Strawberry Plant Care Design

1. Introduction

The purpose of this subsystem is to recommend the user about the agricultural operations for the strawberry crop. The system gives either the next agricultural operation or schedule of the agricultural operations for the whole season according to the user requirement. This document consists of 3 parts, domain knowledge, inference knowledge, and task knowledge. CommonKADS methodology is used to represent these knowledge. Sections 2, 3, and 4 present domain, inference, and task knowledge respectively. Section 5 discuss database while section 6 presents the user interface. Section 7 presents the test cases.

2. Domain Knowledge

2.1 Domain Ontology

```
concept user request;
  properties:

  value: {
      source of value: user;
      cardinality: single;

concept plant;
  properties:

  status: {
      source of value: user;
      cardinality: multiple;

      possible status: {
      source of value: derived(PREDICT);
    }
}
```

```
cardinality: multiple;
         age: numeric;
             source of value: derived;
             cardinality: single;
concept plantation;
  properties:
    area: numeric
                                          % in feddan
         source of value: database;
         cardinality: single;
    date:
             date;
         source of value: user:
         cardinality: single;
concept operation;
  properties:
    method type:
                       {mechanical, manual};
         source of value: derived;
         cardinality: single;
    tool name: universal;
         source of value: derived;
         cardinality: single;
    tool hiring rate: numeric;
         source of value: database;
         cardinality: single;
    total time:
                  numeric;
                                                           % hour per feddan
         source of value: derived;
         cardinality: single;
    labor age:
                  {men, boys};
         source of value: derived;
         cardinality: single;
    number of boys per feddan:
                                     numeric;
         source of value: derived;
         cardinality: single;
    number of men per feddan:
                                     numeric;
         source of value: derived;
         cardinality: single;
              {suggested, not suggested, cancelled};
         source of value: derived (SUGGEST);
         cardinality: single;
```

```
occurrence: {
                                                 };
         source of value: user;
         cardinality: single;
         default value:
    importance: {
                                 };
         source of value: derived;
         cardinality: single;
    method: universal;
         source of value: derived(ASSIGN);
         cardinality: single;
    operation number: numeric;
         source of value: derived(APPLY);
         cardinality: single;
    cost: numeric;
         source of value: derived;
         cardinality: single;
         default: 0
    actual cost: numeric;
         source of value: user;
         cardinality: single;
         default: 0
    name: universal;
         source of value: derived(APPLY);
         cardinality: multiple;
concept operation cost;
  properties:
    value:
                                 };
         source of value: user;
         cardinality: single;
concept seedling;
  properties:
    sub-type-of: plant;
    type: {
                        };
         source of value: database;
         cardinality: single;
concept session date;
```

```
properties:
    current month: numeric;
         source of value: system;
         cardinality: single;
                                             /* system date */
    value: date;
         source of value: system;
         cardinality: single;
concept Irrigation;
  properties:
                                  };
    type: {
         source of value: database;
         cardinality: single;
concept Planting;
  properties:
                                            };
    type:{
         source of value: database;
         cardinality: single;
concept event;
  properties:
    occurrence: {
                                   };
         source of value: user;
         cardinality: single;
         default value:
    value:
                                           };
         source of value: user;
         cardinality: multiple;
concept soil;
  properties:
    type:
                                  };
         source of value: database;
         cardinality: single;
concept previous crop;
 properties:
     fertilizer: {
                                                                            }
         source of value: database;
         cardinality: single;
concept
```

```
sub-type-of: operation;
    importance:
    tool name:
    method type: mechanical
    total time: 4
concept
    sub-type-of: operation;
    importance:
    tool name:
    method type: mechanical
    total time: 4
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: men
    number of men per feddan: 4
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: men
    number of men per feddan: 1
concept
    sub-type-of: operation;
    importance:
    tool name:
    method type: mechanical
    total time: 4
concept
    sub-type-of: operation;
    importance:
    tool name: {
                                   }
        source of value: database;
        cardinality: single;
    method type: mechanical;
```

concept sub-type-of: operation; importance: tool name: method type: mechanical total time: 4 concept sub-type-of: operation; importance: method type: manual labor age: men number of men per feddan: 3 concept sub-type-of: operation; importance: tool name: method type: mechanical total time: 2 concept sub-type-of: operation; importance: method type: manual labor age: men number of men per feddan: 4 concept sub-type-of: operation; importance: method type: manual labor age: men number of men per feddan: 3 concept sub-type-of: operation; importance:

total time: 4

```
tool name:
    method type: mechanical
    total time: 4
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: men
    number of men per feddan: 6
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: men
    number of men per feddan: 6
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: men
    number of men per feddan: 2
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: men
    number of men per feddan: 4
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: men
    number of men per feddan: 4
concept
    sub-type-of: operation;
    importance:
    method type: manual
```

```
labor age: boys
    number of boys per feddan: 6
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: boys
    number of boys per feddan: 6
concept
    sub-type-of: operation;
    importance:
    application date: date
        source of value: derived(SUGGEST);
        cardinality: single;
    method type: manual
    labor age: men
    number of men per feddan: 4
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: boys
    number of boys per feddan: 6
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: men
    number of men per feddan: 6
concept
    sub-type-of: operation;
    importance:
    method type: manual
    labor age: boys
    number of boys per feddan: 15
concept
    sub-type-of: event;
```

```
concept
    sub-type-of: event;
concept
    sub-type-of: event;
relation: SUGGEST;
 argument-1: plantation, event, operation, plant, pods, soil;
  argument-role: environment;
 argument-2: operation;
  argument-role: status of next operation;
relation: ASSIGN;
 argument-1: plantation, operation, soil;
  argument-role: observations;
 argument-2: operation;
  argument-role: operation method;
relation: PREDICT;
 argument-1: plant;
  argument-role: plant age;
 argument-2: plant;
  argument-role: possible plant status;
relation: APPLY;
 argument-1: plantation, plant, irrigation, seedling, soil;
  argument-role: environment;
 argument-2: operation;
  argument-role: agricultural operations;
2.2 Domain Models
domain-model: suggestion model;
  parts: tuple(suggest);
         axioms:
             seedling : type =
                                   &
              (session date : current month = 9 OR
              session date : current month = 10)
                         : occurrence =
                     SUGGEST
              (
                           : status = suggested)
             seedling : type =
                                  &
```

```
(session date : current month = 8 OR
session date : current month = 9)
           : occurrence =
       SUGGEST
(
             : status = suggested )
                               &
            occurrence =
      : occurrence =
       SUGGEST
       : status = suggested )
       : occurrence =
                                     &
          : occurrence =
(soil: type =
               OR
previous crop : fertilizer =
                                                ))
       SUGGEST
           : status = suggested)
(
          : occurrence =
                                     &
( (soil: type =
                   OR
                                       ) &
                           : type =
previous crop : fertilizer =
                                                 )
       SUGGEST
(
           : status = cancelled)
                                     &
          : occurrence =
      : occurrence =
                          &
                               OR
           : occurrence =
         : occurrence =
       SUGGEST
(
            : status = suggested)
                                     &
          : occurrence =
          : status = cancelled &
      : occurrence =
       SUGGEST
(
            : status = suggested)
                                 &
      : occurrence =
```

```
: occurrence =
       SUGGEST
(
       : status = suggested)
                              &
   : occurrence =
Irrigation: type =
                        &
      : occurrence =
       SUGGEST
     : status = suggested)
   : occurrence =
                              &
Irrigation: type =
                         &
       : occurrence =
       SUGGEST
   : status = cancelled)
    : occurrence =
                              &
                        OR
    : occurrence =
                        OR
   : occurrence =
    : status = cancelled)
       SUGGEST
    : status = suggested)
         : occurrence =
                                   &
                        &
Irrigation: type =
    : occurrence =
       SUGGEST
(
         : status = suggested)
                                   &
         : occurrence =
Irrigation: type =
                        &
         : occurrence =
       SUGGEST
(
          : status = suggested)
                                   &
         : occurrence =
Irrigation: type =
                         &
```

```
: occurrence =
       SUGGEST
(
          : status = suggested)
                                   &
        : occurrence =
          : occurrence = &
Irrigation: type =
       SUGGEST
(
          : status = suggested)
               : occurrence =
                                          &
         : occurrence = &
Planting: type =
       SUGGEST
(
                : status = suggested )
                                     &
          : occurrence =
Irrigation: type =
                        &
          : occurrence =
       SUGGEST
(
            : status = suggested)
          : occurrence =
                                     &
Irrigation: type =
                         &
        : occurrence =
       SUGGEST
(
            : status = suggested )
                                     &
          : occurrence =
                                   &
               : occurrence =
seedling: type =
                    &
(session date : current month = 9 \text{ OR}
 session date : current month = 10)
       SUGGEST
            : status = suggested)
(
                                     &
          : occurrence =
Irrigation: type =
                        &
```

```
: occurrence =
                                 &
(session date : current month = 8 \text{ OR}
 session date : current month = 9)
        SUGGEST
(
             : status = suggested)
                                       &
           : occurrence =
Irrigation: type =
                           &
seedling : type =
                     &
                               &
         : occurrence =
(session date : current month = 8 OR
 session date : current month = 9)
        SUGGEST
 (
             : status = suggested)
                                    &
        : occurrence =
           : occurrence =
                                 &
                           &
Irrigation: type =
Planting: type =
                                &
seedling: type =
        SUGGEST
(
         : status = suggested)
seedling : type =
                      &
                              &
        : occurrence =
Plant: age < 25 &
Plant: age \geq 15 &
Plant: status =
        SUGGEST
(
              : status = suggested)
seedling : type =
                     &
           : occurrence =
                                 &
Plant: age < 25 &
Plant: age \geq 15 &
Plant: status =
        SUGGEST
              : status = suggested)
(
```

```
seedling : type =
                      &
                              &
        : occurrence =
Plant: age < 60 &
Plant: age \geq= 15 &
Plant: status =
                          &
        SUGGEST
(
      : status = suggested)
seedling: type =
                     &
                                 &
           : occurrence =
Plant: age < 180 &
Plant: age \geq 15 \&
Plant: status =
                          &
        SUGGEST
      : status = suggested)
Irrigation: type =
                           &
Planting: type =
                                &
seedling : type =
                      &
        : occurrence =
                              &
                                     &
         : occurrence =
    : occurrence =
                         &
         : occurrence =
        SUGGEST
(
               : status = suggested )
                           &
Irrigation: type =
                                &
Planting: type =
seedling : type =
                      &
        : occurrence =
                              &
                                     &
         : occurrence =
                         OR
    : occurrence =
         : occurrence =
                            )
         SUGGEST
 (
               : status = cancelled)
```

```
seedling : type =
                     &
           : occurrence =
plant: age > 10 \&
plant: age < 90 &
plant: status =
        SUGGEST
(
                     : status = suggested)
seedling : type =
                     &
           : occurrence =
plant: age \geq 30 \&
plant: age < 90 &
plant: status =
        SUGGEST
(
           : status = suggested)
                                 &
     : occurrence =
seedling : type =
                      &
Plant: age > 60 \&
plant : status =
        SUGGEST
      : status = suggested)
                                 &
     : occurrence =
seedling: type =
                     &
Plant: age >180 &
plant : status =
        SUGGEST
      : status = suggested)
                                              &
                  : occurrence =
Plant: age \geq 30 \&
Plant: age <= 60
        SUGGEST
                   : status = suggested &
(
                   : application date = session date: value)
                  : occurrence =
                                         &
Plant: age <= 60 &
```

```
: application date \geq 10
                     SUGGEST
              (
                                : status = suggested &
                                : application date = session date: value)
                                                  &
                      : occurrence =
                                           &
                     : occurrence =
             session date : current month = 4 &
                       : occurrence =
                     SUGGEST
                       : status = suggested)
              (
             seedling: type =
                                  &
             Plant: age > 60 \&
             Plant: age < 250 &
             Plant: status =
                      SUGGEST
              (
                        : status = suggested)
             seedling: type =
                                 &
             Plant: age >180 &
             Plant: age < 340 &
             Plant: status =
                      SUGGEST
              (
                       : status = suggested)
domain-model: application model;
    part: tuple(apply);
        axioms:
              seedling: type =
                                    OR
              seedling: type =
                      APPLY
              Operation: name =
                                              &
                           : operation number = 1
              seedling: type =
                                    OR
              seedling: type =
```

Session date: value -

```
APPLY
Operation: name =
                          &
       : operation number = 2
(seedling : type =
                       OR
seedling: type =
                    )&
(soil: type =
 previous crop : fertilizer =
                                                 )
        APPLY
Operation: name =
                             &
          : operation number = 3
seedling : type =
                      OR
seedling : type =
        APPLY
Operation: name =
                              &
           : operation number = 4
seedling : type =
                      OR
seedling: type =
        APPLY
Operation: name =
                          &
       : operation number = 5
Irrigation: type =
                         &
seedling : type =
                     &
       APPLY
Operation: name =
                       &
    : operation number = 6
seedling : type =
                      OR
seedling : type =
        APPLY
Operation: name =
                        &
     : operation number = 7
```

Irrigation: type =

&

seedling : type =

SUGGEST

Operation: name = &

: operation number = 8

seedling : type = OR

seedling: type =

APPLY

Operation: name = &

: operation number = 9

Irrigation: type =

APPLY

Operation: name = &

: operation number = 10

Planting: type =

APPLY

Operation: name = &

: operation number = 11

Irrigation: type = OR

Irrigation: type = &

APPLY

Operation: name = &

: operation number = 12

seedling : type = OR

seedling : type =

APPLY

Operation: name = &

: operation number = 13

Irrigation: type = &

Planting: type = &

seedling: type =

APPLY

```
Operation: name =
                          &
       : operation number = 14
seedling: type =
      APPLY
Operation: name =
                                &
             : operation number = 15
seedling : type =
                     OR
seedling: type =
      APPLY
Operation: name =
                               &
            : operation number = 17
seedling : type =
                     OR
seedling: type =
      APPLY
Operation: name =
                       &
    : operation number = 16
seedling : type =
       APPLY
```

Operation: name =

: operation number = 18

&

seedling : type =
APPLY

Operation: name = &

: operation number = 19

seedling : type = OR

seedling : type = APPLY

Operation: name = &

: operation number = 20

seedling : type = OR

```
seedling : type = APPLY
```

Operation: name = &

: operation number = 21

seedling : type = APPLY

Operation: name = &

: operation number = 22

seedling : type = OR

seedling : type =

APPLY

Operation: name = &

: operation number = 23

domain-model: assignment model;

part: tuple(assign);

axioms:

: status = suggested &

ASSIGN

: method =

: status = suggested &

ASSIGN

: method = 30 - 25

: status = suggested &

ASSIGN

: method = 30 - 25

: status = suggested

ASSIGN

```
: status = suggested &
        ASSIGN
              : method =
    : status = suggested &
        ASSIGN
      : method =
                 &
     : status = suggested &
seedling: type =
        ASSIGN
     : method = "
                            120 -100
     : status = suggested &
Irrigation: type =
                          &
seedling : type =
Planting: type =
                              &
        ASSIGN
     : method = "
                            120 -100
     : status = suggested &
seedling : type =
Planting: type =
                             &
        ASSIGN
     : method = "
                               10 -9
          : status = suggested
        ASSIGN
```

: method =

10

: method = -7

```
: status = suggested &
             Irrigation: type =
                     ASSIGN
                       : method = "
                       : status = suggested &
             Irrigation: type =
                     ASSIGN
                        : method =
                        : status = suggested &
             Irrigation: type =
                     ASSIGN
                        : method = " (
                        : status = suggested &
             Irrigation: type =
                     ASSIGN
                                         2-1
                        : method = "
                    : status = suggested
                     ASSIGN
                     : method =
    / 4
                          25
                            : status = suggested
                     ASSIGN
                   )
                                   ": method =
         (
                        20
                                                               20
                                                                            20
" 20 - 15
                       U
                        : status = suggested &
```

```
seedling : type =
                    ASSIGN
             2-1
                                       ": method =
                                         40 -
                                                  35 )
15
                           (
 20 - 15
                       : status = suggested &
            Planting: type =
                                         &
            seedling: type =
                    ASSIGN
                                                       )
                                      20 -
                                               16
                      : method =
                                    15
                                     30 - 25
                       : status = suggested &
            Planting: type =
                                        &
            seedling: type =
                    ASSIGN
                                                       )
                      : method =
                                     20 -
                                               16
                                     15
25
                                                                  (
                                     30 -
                    : status = suggested
                    ASSIGN
                                          2 - 1.5
                   : method =
            50
                        : status = suggested
                    ASSIGN
                       : method =
                 : status = suggested &
```

Planting: type =
ASSIGN
: method =

II

: status = suggested &

Planting: type =

ASSIGN

: method =

: status = suggested &

ASSIGN

: method =

: status = suggested

&

ASSIGN

: method =

: status = suggested

ASSIGN

: method = "

: status = suggested

ASSIGN

: method =

: status = suggested

ASSIGN

: method = "

: status = suggested

ASSIGN

```
: method =
                                                                        250 "
                         100
                      : status = suggested &
             seedling: type =
                                  &
                      ASSIGN
                        : method =
     16 - 14
                       : status = suggested &
             seedling: type =
                      ASSIGN
                      : method =
      12 - 8
domain-model: prediction model;
    parts: tuple(predict)
    axioms:
             seedling : type =
                                  &
                       : occurrence =
              plant: age > 10 &
              plant: age < 30
                      PREDICT
              (plant: possible status = [
                                                    ])
             seedling: type =
                                  &
                        : occurrence =
             plant: age \geq 30 &
             plant: age < 90 &
                      PREDICT
              (plant: possible status = [
                                                               ])
             seedling : type =
                                   &
             Plant: age > 60 \&
                      PREDICT
              (plant: possible status = [
                                                                                ])
```

```
seedling : type =
                      &
Plant: age >180 &
         PREDICT
                                                                     ])
 (plant: possible status = [
Plant: age < 25 &
Plant: age \geq 15 &
         PREDICT
 (plant: possible status = [
                                                               ])
seedling : type =
                       &
Plant: age < 60 &
Plant: age \geq= 25 &
         PREDICT
 (plant: possible status = [
                                     ])
seedling : type =
                      &
Plant: age < 180 &
Plant: age \geq 25 \&
         PREDICT
 (plant: possible status = [
                                      1)
```

3. Inference Knowledge

3.1 Inference Structure

Inference structure is shown in figure 1.

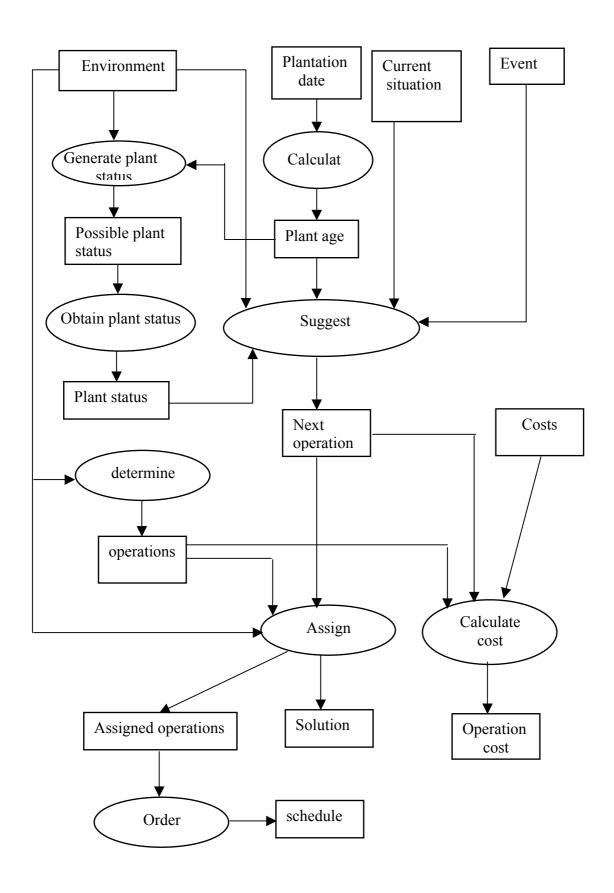


Fig. (1): inference structure

3.2 Inference specification

inference: calculate

operation-type: calculate the plant age.

input-roles: plantation date. **output-roles:** plant age.

static-roles: there is no static roles

spec: plant age is calculated in days by subtracting the plantation date from the

session date.

inference: generate plant status

operation-type: generates the possible plant status.

input-roles: environment, plant age. **output-roles:** possible plant status.

static-roles: PREDICT ∈ prediction–model.

spec: the possible plant status are generated by applying

"PREDICT" relation.

inference: obtain plant status

operation-type: transfer task. **input-roles:** possible plant status.

output-roles: plant status.

static-roles: there is no static roles.

spec: obtain the current plant status from the user.

inference: suggest

operation-type: suggest the next agricultural operation.

input-roles: environment, plant age, event, plant status, current situation.

output-roles: next operation.

static-roles: SUGGEST ∈ suggestion–model.

spec: the next agricultural operation are to be suggested by applying

" SUGGEST " relation.

inference: determine

operation-type: determine the agricultural operations schedule.

input-roles: environment. **output-roles:** operations.

static-roles: APPLY \in application model.

spec: the agricultural operations schedule is determined by applying

" APPLY" relation.

inference: assign

operation-type: assign parameters to the suggested operation.

input-roles: next operation, environment, operations.

output-roles: solution, assigned operations. **static-roles:** ASSIGN ∈ assignment–model.

spec: assign the method to the suggested operation or to the scheduled operations

by applying "ASSIGN" relation.

```
inference: order
   operation-type: order the operations ascending according to
                    operation: operation number .
   input-roles: assigned operations
   output-roles:. schedule
   static-roles: there is no static role
   spec: get operation: name(L), /* L is a list */
          for each element(E) in L get E: operation number,
          sort ascending L according to operation number of each element,
          the sorted list is L',
          DISPLAY(L')
 inference: calculate cost
   operation-type: calculate cost of the suggested operation.
   input-roles: next operation, costs.
   output-roles: operation cost.
   static-roles: there is no static role
   spec:
         IF the user request is (next operation)
         THEN
           Begin
              IF the method of the next operation is mechanical
                       get the tool name (T) of the next operation
              THEN
                       get the tool hiring rate (THR) of (T)
                       get the total time/Feddan (TT) of applying the next operation
                       get the area (A) of the plantation
                       cost = THR*TT*A
              IF the method of the next operation is manual
                       get the number of men/Feddan (M) of applying the next
         operation
                       get the labor wage (W)
                       get the area (A) of the plantation
                       cost = M*W*A
          End
        ELSE
        Begin
              get operation: name (N) % N is a list
              While N \Leftrightarrow \{\}
              Begin
              N = [E \mid Tail]
              IF the method of 'E' is mechanical
                      get the tool name (T) of 'E'
              THEN
                       get the hiring rate (HR) of (T)
                       get the total time/Feddan (TT) of applying 'E'
                       get the area (A) of the plantation
                       Cost = HR*TT*A
                       Insert Cost in E: cost
                       TotalCost = TotalCost + Cost
                       N = Tail
```

```
IF the method of 'E' is manual
THEN
        IF E: labor age = men
        THEN
             get number of men per feddan( (No) of 'E'
                                   (W)
             get man wage (
        IF E: labor age = boys
        THEN
             get number of boys per feddan( (No) of 'E'
             get boy wage (
                                   ) (W)
        get the area (A) of the plantation
        Cost = No*W*A
        Insert Cost in E: cost
        TotalCost = TotalCost + Cost
        N = Tail
End
```

4. Task Knowledge

```
task: strawberry plant care;
  task-definition:
    goal: suggest the next agricultural operation,
          presents a schedule of the agricultural operations;
    input: Environment: {soil: type, seedling: type, previous crop: fertilizer,
                           Irrigation: type, Planting: type };
            plant status: { plant: status};
            plantation date: {plantation: date};
            current situation: {operation: occurrence};
            event:
                              {event: value};
                              {the cost of equipments, labor, ... etc from database}
            cost:
    output: solution: { suggested operation, importance, method},
            operation cost: {cost of the suggested operation},
            schedule: {the schedule of the agricultural operation during the season},
  task-body:
    type: composite
    subtasks: calculate, generate plant status, obtain plant status, suggest, assign,
               determine, order
    additional-roles:
         Possible plant status: {plant: possible status }
         Plant status
                               {plant: status}
         plant age:
                               {plant: age}
         Next operation
                               {operation: status = suggested}
         Operations
                               {operation: name}
   control-structure:
```

IF the user request: value =

```
THEN
BEGIN
      IF
             seedling: type =
                                 &
             (session date: current month < 9 OR
             session date: current month > 10) &
                          : occurrence =
      THEN prompt the user "
      ELSE
      IF
            seedling: type =
                                &
             (session date: current month < 8 OR
             session date: current month > 9) &
                          : occurrence =
     THEN prompt the user "
     ELSE
      OBTAIN (last suggested operation (OP))
                                                            % from database.
                                                            % from user
      OBTAIN (OP: occurrence)
                                                            % in database
      Assert (OP: occurrence)
                                       OR
                                                 ) & OP: importance =
      IF (OP: occurrence =
      THEN
                 BEGIN
                   prompt the user
                                     "OP "
                END
      ELSE BEGIN
             IF (OP: occurrence =
                                         ) & operation cost: value =
             THEN prompt the user to type the actual cost of OP
                    Assert(OP: actual cost)
                                                               % in database
             IF (
                           : occurrence =
             THEN BEGIN
                 IF plantation: date is UNKNOWN
                 THEN BEGIN
                              OBTAIN (plantation: date), % from the user
                              calculate(PD: plantation: date PA: plant: age)
                          IF plant: age > 10
                          THEN
                              generate plant status(E: environment →
                                                P: possible plant status),
                              obtain plant status(P → PS: plant status)
                          END
                 IF seedling : type =
                                        &
                                                 : occurrence =
```

```
THEN BEGIN OBTAIN (event: occurrence) END
          suggest(E, CS: current situation, PA, EV: event, PS —
                                           NO: next operation),
          IF NO is empty
          THEN
             Prompt the user '
          ELSE
           BEGIN
             assert(NO) in database,
             assign(NO, E —
                                → Sol: solution),
             IF operation cost: value =
             THEN
                    calculate cost(NO, C: costs — OC: operation cost)
                    PRESENT(Sol, OC)
             ELSE
                    PRESENT(Sol)
           END
         END
END
ELSE
      IF the user request: value =
      order(AP 	S: schedule).
             IF operation cost: value =
                    calculate cost(O, C: costs — OC: operation cost)
                    PRESENT(S, OC)
             ELSE
                    PRESENT(S)
```

5. Database

The data base of strawberry plant care is exactly similar to database of bean after updating the legal values and introducing the following comments:

- Delete plantation date from the database interface since it is obtained from the user during run time and inserted in database.
- Delete crop type, seed status and plantation type from the database.
- Add the following items:

```
(seedling: type { })
```

- Add the tool hiring rate for the following tools:

```
% per hour% per hour+% per hour% per hour% per hour
```

- Restrictions on values:

```
seedling: type = → irrigation: type = &

planting: type = → irrigation: type =

irrigation: type = → planting: type =

soil: type = → irrigation: type =

soil: type = → irrigation: type =
```

6. User Interface

6.1. Input

The input screen of strawberry plant care is similar exactly as the input screen of bean plant care except that the menu 'which is the legal value of 'event: value' has

to be activated only if 'seedling: type = 'and': occurrence = '.

Add a button' and another button'. The first button

assert' 'to the property 'user request: value' while the second

button assert the value' '. Add pull down menu of' 'that has two

values', 'the selected value is to be added in the property 'operation

cost: value'

6.2. Output

In the cases of the user requirement is ' ' the output screen of strawberry plant care is similar exactly as the output screen of bean plant care except that the cost of the suggested operation is added. In the case of the user requirement is ' ' the output screen is about a list of the agricultural operations obtained from the system.

7. Test Cases

Case 1 (new plantation)

Input

Session date: 1/2/2002

user request:

seedling type:

soil type:

irrigation type:

planting type:

Output

Case 2

Input

Session date: 15/9/2002

user request:

seedling type:

soil type:

irrigation type:

planting type:

previous crop : fertilizer =

Output

•

:

Case 3

Input

Session date: 18/9/2002

user request:

: occurrence =

Output

.

:

30 - 25

Case 4

Input

Session date: 19/9/2002

user request:

: occurrence =

Output

:

:

Case 5

Input

Session date: 19/9/2002

user request:

: occurrence =

Output

:

Case 6

Input

Session date: 20/9/2002

user request:

: occurrence =

Output

:

:

30 - 25

Case 7

Input

Session date: 20/9/2002

user request:

: occurrence =

Output

.

120 -100 ":

Case 8

Input

Session date: 21/9/2002

user request:

: occurrence =

Output

:

; ;

Case 9

Input

Session date: 21/9/2002

user request:

: occurrence =

Output

```
25
        4
Case 10
Input
    Session date:
                    21/9/2002
    user request:
            : occurrence =
Output
                               )
20
         20
                                    20
                                                                      U
  20 - 15
                 Case 3
Case 11
Input
    Session date:
                    22/9/2002
    user request:
                   : occurrence =
Output
```

STRAWBEX 39 TR/CLAES/245/2002.9

:
35) 2-1 :
15 (40 20 - 15

Case 12
Input

Session date: 22/9/2002
user request:
: occurrence =

Output

:

: : 50 2 -1.5 :

n .

Case 13

Input

Session date: 23/9/2002

user request:

:

plantation date: 22/9/2002

Output

Case 14 Input Session date: 24/9/2002 user request: Output Case 15 Input Session date: 25/9/2002 user request:

Output

; ;

				:
П				
Case 16				
Input				
Session date:	6/10/2002			
user request: Plant status:		&		
Output				
σαιραί				
			:	
				:
п				:
			:	
				:
п				п
			:	
				:

Case 17

Input

Session date: 7/10/2002

user request:

Output

: :

:

Case 18

Input

Session date: 20/10/2002

user request:

Plant status:

Output

:

:

:

STRAWBEX 43 TR/CLAES/245/2002.9

Case 19

Input

Session date: 22/10/2002

user request:

Output

:

:

n

· :

100 250 ":

п

Case 20

Input

Session date: 25/10/2002

user request:

:

Output

: :

Case 21

Input

Session date: 26/10/2002

user request:

•

Output

;

:

Case 22

Input

Session date: 2/11/2002

user request:

Output

:

100 250 ":

100 250 ":

Case 23

Input

Session date: 10/11/2002

user request:

Output

:

: •

.

Case 24

Input

Session date: 12/11/2002

user request:

Output

:

· •

:

· ·

STRAWBEX 47 TR/CLAES/245/2002.9

100 250 ":

II

Case 25

Input

Session date: 23/11/2002

user request:

plant status:

:

Output

.

TR/CLAES/245/2002.9

Case 26

Input

Session date: 25/11/2002

user request:

Output

: .

Case 27

Input

Session date: 26/11/2002

user request:

Plant: status =

Output

:

:

: "

:

.

" 16 – 14

Case 28

Input

Session date: 2/4/2003

user request:

Output

: ...

Case 29

Input

Session date: 4/4/2003

user request:

Plant: status =

Output

16 - 14

Case 30 (new plantation)

Input

user request:

```
seedling type:
soil type:
irrigation type:
planting type:
previous crop : fertilizer =
```

Output

Case 31 (new plantation)

Input

```
user request:
seedling type:
soil type:
irrigation type:
planting type:
previous crop : fertilizer =
```

Output

APPENDIX I

Agricultural Operations Knowledge

: :

: :

: 1 :

1 : :

:

4-3 :

: :

: :

: :

: 1 :

2 : :

5-1 :

: :

30 - 25 :

: :

:

:

: 1 :

3 : : :

:

/ / 4 : 12 20 :

: :

:

: 1 :

4 : : :

:

/ / 1 :

: :

· :

: :

1 : 5 :

; ; ;

: / / 4 :

:

30 - 25 :

: :

: :

:

1 : 6 :

> ; ;

:
/ / 4 :

: :

:	
	:
	:
	:
	:
	1 :
	7 :
	:
	: :
:	
	/ / 4 :
	:
	: :
	:
10 - 9	120 -100
	()

10 -9

+ :

; ;

:

: 1 :

8 : :

:

. 4 / / / 2:

: :

10 – 7

+ :

	•	
	•	

: :

:

1 : 9 : :

: : / . 3 :

:

: -

: -

;

; ;

; ;

: 1 :

10 : :

/ . 4 : 18 16 :

/ 4 25 :

: 25

: :

; :

· :

1 : 11 : :

:

/ . 4 : :

: :

20 20 "

" 20 – 15 U

•	

: :

: : 1 :

12 : :

: / 4 :

:

· : -2-1

: :

: :

1 : 13 : :

/ . 6 : / 40 - 35 :

: :

15 20 – 15

: -

15

20 – 15

:

66

:	
	:

: : :

1 : 13 :

· :

:
/ . 6 :
/ 20 - 16 :

; ;

15 30 - 25

: -

" 30 - 25

; ;

: :

1 : 14 :

; ;

:

/ . 6 : / 300 :

:

" 50 2 –1.5 "

:

: :

· •

: 1 :

> 15 : :

() : 20 - 15 :

: / . 2 :

:

:

п

: :

: :

: 3 -2 :

16 : :

5 : : / . 4 :

; ;

: -"

: -•

: :

: 17 : :

; ;

/ . 4:

· :

п

: :

: :

: :

18 : :

: / . 6:

· : :

: :

: :

: : 19 :

; ;

: / . 6 : :

: : :

· :

:

· :

4-3: 20:

; ;

: / . 6:

: : :

÷

: :

: .

:

4 - 3: 20:

20 : : :

> 6 : :

/ . 6 : :

:

: :

:: .

· :

4 : 21 : :

; ;

/ . 4:

/ 300/ 750 : :

300 750

: : :

: :

: 1 :

22 : : :

: :

/ . 6 : :

:

· :

: :

; :

23 : :

: :

/ / . 15-10 : :

: "

" 16 – 14

;

:: :

: :

: :

23 : :

6 : :

/ / . 15-10 : :

: - 8

- 8 " 12

·