
1

Ministry of Agricultu
Agricultural

Central Lab for Agri

Writing a Versio
Using Vi

Dr.S
Eng.Moham

Eng. Moh
Eng Ah

Mar
re & Land Reclamation
Research Center
cultural Expert Systems

nable Application
sual C++6

By

amhaa
med El Helly

ammed Said
med Fouad

ch, 2002

2

Table Of Contents

Tiltle Page#

Introduction to Serialization …………..…………………………………….
Handling Versioning at Object Level …………………………………………….
Handling Versioning at Document Level……………………………………….

1
2
8

3

Introduction to Serialization

“Serialization” is the process of writing or reading an object to or from a

persistent storage medium, such as a disk file. MFC supplies built-in support

for serialization in the class CObject. Thus, all classes derived from

CObject can take advantage of CObject’s serialization protocol.

Five main steps are required to make a class serializable. They are listed

below:

1. Deriving your class from CObject (or from some class derived from

CObject).

2. Overriding the Serialize member function.

3. Using the DECLARE_SERIAL macro in the class declaration.

4. Defining a constructor that takes no arguments.

5. Using the IMPLEMENT_SERIAL macro in the implementation file

for your class.

One of Serialization’s problems is a multiple version “ that is, files written

with different versions of the application” which will be discussed here and

we will try to provide appropriate solution to it.

The versioning has two levels:

1- Versioning at the Object level.

2- Versioning at the Document

4

Handle Versioning at The Object Level

Handle Version On The Object Level required that class of such object must
be serializable .

Consider a class that is derived from CObject and has two member
variables, of types Cstring .

The following class declaration fragment shows the member variables and
the declaration for the overridden Serialize member function:

class CPerson : public CObject
{
public:

 DECLARE_SERIAL(CPerson)
 // empty constructor is necessary
 CPerson(){};

 CString name;
 CString addr;

 void Serialize(CArchive& archive);

 // rest of class declaration
};

CPerson class declaration (version1)

5

The implementation of Serialize method for the CPerson class which is
declared above:

With the growth of system, we need to add additional feature to person class,

Suppose we have a person class (version 2) and declared as follow

class CPerson : public CObject
{
public:

 DECLARE_SERIAL(CPerson)
 // empty constructor is necessary

CPerson(){};
CString name;
CString addr;
Cstring birth_date;//new feature
void Serialize(CArchive& archive);

 // rest of class declaration
};

CPerson class declaration (version1)

IMPLEMENT_SERIAL(Person, CObject, 1);

void CPerson::Serialize(CArchive& archive)
{

 // call base class function first
 // base class is CObject in this case
 CObject::Serialize(archive);

 // now do the stuff for our specific class
 if(archive.IsStoring())

 archive << name << addr;
 else

 archive >> name >> addr;
}

Serialize body for (verion1)

6

and the serialize body become

Assume that we use version1 and after that we try to open files written by

version1 with new version error will be occur because in our case two

classes have different structure. To handle this problem we update Serialize

member function to be able to read multiple versions as follow:

1-We use the value VERSIONABLE_SCHEMA as an argument to the

IMPLEMENT_SERIAL macro .

Version1:
 IMPLEMENT_SERIAL(Person, CObject, VERSIONABLE_SCHEMA | 1);

Version2:
IMPLEMENT_SERIAL(Person, CObject, VERSIONABLE_SCHEMA | 2);

2-At serialize implementaion we use GetObjectSchema member function

of class Carchive to know the version of object and according to that

version we take appropriate action.

IMPLEMENT_SERIAL(Person, CObject, 2);

void CPerson::Serialize(CArchive& archive)
{

 // call base class function first
 // base class is CObject in this case
 CObject::Serialize(archive);

 // now do the stuff for our specific class
 if(archive.IsStoring())

 archive << name << addr << birth_date;
 else

 archive >> name >> addr >> birth_date;
}

Serialize body for (version2)

7

In version 2: -

void CPerson::Serialize(CArchive& archive)
{

 CObject::Serialize(archive);
 if(archive.IsStoring())
 {

 archive << name << addr << birth_date;
 }

 else
 {

UINT nShema=ar.GetObjectSchema ();
switch(nShema)

 {
case 1:
 archive >> name >> addr;

 break;
case 2:

 archive >> name >> addr >> birth_date;
 break;
default:

 AfxMessageBox ("Error: Invalid Format");
 break;

}
}

}

Serialize body after update

8

 Handle Versioning at Document Level

The problem in the document class occurred when we add additional

member variables to Document class. In this case we cannot open the old

version of the document.

This example shows the problem:

In my Document say(CTestDoc) class there is one member variable of type

MyMap. Here is the definition of MyMap

The variable (per) want to be serialize. The serialize method of document

class can be written as

typedef CTypedPtrMap<CMapStringToOb,CString,CPerson*>MyMap;
class CtestDoc
{

public:
MyMap per;

….
….
….

};

The class definition

void CTestDoc::Serialize(CArchive& ar)
{

per.Serialize(ar);
}

9

In the next version of the application we add member variable(s) in the

Document class to be serialized.

and the implementation of the serialize method as the following:

But the new version cannot read files that be created in the older version of

the system. To solve this problem we add member variable in Document

class refer to the version number, and in serialize method we check in this

variable.

typedef CTypedPtrMap<CMapStringToOb,CString,CPerson*>MyMap;
typedef CTypedPtrMap<CMapStringToOb,CString,computer*>MyMap2;
class CtestDoc
{

public:
MyMap per;
MyMap2 com; //computer is another class

….
….

};

The new version of class

void CTestDoc::Serialize(CArchive& ar)
{

per.Serialize(ar);
com. Serialize(ar);

}

If the number refers to old version we read the file with the same way of the

old version and if this number refers to new version we read the file with

new version. The following example shows the solution

In the document class of the new version we declare new variable
class CtestDoc
{

public:
MyMap per;
MyMap2 com; //computer is another class

private:
int version; // number of version

….
….

};
10

The updated code of new version class

The implementation of the serialize method as the following: -
void CTestDoc::Serialize(CArchive& ar)
{

version =2; //new version
if(ar.IsStoring())
{

ar<<version;
per.Serialize(ar);
com.Serialize(ar);
asd.Serialize(ar);

}
else
{

ar>>version;
switch(version) //read the old version file
case 1:

per.Serialize(ar);
com.Serialize(ar);
break;

case2: //version 2
per.Serialize(ar);
com.Serialize(ar);
asd.Serialize(ar);
count_asd=asd.GetCount();
break;

default:
AfxMessageBox(“Unknown document version”)

}

11

	Tiltle		
	Page#
	and the serialize body become
	In version 2: -
	In my Document say(CTestDoc) class there is one member variable of type MyMap. Here is the definition of MyMap
	In the next version of the application we add member variable(s) in the Document class to be serialized.

