure that all changed files are recompiled and loaded before each
new top-level query.

If Status is “oft”, only use command can activate the incremental compilation
facility.

automake : Displays the automake status.

used : Displays the used files.

edzt(lee) . Invokes Emacs editor for the given file.

edztb(lee) . Invokes Emacs editor for the given file as a background

process.
halt : Terminates the session.

h : Displays the history list.

hist. No. : Executes a history command.

help . Displays this list.

S

(1]

2]

References

Agha, G., Actors: A model of Concurrent Computation in Distributed Sys-
tems, MIT Press, Cambridge, 1986.

Agha, G., Hewitt C., Concurrent Programming Using Actors, in Yonezawa
A., Tokoro M. (eds.), Object-Oriented Concurrent Programming, MIT Press,
Cambridge, 1987.

Agha G., Foundational Issues in Concurrent Computing, ACM SIGPLAN
Workshop on Object-Based Concurrent Programming, Proceeding, SIGPLAN
Notices, 24(4):60-65, 1988.

Ait-kaci H., Nasr R., Login: A Logic Programming Language with built-in
Inheritance, Journal of Logic Programming, 3(3):185-215, 1986.

Ait-kaci H., Towards a meaning of LIFE, Journal of Logic Programming,
16(3):195-234, 1991.

Alexiev V., Mutable Object State for Object-Oriented Logic Programming:
A Survey, Technical Report, TR 93-15, Department of Computing Science,
University of Alberta, 1993.

Almgren J., Andersson S., Carlsson M., Flood L., Haridi S., Frisk C., Nilsson
H., Sundberg J., SICStus Prolog Library Manual, SICS Technical Report,
T93:02A, Swedish Institute of Computer Science, 1993.

America P., Inheritance and Subtyping in a Parallel Object-Oriented Lan-
guage, FCOOP, Proceeding, 1987.

America P., POOL-T: A Parallel Object-Oriented Language, in Yonezawa,
A., Tokoro M (eds.), Object-Oriented Concurrent Programming, Cambridge,
MIT Press, 1987.

Andersen B., Ellie Language Definition Report, ACM SIGPLAN Notices,
25(11):45-64, 1990.

Andersen, B., Ellie: a General, Fine-grained, First-class, Object-based Lan-
guages. Journal of Object-Oriented Programming, 5(2):35-42, May, 1992.

Andreoli J., Parechi R., LO and Behold! Concurrent Structured Processes,
ECOOP/OOPSLA, Proceeding, 1990.

Andreoli J., Parechi R., Linear Objects: Logical processes with Built-in In-
heritance, OOPSLA, Proceeding, 1991.

[14]

[15]

[16]

[21]

[22]

23]

[24]

188

Annot J., Haan P., POOL and DOOM: The Object-Oriented approach, in
Treleaven P. (ed.), Parallel Computers: Object-Oriented, Functional, Logic,
Jonh Wiely & Sons, NY, 1990.

APaepcke, A. (ed.), Object-Oriented Programming: The CLOS perspective.
MIT Press, 1993.

Athas W., Boden N., Cantor: An Actor Programming System for Scientific
Computing, ACM SIGPLAN Workshop on Object-Based Concurrent Pro-
gramming, Proceeding, SIGPLAN Notices, 24(4):66-68, 1988.

Barnes J., Programming in Ada, Addison-Wesley Publishing Co., Mass, 1989.
Bartual R., LPA Prolog and Flex Expert, Program Now, 3(2):43-47, 1989.

Bielak, R. Object-Oriented Programming: the Fundamentals, ACM SIG-
PLAN Notices, 28(9):13-14, Sept., 1993.

Bobrow, D., CommonLoops: Merging Lisp and Object-Oriented Paradigm,
ACM Conference on Object-Oriented Systems, Languages, and Applications,
Proceeding, 17-29, Sept., 1986.

Bobrow D., L. DeMichiel, R. Gabriel, S. Keene, G. Kiczales, D. Moon, Com-
mon Lisp, Object System Specification, SIGPLAN Notices, Vol. 23, special
issue, Sept., 1988.

Booch G., Software Engineering with Ada, Benjamin Cummings Publishing
Co., Menlo Park, CA, 1987.

Bos J., Laffra C., PROCOL: A Parallel Object Language with Protocols, OOP-
SLA, Proceeding, 19809.

Briot J., From Objects to Actors: Study of a limited Symbiosis in Smalltalk—
80, ACM SIGPLAN Workshop on Object-Based Concurrent Programming,
Proceeding, SIGPLAN Notices, 24(4):69-72, 1988.

Brooks, No Silver Bullet, Essence and Accidents of Software Engineering,
Computer, April, 1987.

Brogi A., Lamma E., Mello P., Objects in a Logic Framework, Lectures Notes
in Artificial Intelligence, 592, Springer Verlag, 1992.

Budd T., An Introduction to Object-Oriented Programming, Addison- Wesley
Publishing Co., 1991.

Bugliesi M., Lamma E., Mello P., Modularity in Logic Programming, Journal
of Logic Programming, 19(20):443-502, 1994.

[29]

30]

31]

32]

33]

[34]

[35]

[36]

37]

38]

[39]

[40]

[41]

[42]

[43]

Carlson B. Compiling and Ezecuting Finite Domain Constraints, Ph.D. thesis,
Uppsala University, Sweden, 1995.

Chen W., Warren D.H., Objects as intensions, Fifth International Conference
on Logic Programming, Proceeding, 1988.

Chikayama T., ESP Reference Manual, Technical Report, TR-044, ICOT,
Tokyo, 1984.

Chikayama T., Unique Features of ESP, FGCS’8/, Proceeding, 1984.

Chusho T., Haga H., A Multilingual Modular Programming System for De-
scribing Knowledge Information Processing Systems, in Kugler J. (ed.), Infor-
mation Processing 86, Elsevier, North Holland, 1986.

Conery J., Logical Objects, Fifth International Conference on Logic Program-
ming, Proceeding, 1988.

Cointe, P. Metaclasses are first class: the ObjVlisp model. Proceeding of OOP-
SLA, December 1987.

Corradi A., Leonardi L. PO Constraints as tools to synchronize active objects,
Journal of Object-Oriented Programming, 4(6):41-53, Oct., 1991.

Cox, B. Object-Oriented Programming: An Evolutionary Approach, Addison-
Wesley Publishing Co., 1986.

Dahl O., Nygaard K. Simula: An Algol Based Simulation language. Comm.
ACM, 671-678, Sept., 1966.

Dally W., Chien A., Object-Oriented Concurrent Programming in CST”,
ACM SIGPLAN Workshop on Object-Based Concurrent Programming, Pro-
ceeding, SIGPLAN Notices, 24(4):28-31, 1988.

Daniels J., Cook S. Strategies for Sharing Objects in Distributed Systems,
Journal of Object-Oriented Programming, 5(8):27-36, Jan., 1993.

Davison A., Polka: A Parlog Object Oriented Language, Ph. D. thesis, Depart-
ment of Computing, Imperial College of Science, Technology and Medicine,

1989.

Davison A., Design Issues for Logic Programming-based Object Oriented Lan-
guages, Research Report, Department of Computing, Imperial College, Lon-
don, 1991.

Davison A., Survey of Logic Programming-Based Object-Oriented Languages,
in Agha G., Wegner P., Yonezawa A.(eds.), Research Directions in Concurrent

Object-Oriented Programming, MIT Press, 1993.

189

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[54]

[55]

[56]

190

Digitalk Co., Smalltalk/V manual, 1988.

Elshiewy N., Time, Clocks and Committed Choice Parallelism for Logic
Programming of Real Time Computations. SICS Research Report, R86:13,
Swedish Institute of Computer Science, 1986.

Elshiewy N.; Modular and Communicating Objects in SICStus Prolog,
FGCS’88, Proceeding, ICOT, Tokyo, 1988.

Elshiewy N., Robust Coordinated Reactive Computing in Sandra, Ph.D. thesis,
Royal Institute of Technology, 1990.

Elshiewy N., Logic Programming for Real Time Control of Telecommunication
Switching Systems, The Journal of Logic Programming, 8(1), 1990.

Feldman, S., Make—A program for maintaining computer programs, Software

Practice and Experience, 9(4):255-266, 1979.

Franzén, T. Logical Aspects of the Andorra Kernel Language. SICS Research
Report, R91:12, Swedish Institute of Computer Science, 1991.

Franzén, T. Some Formal Aspects of the Andorra Kernel Language. SICS
Research Report, R94:10, Swedish Institute of Computer Science, 1994.

Frolund S. Inheritance of Synchronization Constraints in Concurrent Object-

Oriented Programming Languages, FCOOP, Proceeding, 1992.

Fukunaga K., Hirose S., An Experience with a Prolog-Based Object-Oriented
Language, OOPSLA, Proceeding, 1986.

Bracha, G., Cook, W., Mixin-based Inheritance, ECOOP/OOPSLA, Proceed-
ing 1990.

Girard J., Linear Logic, Theoretical Computer Science, 50(1), 1987.

Goldberg A, Robson D. Smalltalk—80: The Language and its Implementation,
Addison-Wesley Publishing company, 1983.

Goldberg Y., Silverman W., Shapiro E., Logic Programs with Inheritance,
FGCS’92, Proceeding, ICOT, Tokyo, 1992.

Haridi, S., Janson S., Kernel Andorra Prolog and its computation model. In
the Seventh International Conference of Logic Programming, Proceeding, MIT

Press, 1990.

Hassan A., The WAM: A (Real) Tutorial, 5, Paris Research Laboratory,
France, 1990.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[71]

[72]

Henderson P., Functional Programming: Applications and Implications,

Prentice-Hall International, NJ, 1980.

Henz, M., The Oz notation, DFKI Oz documentation series, German Re-
search Center for Artificial Intelligence (DFKI), Stuhlsatzenhausweg 3, D-
66123 Saarbriicken, Germany, 1994.

Henz M., Mehl M., Miller M., Miller T., Niehren J., Schiedhauer R., Schulte
C., Smolka G., Treinen R., Wirtz J., The Oz Handbook, Research Report, RR-
94-09, German Research Center for Artificial Intelligence (DFKI), Stuhlsatzen-
hausweg 3, D-66123 Saarbricken, Germany, 1994.

Henz, M., Smolka G., Wirtz J., Object-Oriented Concurrent Constraint Pro-
gramming in Oz, in Saraswat V., Hentenryck V. (eds.), Principles and Practice
of Constraint Programming, MIT Press, Mass.,1995.

Hewitt, C., Bishop, B., and Steiger, R. A universal, modular actor formalism

for artificial intelligence. Proceeding of IJCAI August 1973.

Hewitt C., Viewing Control Structures as Patterns of Message Passing, Journal

of Artificial Intelligence, 8(3):323-364, 1977.

Hewitt C., Agha G., Concurrent Systems for Knowledge Processing: An Actor
Perspective, MIT Press, Cambridge, Mass, 1989.

Hoare C., Communicating Sequential Processes, Comm. ACM, 21(8):666-677,
1978.

Hur J., Chon K., Overview of a Parallel Object-Oriented Language CLIX,
ECOOP, Proceeding, 1987.

[shikawa Y., Tokoro M., A Concurrent Object-Oriented Knowledge Repre-
sentation Language Orient84/K: Its Features and Implementation, OOPSLA,
Proceeding, 1986.

Ishikawa Y., Tokoro M., Orient84/K: An Object-Oriented Concurrent Pro-
gramming Language for Knowledge Representation, in Yonezawa, A., Tokoro
M. (eds.), Object-Oriented Concurrent Programming. Cambridge, MIT Press,
1987.

Janson 5., Haridi S., Programming Paradigms of the Andorra Kernel Lan-
guage, SICS research report, Swedish Institute of Computer Science, 1991.

Janson 5., Montelius J., Design of a sequential prototype implementation of
AKL, SICS research report, Swedish Institute of Computer Science, 1992.

191

73]

[83]

[84]

[85]

[36]

192

Janson S., Montelius J., Haridi S., Ports for Objects in Concurrent Logic
Programs, in Agha G., Wegner P., Yonezawa A.(eds.), Research Directions in
Concurrent Object-Oriented Programming, MIT Press, 1993.

Janson S. AKL: @ Multi-paradigm Language, Ph.D. thesis, Uppsala University,
Sweden, 1994.

Janson S. et. al., AGENTS Library Manual, version 1.0, SICS technical report,
Swedish Institute of Computer Science, 1995.

Kafura D., Concurrent Object-Oriented Real-Time Systems Research, ACM
SIGPLAN Workshop on Object-Based Concurrent Programming, Proceeding,
SIGPLAN Notices, 24(4):203-204, 1988.

Kafura, D., Inheritance in Actor Based Concurrent Object-Oriented Lan-

guages, FCOOP, Proceeding, 1989.

Kahn K., Tribble, D., Miller M., Bobrow D., Objects in Concurrent Logic
Programming Languages, OOPSLA, Proceeding, 1986.

Kahn K., Tribble, D., Miller M., Bobrow D., Vulcan: Logical Concurrent
Objects, in Shapiro, E. (ed.), Concurrent Prolog, MIT Press, 1987.

Kahn, K., Objects—A Fresh Look, FCOOP, Proceeding, 19809.

Keisu T.: Tree Constraints, Ph.D. thesis, Royal Institute of Technology, Swe-
den, 1994.

Keene S., Object-Oriented Programming in Common Lisp, Addison-Wesley
Publishing Co., Reading, Mass, 19809.

Kernighan B., Ritcheie D., The C Programming Language, Prentice Hall,
1978.

Khoshafian, S., Abnous R., Object Orientation: Concepts, Languages,
Databases, User Interfaces, John Wiely & Sons, 1990.

Kiczales G, Rivieres, Bobrow D., The Art of Metaobject Protocol. MIT Press,
1993.

Knudsen J., Name Collision in Multiple Classification Hierarchies, ECOOP,
Proceeding, 1988.

Knudsen J., Lofgren, Madsen O., Magnusson B., Object-Oriented Environ-
ments: The Mjolner Approach, Prentice Hall, 1994.

Koschmann T., Evens M., Bridging the Gab Between Object-Oriented and
Logic Programming, IEEFE Software, 5(5):36-42, 1988.

[89]

[98]

[99]

[100]

[101]

Kristensen B., Madsen O., Moller-Pedersen B., Nygaard K., The BETA Pro-
gramming Language, in Shriver, B., Wegner P., (eds.), Research Directions in

Object-Oriented Programming, MIT Press, 1987.

Kihne, T., Higher Order Objects in Pure Object-Oriented Languages, ACM
SIGPLAN Notices, 29(7):15-20, July, 1994.

Lalonde W., Pugh J., Inside Smalltalk, Volume I & 11, Prentice-Hall, Inc., NJ,
1990.

Lapalme G., Salle P., Plasma—II: An Actor Approach to Concurrent Program-
ming, ACM SIGPLAN Workshop on Object-Based Concurrent Programming,
Proceeding, SIGPLAN Notices, 24(4):81-83, 1988.

Lieberman H., Using Prototypical Objects to Implement Shared Behavior in
Object Oriented Systems, OOPSLA, Proceeding, 1986.

Liberman, H. Concurrent Object-Oriented Programming in Act 1, in
Yonezawa A. , Tokoro M. (eds.), Object-Oriented Concurrent Programming,
MIT Press, Cambridge, 1987.

Madsen O., Moller-Pedersen B., Nygaard K., Object-Oriented Programming
in the BETA Programming Language, ACM press, Addison- Wesley Publishing
Co., 1993.

Manning C., A Peek at Acore, an Actor Core Language, ACM SIGPLAN
Workshop on Object-Based Concurrent Programming, Proceeding, SIGPLAN
Notices, 24(4):84-86, 1988.

Matsuoka S., Wakita K., Yonezawa A., Synchronization Constraints with In-
heritance: What is not possible-So what is?, Technical Report 10, Department
of Computer Science, the university of Tokyo, 1990.

Matsuoka S., Taura K., Yonezawa A., Highly Efficient and Encapsulated Re-
use of Synchronization Code in Concurrent Object-Oriented Languages, OOP-
SLA, Proceeding, 1993.

Matsuoka S., Yonezawa A., Analysis of Inheritance Anomaly in Object-
Oriented Concurrent Programming Languages, in Agha G., Wegner P.,
Yonezawa A.(eds.), Research Directions in Concurrent Object-Oriented Pro-

gramming, MIT Press, 1993.

Matsuoka S., Language Features for Re-use and Extensibility in Concurrent
Object-Oriented Programming Languages, Ph. D. thesis, Department of In-
formation Science, the University of Tokyo, 1993.

McCabe, F., Logic and Objects, Research Report, Department of Computing,
Imperial College, London, 1987 .

193

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

194

McCabe, F., Logic and Objects, Prentice Hall International Series in Com-
puter Science, 1992.

Mehrotra P., Concurrent Object Access in Blaze2, ACM SIGPLAN Workshop
on Object-Based Concurrent Programming, Proceeding, SIGPLAN Notices,
24(4):55-58, 1988.

Mello P., Matali A., Objects as communicating Prolog Units, FCOOP, Pro-
ceeding, 1987.

Mello P., Concurrent Objects in Logic Programming Framework, ACM SIG-
PLAN Workshop on Object-Based Concurrent Programming, Proceeding,
SIGPLAN Notices, 24(4):37-39.

Meyer B., Object-Oriented Software Construction, Prentice Hall, NJ, 1988.

Meyer, B. Harnessing Multiple Inheritance, Journal of Object-Oriented Pro-
gramming, 1(4):48-51, Nov./Dec., 1989.

Moon, D., Object-Oriented Programming with Flavors, ACM Conference
on Object-Oriented Systems, Languages, and Applications, Proceeding, 9-16,
Sept., 1986.

Moss C., An introduction to Prolog++, Technical Report, Department of Com-
puting, Imperial College, London, 1990.

Moss C., Prolog++: The Power of Object-Oriented and Logic Programming
Language, Addison-Wesley Publishing Co., 1994.

Murphy T., Software Review: LPA 386 Prolog, Al Ezpert, September 1993.

Nelson, M., Concurrency and Object-Oriented Programming, SIGPLAN No-
tices, 26(10):63-72, Oct., 1991.

Newton M., Watkins J., The Combination of Logic and Objects for Knowl-
edge Representation, Journal of Object-Oriented Programming, Novem-

ber/December, 7-10, 1988.

Oliveira, J., Suggestion for a Parameterized Class Model, OOPS MESSEN-
GER, 5(3):27-36, July 1994.

O’keef R., The Craft of Prolog, MIT Press, 1990.

Ciancarini P.; Levi G., What is Logic Programming good for in Software Engi-
neering?, Technical Report, UBLCS-93-9, Laboratory for Computer Science,
University of Bologna, Italy, 1993.

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]
[129]

[130]

[131]

[132]

Pereira L., Nasr R., Delta Prolog: A Distributed Logic Programming Lan-
guage, FGCS’84, Proceeding, ICOT, Tokyo, 1984.

Peyton S., The Implementation of Functional Programming Languages, Pren-

tice Hall, New York, 1987.

Pinson L., Wiener R., An Introduction to Object-Oriented Programming and

Smalltalk, Addison-Wesley Publishing Co., Reading, Mass, 1988.

Pinson L., Wiener R., Objective—C, Object-Oriented Programming Tech-
niques, Addison-Wesley Publishing Co., 1991.

Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W., Object-
Oriented Modeling and Design, Prentice Hall Inc., 1991.

Sametinger J., chiffer S.; Design and Implementation Aspects of an Experi-
mental C++ Programming Environment, Software Practice and Fzxperience,

25(2):111-128, 1995.

Saraswat V., Concurrent Constraint Programming Languages, Ph. D. thesis,

MIT Press, 1993.

Schachte P., Saab G., Efficient Object-Oriented Programming in Prolog, The
Practical Application of Prolog, Proceeding, 1994.

Schaffert, C, Cooper T., Bullis B, Kilina, M., and Wilpolt, C. An Introduction
to Trellis/Owl, OOPSLA, Proceeding, 9-16, 1986.

Shapiro, E., A Subset of Concurrent Prolog and Its Interpreter, ICOT Tech-
nical Report, TR-003, 1983.

Shapiro, E., Takeuchi A., Object-Oriented Programming in Concurrent
Prolog, Journal of New Generation Computing, 1(1):25-49, 1983.

Shapiro, E. (ed.), Concurrent Prolog, MIT Press, 1987.

Silberschatz A., Peterson J., Galvin P., Operating Systems Concepts, Addison-
Wesley Publishing Co., 1991.

Singh, G., Single Versus Multiple Inheritance in Object-Oriented Program-
ming, OOPS MESSENGER, 5(1), January 1994.

Smolka, G., The definition of Kernel Oz, DFKI Oz documentation series, Ger-
man Research Center for Artificial Intelligence (DFKI), Stuhlsatzenhausweg
3, D-66123 Saarbriicken, Germany, 1994.

Snyder A., Object-Oriented Programming for Common Lisp, Report ATC-85-
1, Software Technology Laboratory, Hewlett-Packard Laboratories, Palo Alto,
California, 1985.

[133]

[134]

[135]

[136]
[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145)

[146)

[147]

[148]

196

Snyder, A., Encapsulation and Inheritance in Object-Oriented Programming

Languages, OOPSLA, Proceeding, 1986.

Steel G, Common Lisp: The language, Digital Press, Digital Equipment
Group, Bedford, Mass, 1984.

Steigerwald R., Nelson M., Concurrent Programming in Smalltalk—-80, SIG-
PLAN Notices, 25(8):27-36, 1990.

Sterling K., Shapiro E., The Art of Prolog, MIT Press, 1994.

Stroustrup, B., The C++ Programming Language, Addison- Wesley Publishing
Co., Reading, Mass., 1986.

Stroustrup, B., C++ Reference Manual, AT& T Bell Laboratories, Murry Hill,
NJ, 1989.

Stroustrup B., A History of C++4:1979-1991, History of Programming Lan-
guages Conference, Proceeding, ACM SIGPLAN Notices, 28(3):271-297, 1993.

Teitelman W., Masinter L., The InterLisp Programming Environment, Com-
puter, 14(4), 1981.

Thomas D., LaLonde W., Duimovich J, Wilson M., Actra-Multitasking/ Mul-
tiprocessing Smalltalk, ACM SIGPLAN Workshop on Object-Based Concur-
rent Programming, Proceeding, SIGPLAN Notices, 24(4):87-90, 1988.

Tripathi A., Berge E., An Implementation of the Object-Oriented Concurrent
Programming Language SINA, Software Practice and Ezperience, 19(3):235—
256, 19809.

Ueda K., Guarded Horn Clauses, in Shapiro, E. (ed.), Concurrent Prolog, MIT
Press, 1987.

US Department of Defense, Ada Reference Manual, 1980.

Uustalu T., Combining Object-Oriented and Logic Paradigms: A Modal Logic
Programming Approach, FCOOP, Proceeding, 1992.

Vasey P., Spenser C., Westwood D., Westwood A., Prolog++ Programming
Reference Manual, Logic Programming Associates Ltd., London, England,
1990.

Vaucher J., Lapalme G., Malenfant J. SCOOP: Structured Concurrent Object-
Oriented Prolog, KFCOOP, Proceeding, 1988.

Warren D., An Abstract Prolog Instruction Set, Technical Note #309, Artifi-
cial Intelligence Center, SRI International, 1983.

[149]

[150]

[151]

[152]

[153]

[154]

[159]

[160]

[161]

[162]

Warren D., Database Updates in Pure Prolog, FGCS’84, Proceeding, ICOT,
1984.

Watanabe T., Yonezawa A., Reflection in an Object-Oriented Concurrent Lan-

guage, OOPSLA, Proceeding, 1988.

Wegner, P., The Object-Oriented Classification Paradigm, in Shriver, B., Weg-
ner P., (eds.), Research Directions in Object-Oriented Programming, MIT
Press, 1987.

Wegner, P., Dimensions of Object-Based Language Design, OOPSLA, Pro-
ceeding, 1987.

Wegner, P.. Technical Contributions: Concepts and Paradigms of Object-
Oriented Programming. OOPS MESSENGER, 1(1):7-87, August 1990.

Wiener R., Pinson L., An Introduction to Object-Oriented Programming and

C++, Addison-Wesley Publishing Co., Reading, Mass., 1988.

Wu S., Integrating Logic and Object-Oriented Programming, OOPS MES-
SENGER, 2(1):28-37, July 1991.

Yonezawa, A., Briot, J., Shibayama E., Object-Oriented Concurrent Program-
ming in ABCL/1, OOPSLA, Proceeding, 1986.

Yonezawa, A., Tokoro M., Object-Oriented Concurrent Computing: An In-
troduction, in Yonezawa, A., Tokoro M. (eds.), Object-Oriented Concurrent

Programming, Cambridge, MIT Press, 1987.

Yonezawa, A., Shibayama E., Takada T., Honda Y., Modeling and Program-
ming in an Object-Oriented Concurrent Language ABCL/1, in Yonezawa,

A., Tokoro M. (eds.), Object-Oriented Concurrent Programming, Cambridge,
MIT Press, 1987.

Yokote, Y., Tokoro M., The Design and Implementation of ConcurrentS-
malltalk, OOPSLA, Proceeding, 1986.

Yokote, Y., Tokoro M., Concurrent Programming in ConcurrentSmalltalk, in
Object-Oriented Concurrent Programming, Cambridge, MIT Press, 1987.

Yokote, Y., Tokoro M., Experience and Evolution of ConcurrentSmalltalk,
OOPSLA, Proceeding, 1987.

Yoshida K., Chikayama T., A’UM-A Stream Based Concurrent Object-
Oriented Language, FGCS’88, Proceeding, ICOT, Tokyo, 1988.

197

[163] Yoshida K., Chikayama T., AUM = Stream + Object + Relation, ACM
SIGPLAN Workshop on Object-Based Concurrent Programming, Proceeding,
SIGPLAN Notices, 24(4):55-58, 1988.

[164] Zaniolo C., Object-Oriented Programming in Prolog, IEEE Symposium on
Logic Programming, Proceeding, NJ, 1984.

S

198

