Bean Fertilization Design

1. Introduction

The purpose of this technical report is to present fertilization design for bean. This document has been established using appendix A in the technical report 'Generic fertilization applied on tomato' number 'TR/CLAES/140/2000.5'. The modifications in the technical report 'Generic Integrated Design for Irrigation and Fertilization Applied on Tomato' number 'TR/CLAES/229/2001.10' have been considered.

2. Ontology

```
concept bean;
    sub-type-of: plant;
    properties:
       elements: {N, P, K, Ca, Mg, Fe, Zn, Mn};
                                                               4
       variety: {
                 , 3
                                         };
             source of value: user:
              cardinality: single;
              N ratio: {0.06};
              P ratio: {0.0055]
              K ratio: {0.03]
              Ca ratio: {0.02}
              Mg ratio: {0.0065}
              Fe ratio: {0.000175}
              Mn ratio: {0.000175}
              Zn ratio: {0.00011}
```

The following comments must be taken into consideration when applying the ontology in the technical report 'Generic fertilization applied on tomato' number 'TR/CLAES/140/2000.5':

• The legal values of the property 'nitrogen fertilizer name' must be updated as follows:

```
concept macro element;
    sub-type-of: fertilizer;
```

properties:

```
nitrogen fertilizer name: {urea, ammonium nitrate, ammonium sulphate}; source of value: user; cardinality: single;
```

- The property 'phosphor fertilizer name 'of the concept 'macro element' must be deleted.
- The two concepts, 'dripping irrigation macro element' and 'flooding irrigation macro element' must be deleted with their properties.
- The following concepts must be added:

```
concept tunnel;
    sub-type-of: plantation;
    properties:
        area: numeric;
            source of value: user;
            cardinality: single;

concept ammonium sulphate;
    sub-type-of: macro element;
    properties:
        ratio of N: {0.20};
        usefulness coefficient: {1.3}

concept ammonium sulphate schedule;
    sub-type-of: macro element schedule;
    sub-type-of: macro element schedule;
• The following properties must be added:
```

```
concept calcium nitrate schedule;
    sub-type-of: macro element schedule;
    properties:
        quantity: numeric;
            source of value: derived; /* from tabulate */
            cardinality: single;
        application date: date;
            source of value: derived; /* from tabulate */
            cardinality: single;

concept magnesium sulphate schedule;
    sub-type-of: macro element schedule;
    properties:
        quantity: numeric;
```

```
source of value: derived; /* from tabulate */ cardinality: single;
```

3. Domain Models

```
domain-model: assessment model;
            parts: tuple(ESTIMATE);
             (plant: name = bean &
  axioms:
              soil: salinity > 3.6 OR
              water: salinity > 2.4)
                     ESTIMATE
             (plantation: cultivation capability = no)
             (plant: name = bean &
              soil: salinity <= 3.6 &
              water: salinity \leq 2.4)
                     ESTIMATE
             (plantation: cultivation capability = yes)
domain-model: prediction model;
           parts: tuple(CONCLUDE);
                     tuple(DEDUCE);
              (plant: name = bean &
  axioms:
              plantation: type = open field)
                     CONCLUDE
             (plantation: optimum yield = 7)
             (plant: name = bean &
             plantation: type = tunnels)
                     CONCLUDE
              (plantation: optimum-yield = 20)
         (plant: name = bean &
              soil: salinity <= 1 &
             water: salinity <= 1)
                     DEDUCE
             (plant: predicted yield factor = 1)
         (plant: name = bean &
              soil: salinity > 1 & soil: salinity <= 1.5 &
              water: salinity <= 1)
                     DEDUCE
             (plant: predicted yield factor = 0.9)
```

```
(plant: name = bean &
               soil: salinity > 1.5 & soil: salinity <= 2.3 &
              water: salinity \leq 1)
                      DEDUCE
             (plant: predicted yield factor = 0.75)
         (plant: name = bean &
              soil: salinity <= 2.3 &
              water: salinity > 1 & water: salinity <= 1.5)
                      DEDUCE
             (plant: predicted yield factor = 0.75)
         (plant: name = bean &
             water: salinity > 1.5)
                     DEDUCE
             (plant: predicted yield factor = 0.50)
         (plant: name = bean &
               soil: salinity > 2.3)
                     DEDUCE
             (plant: predicted yield factor = 0.50)
domain-model: schedule model;
            parts: tuple(TABULATE);
         axioms: (plant: name = bean &
              soil: type =
              plantation: type <> tunnels)
                     TABULATE
        (micro element schedule: iron chelate quantity = (iron chelate: quantity)/2 &
              micro element schedule: zinc chelate quantity =
                                              (zinc chelate: quantity)/2 &
              micro element schedule: manganese chelate quantity =
                                              (manganese chelate: quantity)/2 &
         calcium nitrate schedule: quantity =
                                          (calcium nitrate: quantity) /2 &
              micro element schedule: application date = plantation: date + 30 &
              micro element schedule: advice = "
                                                                             ")
         (plant: name = bean &
              soil: type <>
                                 &
              plantation: type <> tunnels)
                      TABULATE
        (micro element schedule: iron chelate quantity = (iron chelate: quantity)/2 &
              micro element schedule: zinc chelate quantity =
                                              (zinc chelate: quantity)/2 &
```

```
micro element schedule: manganese chelate quantity =
                                      (manganese chelate: quantity)/2 &
 calcium nitrate schedule: quantity = 0 \&
      micro element schedule: application date = plantation: date + 30 &
      micro element schedule: advice = "
                                                                      ")
 (plant: name = bean &
      soil: type =
                       &
      plantation: type = tunnels)
              TABULATE
(micro element schedule: iron chelate quantity = (iron chelate: quantity)/2 *
                                                   (tunnel: area/4200)&
      micro element schedule: zinc chelate quantity =
                       (zinc chelate: quantity)/2 * (tunnel: area/4200)&
      micro element schedule: manganese chelate quantity =
                     (manganese chelate: quantity)/2 * (tunnel: area/4200) &
 calcium nitrate schedule: quantity =
                         (calcium nitrate: quantity) /2 * (tunnel: area/4200)&
      micro element schedule: application date = plantation: date + 30 &
      micro element schedule: advice = "
                                                                      ("
 (plant: name = bean &
      soil: type <>
                         &
      plantation: type = tunnels)
              TABULATE
(micro element schedule: iron chelate quantity = (iron chelate: quantity)/2 *
                                                   (tunnel: area/4200) &
      micro element schedule: zinc chelate quantity =
                       (zinc chelate: quantity)/2 * (tunnel: area/4200)&
      micro element schedule: manganese chelate quantity =
                     (manganese chelate: quantity)/2 * (tunnel: area/4200)&
 calcium nitrate schedule: quantity = 0 \&
      micro element schedule: application date = plantation: date + 30 &
      micro element schedule: advice = "
                                                                      ")
      (plant: name = bean &
       plantation: type = open field &
      macro element: nitrogen fertilizer name: = urea)
              TABULATE
( urea schedule: quantity during land preparation = (urea: quantity) * 0.25 &
 urea schedule: quantity during first month = (urea: quantity) * 0.50 &
 urea schedule: quantity during second month = (urea: quantity) * 0.25 &
 urea schedule: advice = '
                                                                    '&
 urea schedule: advice = '
                                                                     ')
```

```
(plant: name = bean &
     plantation: type = open field &
     macro element: nitrogen fertilizer name = ammonium nitrate)
            TABULATE
(ammonium nitrate schedule: quantity during land preparation =
                                (ammonium nitrate: quantity) * 0.25 &
ammonium nitrate schedule: quantity during first month =
                                (ammonium nitrate: quantity) * 0.50 &
ammonium nitrate schedule: quantity during second month =
                                (ammonium nitrate: quantity) * 0.25 &
ammonium nitrate schedule: advice = '
        1&
ammonium nitrate schedule: advice = '
        )
     (plant: name = bean &
     plantation: type = open field &
     macro element: nitrogen fertilizer name = ammonium sulfate)
            TABULATE
(ammonium sulfate schedule: quantity during land preparation =
                                (ammonium sulfate: quantity) * 0.25 &
ammonium sulfate schedule: quantity during first month =
                                (ammonium sulfate: quantity) * 0.50 &
ammonium sulfate schedule: quantity during second month =
                                (ammonium sulfate: quantity) * 0.25 &
ammonium sulfate schedule: advice = '
        '&
ammonium sulfate schedule: advice = '
        )
     (plant: name = bean &
     plantation: type = open field)
            TABULATE
(super phosphate schedule: quantity during land preparation =
                                   (super phosphate: quantity)*0.75 &
super phosphate schedule: quantity during first month =
                                   (super phosphate: quantity)*0.25 &
super phosphate schedule: advice = '
        ')
```

```
(plant: name = bean)
      plantation: type = open field)
             TABULATE
 (potassium sulphate schedule: quantity during first month =
                                 (potassium sulphate: quantity) * 0.50 &
 potassium sulphate schedule: quantity during second month =
                                  (potassium sulphate: quantity) * 0.50 &
 potassium sulphate schedule: advice = '
          1&
 potassium sulphate schedule: advice = '
          )
      (plant: name = bean &
      soil: type =
      plantation: type <> tunnels)
             TABULATE
 (magnesium sulphate schedule: quantity =
                                   (magnesium sulphate: quantity) * 0.5&
magnesium sulphate schedule: advice =
                                                    )
      (plant: name = bean &
      soil: type =
      plantation: type = tunnels)
             TABULATE
 (magnesium sulphate schedule: quantity =
      (magnesium sulphate: quantity) * 0.5 * (tunnel: area/4200)&
magnesium sulphate schedule: advice =
                                                    )
      (plant: name = bean &
      plantation: type = low tunnels &
      macro element: nitrogen fertilizer name: = urea)
             TABULATE
( urea schedule: quantity during land preparation = (urea: quantity) * 0.25 &
 urea schedule: quantity during first week = 0 &
 urea schedule: quantity during third week = (urea: quantity) * 0.07 &
 urea schedule: quantity during forth week = (urea: quantity) * 0.07 &
 urea schedule: quantity during fifth week = (urea: quantity) * 0. 07 &
 urea schedule: quantity during sixth week = (urea: quantity) * 0.07 &
```

```
urea schedule: quantity during seventh week = (urea: quantity) * 0. 07 &
        urea schedule: quantity during eighth week = (urea: quantity) * 0.07 &
        urea schedule: quantity during ninth week = (urea: quantity) * 0.07 &
        urea schedule: quantity during tenth week = (urea: quantity) * 0.07 &
        urea schedule: quantity during eleventh week = (urea: quantity) * 0.04 &
urea schedule: advice ='
                                                                        ')
             (plant: name = bean &
              plantation: type = low tunnels &
             macro element: nitrogen fertilizer name = ammonium nitrate)
                    TABULATE
(ammonium nitrate schedule: quantity during land preparation = (ammonium nitrate:
quantity) * 0.25 &
        ammonium nitrate schedule: quantity during first week = 0 \&
        ammonium nitrate schedule: quantity during third week = (ammonium
           nitrate: quantity) * 0.07 &
        ammonium nitrate schedule: quantity during forth week = (ammonium
           nitrate: quantity) * 0. 07 &
        ammonium nitrate schedule: quantity during fifth week = (ammonium
           nitrate: quantity) * 0. 07 &
        ammonium nitrate schedule: quantity during sixth week = (ammonium
           nitrate: quantity) * 0.07 &
        ammonium nitrate schedule: quantity during seventh week = (ammonium
           nitrate: quantity) * 0. 07 &
        ammonium nitrate schedule: quantity during eighth week = (ammonium
           nitrate: quantity) * 0.07 &
        ammonium nitrate schedule: quantity during ninth week = (ammonium
           nitrate: quantity) * 0.07 &
        ammonium nitrate schedule: quantity during tenth week = (ammonium
           nitrate: quantity) * 0.07 &
        ammonium nitrate schedule: quantity during eleventh week = (ammonium
          nitrate: quantity) * 0.04 &
ammonium nitrate schedule: advice ='
             (plant: name = bean &
              plantation: type = low tunnels &
             macro element: nitrogen fertilizer name = ammonium sulphate )
                    TABULATE
(ammonium sulphate schedule: quantity during land preparation = (ammonium
sulphate: quantity) * 0.25 &
        ammonium sulphate schedule: quantity during first week = 0 \&
        ammonium sulphate schedule: quantity during third week = (ammonium
           sulphate: quantity) * 0. 07 &
        ammonium sulphate schedule: quantity during forth week = (ammonium
           sulphate: quantity) * 0.07 &
```

```
ammonium sulphate schedule: quantity during fifth week = (ammonium
           sulphate: quantity) * 0. 07 &
         ammonium sulphate schedule: quantity during sixth week = (ammonium
           sulphate: quantity) * 0. 07 &
         ammonium sulphate schedule: quantity during seventh week = (ammonium
           sulphate: quantity) * 0.07 &
         ammonium sulphate schedule: quantity during eighth week = (ammonium
           sulphate: quantity) * 0.07 &
         ammonium sulphate schedule: quantity during ninth week = (ammonium
           sulphate: quantity) * 0.07 &
         ammonium sulphate schedule: quantity during tenth week = (ammonium
           sulphate: quantity) * 0.07 &
         ammonium sulphate schedule: quantity during eleventh week = (ammonium
           sulphate: quantity) * 0.04 &
ammonium sulphate schedule: advice ='
              (plant: name = bean &
              plantation: type = low tunnel )
                     TABULATE
         (super phosphate schedule: quantity during land preparation =
                                            (super phosphate: quantity)*0.75 &
         phosphoric acid schedule: quantity during third week = (phosphoric acid:
           quantity) * 0.02 &
super phosphate schedule: advice =
              (plant: name = bean)
              plantation: type = low tunnel)
                     TABULATE
         (potassium sulphate schedule: quantity during third week =
                                        (potassium sulphate: quantity) * 0.06 &
         potassium sulphate schedule: quantity during forth week =
                                        (potassium sulphate: quantity) * 0.06 &
         potassium sulphate schedule: quantity during fifth week =
                                        (potassium sulphate: quantity) * 0.06 &
         potassium sulphate schedule: quantity during sixth week =
                                        (potassium sulphate: quantity) * 0.06 &
         potassium sulphate schedule: quantity during seventh week =
                                        (potassium sulphate: quantity) * 0.06 &
         potassium sulphate schedule: quantity during eighth week =
                                        (potassium sulphate: quantity) * 0.10 &
         potassium sulphate schedule: quantity during ninth week =
                                        (potassium sulphate: quantity) * 0. 10 &
         potassium sulphate schedule: quantity during tenth week =
                                        (potassium sulphate: quantity) * 0. 10 &
         potassium sulphate schedule: quantity during eleventh week =
```

```
potassium sulphate schedule: advice =
                             ')
              (plant: name = bean &
               plantation: type = tunnels &
              macro element: nitrogen fertilizer name: = urea)
                      TABULATE
        ( urea schedule: quantity during land preparation = (urea: quantity) * 0.125 *
                                                            (tunnel: area/4200) &
         urea schedule: quantity during first week = 0 \&
         urea schedule: quantity during second week = (urea: quantity) * 0.15 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during third week = (urea: quantity) * 0.09 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during forth week = (urea: quantity) * 0.09 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during fifth week = (urea: quantity) * 0.06 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during sixth week = (urea: quantity) * 0.06 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during seventh week = (urea: quantity) * 0.06 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during eighth week = (urea: quantity) * 0.044 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during ninth week = (urea: quantity) * 0.044 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during tenth week = (urea: quantity) * 0.044 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during eleventh week = (urea: quantity) * 0.044 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during twelfth week = (urea: quantity) * 0.044 *
                                                           (tunnel: area/4200) &
         urea schedule: quantity during thirteenth week = (urea: quantity) * 0.017 *
                                                           (tunnel: area/4200) &
       urea schedule: advice ='
                                                                                    ')
              (plant: name = bean &
               plantation: type = tunnels &
              macro element: nitrogen fertilizer name = ammonium nitrate)
                      TABULATE
(ammonium nitrate schedule: quantity during land preparation =
                      (ammonium nitrate: quantity) * 0.125 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during first week = 0 &
         ammonium nitrate schedule: quantity during second week =
```

(potassium sulphate: quantity) * 0.08 &

```
(ammonium nitrate: quantity) * 0.15 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during third week =
                     (ammonium nitrate: quantity) * 0.09 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during forth week =
                     (ammonium nitrate: quantity) * 0.09 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during fifth week =
                     (ammonium nitrate: quantity) * 0.06 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during sixth week =
                     (ammonium nitrate: quantity) * 0.06 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during seventh week =
                     (ammonium nitrate: quantity) * 0.06 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during eighth week =
                     (ammonium nitrate: quantity) * 0.044 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during ninth week =
                     (ammonium nitrate: quantity) * 0.044 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during tenth week =
                     (ammonium nitrate: quantity) * 0.044 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during eleventh week =
                     (ammonium nitrate: quantity) * 0.044 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during twelfth week =
                     (ammonium nitrate: quantity) * 0.044 * (tunnel: area/4200) &
         ammonium nitrate schedule: quantity during thirteenth week =
                     (ammonium nitrate: quantity) * 0.017 * (tunnel: area/4200) &
ammonium nitrate schedule: advice ='
      ')
              (plant: name = bean &
              plantation: type = tunnels &
              macro element: nitrogen fertilizer name = ammonium sulphate )
                     TABULATE
(ammonium sulphate schedule: quantity during land preparation =
                     (ammonium sulphate: quantity) * 0.125 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during first week = 0 &
         ammonium sulphate schedule: quantity during second week =
                     (ammonium sulphate: quantity) * 0.15 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during third week =
                     (ammonium sulphate: quantity) * 0.09 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during forth week =
                     (ammonium sulphate: quantity) * 0.09 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during fifth week =
                     (ammonium sulphate: quantity) * 0.06 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during sixth week =
                     (ammonium sulphate: quantity) * 0.06 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during seventh week =
                     (ammonium sulphate: quantity) * 0.06 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during eighth week =
                     (ammonium sulphate: quantity) * 0.044 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during ninth week =
                     (ammonium sulphate: quantity) * 0.044 * (tunnel: area/4200) &
```

BEANEX 11 TR/CLAES/235/2002.3

```
ammonium sulphate schedule: quantity during tenth week =
                     (ammonium sulphate: quantity) * 0.044 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during eleventh week =
                     (ammonium sulphate: quantity) * 0.044 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during twelfth week =
                     (ammonium sulphate: quantity) * 0.044 * (tunnel: area/4200) &
         ammonium sulphate schedule: quantity during thirteenth week =
                     (ammonium sulphate: quantity) * 0.017 * (tunnel: area/4200) &
ammonium sulphate schedule: advice ='
       ')
              (plant: name = bean &
               plantation: type = tunnels)
                     TABULATE
         (super phosphate schedule: quantity during land preparation =
                     (super phosphate: quantity)*0.35 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during third week =
                     (phosphoric acid: quantity) * 0.075 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during forth week =
                     (phosphoric acid: quantity) * 0.075 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during fifth week =
                      (phosphoric acid: quantity) * 0.05 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during sixth week =
                     (phosphoric acid: quantity) * 0.05 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during seventh week =
                      (phosphoric acid: quantity) * 0.05 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during eighth week =
                     (phosphoric acid: quantity) * 0.04 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during ninth week =
                      (phosphoric acid: quantity) * 0.04 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during tenth week =
                      (phosphoric acid: quantity) * 0.04 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during eleventh week =
                      (phosphoric acid: quantity) * 0.04 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during twelfth week =
                     (phosphoric acid: quantity) * 0.04 * (tunnel: area/4200) &
         phosphoric acid schedule: quantity during thirteenth week =
                      (phosphoric acid: quantity) * 0.019 * (tunnel: area/4200) &
phosphoric acid schedule: advice ='
```

BEANEX

')

```
(plant: name = bean &
     plantation: type = tunnels)
            TABULATE
(potassium sulphate schedule: quantity during third week =
               (potassium sulphate: quantity) * 0.10 * (tunnel: area/4200) &
potassium sulphate schedule: quantity during forth week =
               (potassium sulphate: quantity) * 0.10 * (tunnel: area/4200) &
potassium sulphate schedule: quantity during fifth week =
               (potassium sulphate: quantity) * 0.07 * (tunnel: area/4200) &
potassium sulphate schedule: quantity during sixth week =
               (potassium sulphate: quantity) * 0.07 * (tunnel: area/4200) &
potassium sulphate schedule: quantity during seventh week =
               (potassium sulphate: quantity) * 0.07 * (tunnel: area/4200) &
potassium sulphate schedule: quantity during eighth week =
               (potassium sulphate: quantity) * 0.06 * (tunnel: area/4200) &
potassium sulphate schedule: quantity during ninth week =
               (potassium sulphate: quantity) * 0.06 * (tunnel: area/4200) &
potassium sulphate schedule: quantity during tenth week =
               (potassium sulphate: quantity) * 0.06 * (tunnel: area/4200) &
potassium sulphate schedule: quantity during eleventh week =
               (potassium sulphate: quantity) * 0.06 * (tunnel: area/4200) &
potassium sulphate schedule: quantity during twelfth week =
               (potassium sulphate: quantity) * 0.06 * (tunnel: area/4200) &
potassium sulphate schedule: quantity during thirteenth week =
              (potassium sulphate: quantity) * 0.035 * (tunnel: area/4200) &
potassium sulphate schedule: advice =
                    ')
```

• The following rules in the calculation model in the technical report "Generic fertilization applied on tomato" number TR/CLAES/140/2000.5 page 22 should be updated to the following (the **bolded** premises must be added while the *italic* must be deleted):

```
(plant: name = X & X: element = N & macro element: nitrogen fertilizer name = ammonium nitrate & X: N content = XNC & environment: N quantity = ENQ & calcium nitrate: quantity = CaNQ & calcium nitrate: ratio of N = CaNRN & ammonium nitrate: ratio of N = ANRN & ammonium nitrate: usefulness coefficient = ANUC&

(plantation: irrigation type = flooding OR soil: calcium carbonate < 10))

CALCULATE FERTILIZER QUANTITY
```

```
(ammonium nitrate: quantity =((XNC-ENQ) - CaNQ *CaNRN)*(1/ANRN)* ANUC)
            (plant: name = X &
              X: element = P \&
             (Plantation: type = tunnels OR
             Plantation: type = low tunnels) &
             (Plantation: type <> tunnels &
             Plantation: irrigation type <> flooding)) &
            dripping irrigation macro element: phosphor fertilizer name =
                                                       phosphoric acid 75%&
            X: P content = XPC &
            environment: P quantity = EPQ &
            phosphoric acid 75%: ratio of P = PARP \&
            phosphoric acid 75%: usefulness coefficient = PAUC)
        CALCULATE FERTILIZER QUANTITY
(phosphoric acid 75%: quantity = ((XPC - EPQ) * (1/PARP) * PAUC)
            (plant: name = X &
             X: element = N \&
            macro element: nitrogen fertilizer name = urea &
            X: N content = XNC &
            environment: N quantity = ENQ &
            calcium nitrate: quantity = CaNQ &
            calcium nitrate: ratio of N = CaNRN &
            urea: ratio of N = URN &
            urea: usefulness coefficient = UUC &
             (plantation: irrigation type = flooding OR
             soil: calcium carbonate < 10))
        CALCULATE FERTILIZER QUANTITY
(urea: quantity = ((XNC - ENQ) - CaNQ * CaNRN) * (1/URN) * UUC)
```

• The following rules must be deleted from the calculation model in the technical report Generic fertilization applied on tomato number TR/CLAES/140□/2000.5 page 22

```
calcium nitrate: quantity = CaNQ &
            calcium nitrate: ratio of N = CaNRN \&
            urea: ratio\ of\ N\ =\ URN\ \&
            urea: usefulness coefficient = UUC &
             (plantation: irrigation type <> flooding &
             soil: calcium carbonate >= 10))
        CALCULATE FERTILIZER OUANTITY
(urea: quantity = ((XNC - ENQ) - CaNQ * CaNRN) * (1/URN) * UUC) * 0.9
             (plant: name = X &
             X: element = N &
            macro element: nitrogen fertilizer name = urea &
            urea: quantity = UQ \&
            urea: ratio of N = URN \&
            nitric acid: ratio of N = NARN \&
             (plantation: irrigation type <> flooding &
             soil: calcium carbonate >= 10)
        CALCULATE FERTILIZER QUANTITY
(nitric acid: quantity = ((UQ * URN) * 1/NARN) * 0.1)
             (plant: name = X &
             X: element = N &
            macro element: nitrogen fertilizer name = ammonium nitrate &
            X: N content = XNC &
            environment: N quantity = ENQ &
            calcium nitrate: quantity = CaNQ &
            calcium nitrate: ratio of N = CaNRN \&
            ammonium nitrate: ratio of N = ANRN \&
            ammonium nitrate: usefulness coefficient = ANUC&
             (plantation: irrigation type <> flooding &
             soil: calcium carbonate >= 10))
        CALCULATE FERTILIZER QUANTITY
(ammonium nitrate: quantity =((XNC-ENQ) - CaNQ *CaNRN)*
                                                   (1/ANRN)*ANUC)*0.9
             (plant: name = X &
             X: element = N \&
            macro element: nitrogen fertilizer name = ammonium nitrate &
            ammonium nitrate: quantity = ANQ &
            ammonium nitrate: ratio of N = ANRN \&
            nitric acid: ratio of N = NARN \&
             (plantation: irrigation type <> flooding &
             soil: calcium carbonate >= 10))
        CALCULATE FERTILIZER QUANTITY
(nitric acid: quantity = ((ANQ * ANRN) * 1/NARN) * 0.1)
```

```
(plant: name = X &
X: element = P &
X: P content = XPC &
environment: P quantity = EPQ &
triple super phosphate: ratio of P = TSPRP &
triple super phosphate: usefulness coefficient = TSPUC)
CALCULATE FERTILIZER QUANTITY
(triple super phosphate: quantity = (XPC - EPQ) * (1/TSPRP) * TSPUC)

(plant: name = X &
X: element = Cu &
X: Cu ratio = CuR &
plantation: optimum -yield = Y &
plant: predicted yield factor = PY)
CALCULATE ELEMENT IN PLANT
(X: Cu content = CuR*1000 * Y * PY *1.2)
```

4. Interface

4.1 Input Data

The items 'Irrigation type' & 'Phosphorus fertilizer' in the figure 2 in the technical report 'Generic fertilization applied on tomato' number 'TR/CLAES/140/2000 should be deleted.

Also, the items 'Copper quantity in ppm', 'Percentage calcium carbonate' & 'Total water quantity in cubic meter/feddan' in the figure 3 should be deleted.

4.2 Output Interface

Figure 4 should update as follows:

Figure 5 should be updated as follows (in the case of open field):

(/)		
Figure 6 should be updated as but in the case of tunnels the u		
(/)		
•	•	
•	•	

5. Test Cases

Case 1

Inputs

نوع الزراعة: ملوحة التربة: 1 ملوحة مياه الري: 0.4 تاريخ الزراعة: 1/9/1001 السماد العضوي: حجم السماد العضوي: 4 / تحليل التربة: :

Outputs

(/)	
225	
450	
225	
,	;

(/)	
345	
115	
0	
•	

Case 2

Inputs

```
نوع الزراعة:
مساحة الصوبة: 420
مساحة التربة: 1.5
ملوحة مياه الري: 0.8
تاريخ الزراعة: 2001/11/1 السماد العضوي:
حجم السماد العضوي: 4 / تحليل التربة:
:
تحليل مياه الري:
تحليل مياه الري:
```

Outputs

(/)	
19	
0	
22.8	
13.7	
13.7	
9.1	
9.1	
9.1	
6.7	
6.7	
6.7	
6.7	
6.7	
2.6	

(/)	
40	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	

(/)	
0	
0	
0	
6.3	
6.3	
4.2	
4.2	
4.2	
3.4	
3.4	
3.4	
3.4	
3.4	
1.6	

(/)	
0	
0	
0	
15	
15	
10.5	
10.5	
10.5	
9	
9	
9	
9	
9	
5	