ENHANCEMENT OF EXPERT SYSTEMS WITH OBJECT-
ORIENTED DATABASE FEATURES

G. Al-Shorbagy*, M. Zaki**, A. Rafea***, F. Essa**, Mahmoud Rafea*
* Central Laboratory for Agriculture Expert System (CLAES)
** Computer Department, faculty of engineering, Azhar University

*** Faulty of information and Computers, Cairo Univ ersity
Abstract
Intelligent systems are computer-based systems that use knowledgasmuing techniques to
solve problems. But they haven't the ability to manage a large amounteofildaa DBMS's.
Many expert system applications have large amount of data, thus weaeedple both the
knowledge base and database systems. In this work we built two systered Loosely Coupled
System (LCS) and Tightly Coupled System (TCS).

LCS statically couples the knowedge base and the database. This thr@abh€S must first
invoke all the required data from the database. Secondly, it storesrthibenworking memory of
the system. Finally, it starts the interactive session. TCS dga#dyncouples the knowledge base
and database. This means that the interactive session stirt§/fienever the system needs data

from the database, the inference engine asks the database to afford the specified data

Both LCS and TCS developed to couple KROL knowledge base with the exdtorgd utility
of the SICStus object prolog languag. An Object-Oriented Layer (OGLbé&en built on the top of
the external storage utility of SICStus Prolog to handle the databgses and to convert them to
the external storage format. LCS and TCS are tested by building npgligations in the

agriculture domain, and their performance is investigated.

1. Introduction

The integration of a knowledge-based system and a database systgrortant to a large class
of users and applications. Such integration can be achieved in two whagseth@osely and tightly
coupling [Heng 97]. Moreover, the integration, as such, must be simple, acandamaintainable.

These goals ware the aims of different researchers and systems such asviiregfoll

* [Claude 88] is composed of inference rules written in PROLOG egtefsnguage (G-
LOGIS) and set of facts managed by a DBMS (G-BASE). G-LOiSI@n object-oriented
implementation of PROLOG, while G-BASE is an object-oriented [3BMat manages the
object structured fact base. G-LOGIS and G-BASE are able to work in harmmaysbehey are

both based on object-oriented paradigm.

The tight coupling of PROTUS shell and the ORION object-oriented databgstem is
introduced in [Nat 88]. A PROTUS/ORION integration is developed irAtheanced Computer
Program (ACM). The addition of the database management system fBUSRIGas simplified
the tasks of knowledge engineering. The results suggest that furthemexgation with such a

system is worthwhile.

A Dictionary Interface for Expert Systems and Databases (DIFE& introduced in [Al-
zobaidie 88]. DIFEAD contains a kernel called Metalevel ComponentC)MLThrough MLC
the ES can be accessed. There are three main modules in the WNC(User Interface
Module), MQM (Metadata Query Module) and DUM (Data Update Module).UlMeinteracts
with the user. The MQM finds out whether some data item can be fautte iapplication or
not. If no answer can be found in the application, the MQM informs the tdIkquest the

missing information directly from the user.

A logic-programming environment (EPSILON) that allows the use of stataed in a relational
database from a logic program is introduced in [Selmin 90]. EPSIIsGiNprototype developed
in the context of the European ESPRIT project. It is built on the t@wmmercial PROLOG

(BIMProlog) and DBMS (Informix), running on standard Unix environment.

A design and implementation of a database interface for the LyBtEns are introduced in
[Marcel 92]. LIFE is logic programming, such as Prolog, but it is extemdh an elegant type
system supporting a facility for structured type inheritance. Alsas iintegrated with a
functional language and allows the interleaving of relational and functierpiession.
Together, these features allow powerful high-level expressions and sotoplgraints on data-

objects.

An integration strategy of an expert system in oncology therapy witmiaatlhistory database
and a user interface adapted to the needs of the medical enviromenpra@osed in [Maria 96].
The objective of this system is to design a system that is easetand provides all functions
needed by the medical staff. The final system has consiststinntiegration three developing
tools and then using them in order to construct the complete applicatioresihieof this work
is a global tool for the development of clinical information systeitis @nbedded intelligence

module.

A new loose coupling approach (simple coupler) based on predefined SQhtweasiced in
[Heng 97]. It is an integrated computer system to couple an existirgy&Bm with ES through

a coupling module in a multi-tasking environment. A multi-tasking platforig, ENIX at

workstations or MS-Windows at personal computers, is necessary bdhatseare actually
three programs (coupling module, DB application and ES) running in the memioey. T

communication between the coupling module and both the ES and the DB is thooogh s

channels, e.g. UNIX pipes, or MS-Windows DDE [Dynamic Data Exchangde)@D Object
Linking & Embedded (OLE)].

This work introduces two coupled intelligent systems which are: 3. &S. The two systems

have been built at Central Laboratory for Agriculture Expert System (CLAES), Egypt.

Actually, CLAES needs an object-oriented database management shsteoan be coupled
with the expert system that is developed there. This integrationsitates some modifications of
the inference class. Therefore, we introduce this research todmuidbject-oriented layer on the

top of the external storage utility of the SICStus prolog and we providee between it and the

KROL inference engine.

KROL is a Knowledge Representation an@bject Language that combines logic, object-
oriented and rule-based programming paradigms [Shaalan 98]. The KROL lamgyaagxtension
to SICStus Prolog Objects language [SICS 1995]. The main facpit@sded by KROL are the
expressive power to represent complex concepts. Also, from the KRDitafas, the integration

of many problem solvers and knowledge representation schemas in one application.

Integration of ES with DBMS constitutes the development of a singlem that handles all
data by itself, if necessary in a dedicated database subsystem.ogngnpming system is in fact
an integrated system, in that all data is handled by its interreahdatlling facilities, so forming a
rudimentary database. This is callel@mentary database management [Marcel 92]. There are
some serious drawbacks to this method:

* The internal data handling facilities cannot handle large amountsayfgilate these do not fit
in main memory. Even if the data would fit in memory, evaluation of the ddl not be
efficient, because the expert system generally does not offer ailitieado optimize data

handling, such as indexing.

* Most expert systems offer only very elementary data managemdiitefaclThere are no data
dictionaries and no generalized set-oriented operations. There arelilitee§ato ensure the

persistence and integrity of the stored data such as locking, atgniafiansactions and

concurrency control

These problems are overcome by integration of expert system and dateiersedata handling

is performed by the database subsystem, which uses external fis#ésréodata and efficient

[

indexing schemes to retrieve it. Figure 1 shows two
ES

architectures for integration approach. Architecture ‘a’ DBMS
shows an expert system (ES) with a database subsystem a3
(DBMS).

This subsystem handles data at the request of the ES®* ! Arhieetuss brthe inicgratin approsch

system, and is therefore well suited for extension of an expertrsyath database facilities, or for
a database system in which we want to use a logic programming laregiagéabase language.
Architecture ‘b’ is a database system that includes an expeéensyES), implemented in a logic
language, containing the optimization component. This architecture iswiteltl for enhancement

of a database with an optimization component.

In a coupling ES with DBMS, an interface between two independent systest be developed.
The two systems are logic programming system and a database 8Batiersystems preserve their
individuality; an interface between them provides the procedures redairédinging data from
the persistent database system into the logic-programming environmevicanersa. There are

two types of coupling: Loose and Tightly couplings.

* Loose (static) coupling. The interaction between the programming sgsigthe database takes
place independently of the actual computation process in the programmiem.syspically,
coupling is performed at compile time (or at program load time, iwighpreters) by extracting
from the database all the facts the program might require. thitedata has been loaded in the
programming system, it is stored in the internal database and handleechhiques as
integration technique. Hence a system can employ both a coupling withbasatystem and

integration, since the programming system can have its own database subsystem.

» Tight (dynamic) coupling, the computation process, for example the infepemoess in a logic
programming system, drives the interaction with the database systertragting the specific
facts required to answer the current goal or sub goal at theheyete needed. Thus, coupling
is performed whenever the logic programming system needs more datdéroiatabase system

to proceed with its inference. The important design issues are:

- Should all data be stored in the internal database or retrieesdrgtstep of the inference process

again?

- Do the system only load data that is actually needed, or do wepatdgicin the data demand, and

also load data from which we expect that it will be needed soon?

Figure 2 shows architectures of loose and tight

Data definitions

coupling. The interaction consistsratrieval: the
ES

Expert System (ES) requests data from ftlkig = .
))) Interface L DRMS
database system, which replies by sending |t o
requested data, andpdates. the expert syste
sends data to the DBMS that have to be inserted Figure The coupling architecture

or deleted.
As Heng-Li Yang [Heng 97] states, there are four ways that expert systems candatabases.

Elementary data managemewithin the Es;
Generalized data management within the ES;

Loose coupling of the ES with an existing DBMS; and

R e

Tight coupling of the ES with, an existing DBMS.

One should note that, we used "loose coupling" to ns&ic coupling, i.e. data extractions
occur statically before the actual operation of the ES; and "tighpling” to meandynamic
coupling, i.e., during the same ES session, many different portions of tiheaéxiagtabase may be

required at different times.
2. LCS and TCS Systems Design

The main idea of this work is the coupling of the expert system hétldatabase. The database
that is used in this work is an object-oriented database. The couplif§ afid database would be
achieved using two systems. The first system entails building a yd@eapled System (LCS) and
the second entails building a Tightly Coupled System (TCS). The Objentest database system
consists of two components. The first is the SICStus prolog extdéomage utility. The second is
an object-oriented layer on the top of the SICStus prolog external stotiéige The object-

oriented layer handles the database objects and converts them to the external stoeage for

In the following, the design of the object-oriented layer and the comgéstign of the two
systems will be discussed in details. In addition, a comparison betivegwo systems will be

discussed.
2.1 The Loosely Coupled System Design

The loosely coupled system is shown in figure 3. In this system, the conationibetween ES
and DB is achieved through an interface program that maps the physitalsgatath the attributes
in working memory. In this system, all values, which are needed frerddtabase, are collected

once. The system supports the following scenario:

» Determine the expert system values that —_—

. E:

must be stored in database. D2 Dioionay O

3 Session Trference

—Start___, E
« Get these values from the database. emn T i Mechaniem || e
Values

e Mapping these values with expert system Coupler Sab-System p—
orlang

. Memo
attributes. él — N

» Store these values in working memory.

Figure 3 Loose Coup ling Architecture

» Start the expert system session.
To satisfy this scenario, the system must include the following components:

1. Data dictionary that includes all expert system database afibLite dictionary contains the

field name of the database and the corresponding attribute name of the expert system.
2. Mapping mechanism that collects all the database fields and stores them irkihg memory.
The design procedure of LCS is pointed out in the following:-

Input : Case_Id <database key that identifies the rbdd&>
Procedure:
1. The Mapping Mechanism would determine fromDiaga Dictionary all the needed
fields and there relations (Database Table).
2. For each Field-Relation pair do
i. Use Case_ld to fetch the value for each fietarfithe relation.
i. Determine the corresponding Object-Attributgrgrom the Data Dictionary.
iii. Assert the field value into the Working Memaity the corresponding object-
attribute.

3. Call the Inference Engine to start the ES Sassio

2.2 The Tightly Coupled System Design

The tightly coupled system is shown Expert system
in figure 4. In this system, the ierence | I aDRatcnatin
: f2ine T Coupler
communication between ES and DB g:;n—- Getg:.y/eﬂ\@ue Sfjf;;n DEMS
achieved through a coupling mechanism | 7 =1 [Viorking - '
. . . memory Value +
that links the ES attributes with database

fields. Whenever the ES needs a el ___
database field value and this value does Figure 4 Tightly Cowling Architecture
not exist in the working memory, the ES uses the coupler sub-systetndeer¢his value from the

database.

During ES session, if the inference engine reasons about datab#meeatthen the following

scenario would be occurred:

» Determine the database object that includes the required attribute.

» Determine the name of database field that corresponding to the required attribute.

* Send to the coupler sub-system to query OO Layer to retrieve the field value from theedataba
* Save this value in the working memory.

* Complete the session.

To satisfy this scenario, the system must include the following components:

Coupler sub-system that has the ability to open a channel between tnedES whenever ES
needs values from DB. The sub-system includes an internal method thigis (D® Layer to
retrieve the field value from the database. In the TCS systermfétence engine has its ability to
determine the source of value for each attribute. Also, it hasceabpgechanism for each source.
According to this mechanism, the inference engine accesses the sogetethe attribute value.
There are different sources of values and the database is onseoftlueces. The default source of
attribute value usually is the user. If the system failed inrgethie attribute value from the given

source, the system would ask the user about this value. This makes the system more powerful.

The design procedure of LCS is pointed out in the following:-

Input : Case_Id <database key that identifies the redd@a>
Procedure:
1. Start ES Sessiuon, whenettee Inference Engine reasons about any attribut do the

following
i. The Inference Engine searches in working menharyhis attribute.
ii. If this value is found then Take it and stop.
iii. Else, Getthe source of value of this atttdérom the Ontology.
iv. In case of source of value is database dodheving:
1. Determine the Table and the Field names fronoittelogy for this
attribute.
2. Call the Coupler Subsystem to Fetch this fisddh the database
according to the Case_Id
3. The Coupler Subsystem would Assert the fieldi@ahto the Working

Memory to the corresponding object-attribute.

2.3 The Object-Oriented Layer (OOL)

The SICStus prolog external storage utility handles storage andraéwieterms on files. By
using indexing, the store/retrieve operations are efficient [SICS T9. object-oriented layer
(OOL) supports the main features of database and object orientewbltagy. The supported
database features are constraint checking, query, views and many suppettiodsnthat allow the
user to handle own databases. The supported object-oriented featuirdsestance, reusability
and handling of the complex object. Also, OOL handles the database a@ineatsnverts them to

the external storage format.

The proposed object-oriented layer and the interactions with its envinbamgeshown in figure

5. The object-oriented layer contains three main objects. They dd8M$ object, 2)-view object

and 3) access-constraint F
_________________________________ JENE
object. Each object has its |1 view-Coject i
1 1
Gt wriewr data wrievar data ase wiewr data Tpdate wiewr data 1
own methods. There are '_____‘r___|__|_5‘_°“1k_ia_ _|_|__E__, _d_“__|_|____r___|__

can access the databasg—# Fead | [e |] mane | [wane

The first one is the system e ’!

administrator who has

access capability to all

objects and methods of oo | T

Y

the OOL. The second is B ert et

the database user who can
Fig 5 Ohject-Oriented Layer Design
access the database
through the application views. The third is another application such ag eyptam application.

The ES can access the database through the DBMS object.
2.3.1 Data Definition Language (DDL)

The DDL supports all database definitions, which are data iteg;itye constraints and views.
All these definitions are encapsulated within an object in therblgraepresentation of the object
scheme. The schema is an important part of any database. So any DBMS pgwrideaastructure
to describe schema. This system uses general methods that cad imesecbema declarations. The

following eight methods give a full declarations of any database application schema.

The definition of database owners

The object-oriented layer classifies the users of the databsémMo types; owners or others.
The owners of any database must be declared explicitly in the scesfagaation. More than one
owner may have the same database. Therefore, the DDL language cantaiethod called

owner/1. This method supports the security of the database.
The definition of the database relations

This is the most important method of a schema declaration. Througmeth®d, the object-
oriented layer can create and open a physical relation. This defimttudes the name of a
relation on the physical disk, the list of attribute names - thibatie may have zero or more arity-,

and the authority of non-owner users to access relation.
Indexing

Indexing in a database is very important to decrease the searcfitienBDL language includes

a definition of the indexed fields.
View handling

The view handling includes a view name that is the name of a nevalloglation created in
memory. It also includes the relations’ names and fields namearthased in the view. Through

this view the user can handle the physical data of the original relations.
Constraint satisfaction

The DDL contains &onstraint method for each DB operation. When the operation is needed,
the OOL first sends a message to the schema object to gentdteamt method of this operation. If
this constraint is satisfied, the operation is done, otherwise thatmpewould be canceled and it
gives an error message to the user. The problem now is how to debnsteaint for each method.
The DDL contains three methods. In the first method, the constraintstefto database would be
defined. This method is calleslore rules. In the second method, the constraints of erase from
database would be defined. This method is callase rules. In the third method, the constraints of
update database would be defined. This method is cafidate rules. The language only knows

the names of the constraint methods, but the contents of these methods are left to ther.develope
2.3.2 Data Manipulation Language (DML)

The DML contains a number of methods that support all events in tHeadataperations. In the

following sections we describe each method.

A. DB manipulation methods

A.1 Read from the database method

Input: relation name and key values.

Objective: reads the values from the database relation, which match the key.

Algorithm:

1.

2 T A

Get the user of the system.

If the user is the database owner, go to step 6.

Check the non-owner authority.

If the system gives the read authority of this relation for non-owner, go to step 6.
Announce fall.

Do the read operation.

A.2 Write to database method

Input: relation name and values.

Objective: writes these values into the database relation if they iedtiftfie store rules of this

relation.
Algorithm:
1. Get the user of the system.
2. If the user is the database owner, go to step 6.
3. Check the non-owner authority.
4. If the system gives the write authority of this relation for non-owner, go to step 6.
5. Announce fail.
6. Get the store rule of this relation.
7. Applying constraints of the store rule on values.
8. If the constraints are satisfied, then write the data intdasgarelation, otherwise announce

fail.

A.3 Erase from database method

Input: relation name and values.

Objective: erases these values from the database relation if thefieshtise erase rules of this

relation.

Algorithm:
1. Get the user of the system.

2.

If the user is the database owner, go to step 6.

3. Check the non-owner authority.

If the system gives the erase authority of this relation for non-owner, go to step 6.
Announce fail.
Get the erase rule of this relation.

Applying constraints of the erase rule values.

© N o o A

If the constraints are satisfied, then erase the data frombadat relation, otherwise
announce falil.

A.4 Update from database operation

Input: relation name, old values and new values.
Objective: updates the existing old values by the new values in the databdiem iéthey satisfied
the update rules of this relation.
Algorithm:
1. Get the user of the system.
If the user is the database owner, go to step 6.

Check the non-owner authority.

WD

If the system gives the write and erase authorities of tlagare for non-owner, go to
step 6.

Announce fail.

Get the erase rule of this relation.

Applying constraints of the erase rule on old values.

If the constraints are satisfied, then go to step 4, otherwise announce fail.

© ®© N o O

Get the store rule of this relation.

10. Applying constraints of the store rule on new values.

11. If the constraints are satisfied, then update the database, otherwise announce fail.
2.3.3. View methods

2.3.3.1. Retrieve view fields data from the database

Input: view name.
Objective: collects view fields’ data from the database relations and put them in the vieas.ent
Algorithm:
1. collect the fields of the views
2. Determine the relations of these fields.
3. For each relation and its fields, apply the read from database algorithm
2.3.3.2. Write view fields data into the database

[nput: view name

AR

Objective: collects view fields’ data from the view and puts them in the database relations.
Algorithm:

1. Collect the fields of the views.

2. Determine the relations of these fields.

3. For each relation and its fields apply the write to database algorithm.

2.3.3.3. Erase the view fields data from the database

Input: view name
Objective: collects view fields’ data from the view and erases them in the databdsmeela
Algorithm:

1. collect the fields of the views

2. Determine the relations of these fields.

3. For each relation and its fields, apply the erase from database algorithm

2.3.3.4 Update the database values by the view fields

Input: view name.
Objective: collects view fields’ data from the view and updates the database relationsegdbaes
Algorithm:

1. collect the fields of the views

2. Determine the relations of these fields.

3. For each relation and its fields, apply the update database algorithm

2.3.4. Access-Constraint methods
2.3.4.1 Unique method

Input: relation name and unique keys with values.
Objective: checks the uniqueness of these keys inside that relation.
Algorithm:
1. Get the attributes of these relations.
2. Search for existing of these keys value inside the relation data.
3. If these keys are found inside the relation data, announce fail, cteeawnounce
successful.

2.3.4.2. Functional dependency method

Input: relation name and values of two fields. The second field valumdsidonal dependent on the
first field value.

Objective: checks the functional dependency between the two values.

'Y

Algorithm:
1. Search for the existing of the first field value inside the relation data.

2. If this value is not found, announce successful.

3. If this value is found inside the database, retrieve the relatenh@ field value from the
same record in the database.

4. Compare the retrieved valued with the second input value.

5. If they equal, announce successful, otherwise announce fail.

2.3.4.3. Domain constraints method

Input: relation name and field value.
Objective: checks that this field value satisfying the corresponding attribetgsrements defined
in the ontology.
Algorithm:
1. Determine the object of the corresponding attribute defined in the ontology.
2. Get the attribute facets that contain the type of the attribute and its possibke val
3. Compare the types of the attribute with the value type. If the wdas not match the

attribute type, announce fail, otherwise check the value with allowed attribute values

4. If the values satisfying the allowed attributdues, announce successful, otherwise announce fail

2.4 Inference Engine

The inference engine is the main part of the KROL. The block diagfaancomplete expert

system, which has been built based®ptcaton Knowledge hase ebiecis

: Ontolog wObjects | Rules O'bj scts |

on KROL, is depicted in figure 6. [KROL BASIC OBIEC: = [

EROL BASIC OBJEC

The system consists of manfy

! | Inference Engine Class

classes: User Interface, Domain,

: :
| Explanation Class | |
H 1

User Interface
History and Explanation, ank-----------S oo L

Application Tasks TTser Interfaces

i 4o lication comtrol

Inference Engine classas.

User interface objecuser_jnt"

This object contains methods Tigure 6 KROT, Based Fxpert System
used by the inference mechanism to get values of attributes whose ebwadues is defined as
user. The methods will differentiate between two cases: theesmagjie attribute and multi-valued

attribute.

Inference history objechistory”

\Y

This object acts as a log object, i.e. it keeps historical infoomatbout reasoning. It contains
methods used by the inference mechanism. These methods are useddahecation taken

during the course of the inference process.

Domain-definitions objectdomain_class™:

The domain_class object contains the generic methods and the deféulteattalues of the

domain knowledge. This object is the super object for all knowledge base objects in theiapplicat

Explanation objectexplanation™:

This object contains the explanation methods: why/2 and how/2. The formeodrmstto be
activated in response to a user reply "why" during the course of askingeha@about an attribute
value. The latter method is to be activated in response to a massade the "explanation” object

in order to query about how an attribute value is concluded.

Inference Engine Clas4nference”:

The inference class is the main class of the system. Theowyirtg systems use the inference
engine of KROL [Shaalan 98]. As shown in figure 7, the KROL inferemggne has three main
reasoninig methods: Methods directly reason about attribute valuesioddedirectly invoke the
inference in order to reason about attribute values, and Methodsydinectke the inference and
indirectly reason about attribute values. Each reasoning method cailg fomactions. The

reasoning methods can be explained as follows:

1- Methods directly reason about attribute values. The core method dleaekper can use, is
get_value/2 method. This method differentiates between two cases doengodrse of
reasoning: the single valued attribute and multi-valued attribute. Thbodheuses the
source_of value/2 meta-attribute to define the value(s) of the givdouteat Consequently,

this method only invokes the inference indirectly if the source of value is defined asdderive

2- Methods directly invoke the inference in order to reason about attnfalites. The core
method that a developer can use, are focus/3 and Rule_head_list/2. Thenfetinad, first,
collects relations that reason about a particular attribute givéimebgeveloper, then fires this

rule. The latter method is used to fire a particular rule.

V¢

3- Methods directly invoke the inference and indirectly reason abolnugdt values. There are
two defined methods that can be used to deal with rules: conclude/1 athadeoatl/1. The
former fires a set of relations defined in a given object. Therlatasons about all the rules
defined in a given object and its sibling objects. The inference nmasntae open world

assumption where the positive or negative values of the attributes are recorded.

Inference Engine

.

| Diirect reasening metho ds ‘ SGuiding the inference methods | | Indirect reasoning methods |
il /\ /\
| Get_wvalue | Fule _head_list | | focus | | conclude 11—‘ conclude_all |
o Prome liet
@ Get_walue_m I—» —Prepery_As —>| FProve_ property_from sources_ |
Yes
| CGet_value_s | L Uszer
¢ TTser_Int ::
| Prove property | Mske multple

i Yes

| FProwve property from sources |

| iofs ‘ | pifem |
@ _— 3 v

Usi’ Conclude_ Conclude_
| rets | single multiple
| TTser_int :: Ask | ‘# ¢ ¢
| Conclude_single | | conclude | | conclude |

| conclude b -
Turect reasoning methods |

Figure 7 EE.OL Inference Engine

2.5 Coupling KROL with OOL

The coupling of KROL with OOL provides a powerful expert system thathandle database.
We coupled the KROL and OOL to build a loosely coupling system and aytghtpling system.

In the following sections we introduce the two systems and the modifications of KROL.
2.5.1 KROL_based loosely coupled system

In this system, the OOL is added to the KROL objects. Figure &dhes this system. The OOL
does not interact with inference engine. Unlike, KROL expert systtma ealling of inference is

done through the task directly- the task calls the coupler that sollectiatabase and then calls the

\e

the following objects:

Historsy Class

1. Coupler object, which contains the

Explanaton Class

methods that collect all the databas

fields and store them in the workiné

memory. This is done through the—g;im,m_

application views and schema objects.

Fizure 8 KROL based Loosely Coupled Svstern

2. Application data view object, which

contains the screen form of data views.

3. Schema object: this object contains the datatedatons and data views definitions

The algorithm of loose coupling is:

1) Determine the session case_id from the farm view object
2) Call collect_data method with list of data views.

Algorithm of collect data method is:

Input : list of data views [V|Vs]
Algorithm:
1) If list = [] then exit.
2) For view V do
2.1) Determine the view relations and fields using DBMS.
2.2) Fetch the view relations by case_id.
2.3) If there are data for this case_id then
Assert these data in the view V
Get the view V values
Call the database_assert with these values and fields.
Else
Announce Fall
Endif
3) Call colloct data with (Vs)

Algorithm of database assert method is:

input [Fi,Fs],[Vi,Vs]
if field list = [] then exit
Determine for each Fi the coressopnding KB object Oi and KB

attribute Ai.

Update the value of Ai in object Oi with value Vi
Call database_assert with [Fs,Vs]

1

Figure 9 illustrates the interactions between the loosely coupledtmbjdw interaction starts
when the user needs to start expert system session. Since, theotaskn send a message to the

coupler to collect all data from the database and then send theses data to the expert syst

Task Couapler Schema DELIS O ntol ogyr Exper_Syatem
F re F r

B -
Sar
—_—
Colle ctgwie_list, Reflyd

'- Gat_rrimmr_relationsCr

Fetch_ddta_froom_re latioru)

Tapingidb_field
-

set Wh| arribeate by dbtmbies

terapye = e n

stam 5 5o]

Fig. & Interaction Disgram of KROL based Looselyr Coupled Srsem

2.5.2 KROL_based tightly coupled system

In this system, the OOL is added to the KROL objects. Figure 1@rdtas this system. The
OOL interacts with inference engine. Like KROL expert systemc#ikng of inference is done

through the task directly.

777

To make the interaction; Application Knowledge b ase ohjecis

H Cintologyr Ohjec ts Fules Ohijects Cithe rs Ohijects
between the inference englng";{,,,| ,,,,,,, 5\| ,,,,,,,,,, — - ,| ,,,,,, |

s
l EROL & OODBMS tight coupling |

and the OOL, the searchingj
method of the KROL inference

History Class
Tvlodified Inference

engine must be modified to Egine lace
Co ling ' Explanation Class
support this situation. The \ - ’

inference engine to support

database source. Figure 1!
shows the modified KROL

Inference englne- Figure 10 KROT.-based Tightly Coupled System

In the application, the developer only encodes the source of databasenvéhgeantology

knowledge base.

\V

| Inference Engine |

| Diirect reascning metho ds | | Ciuiding the inference metho ds | | Tndirect reasoning methods |

| Set__walue | | Fule head list | | focus | coenclude | cenclude all |

Provwe_properts list
Prowe_prop erty_from_sources_m

Set_walue_ing

purende g

| SODBEILS - | TTser_TInt
& o1 Asle_smultiple

| Prowe_prop erty |

1 .

| Prowe_property from_sources | Yes

| rfs | | rferm |
Source
i Ll
Databhos = + +
U | Conclude_ ‘ | Clonclude ‘
SODBIS | TTser_int :: sl | | ppfs | single multipls

Ausle ¢ ¢

| Conclude single conclude | | conclude |

-
| concluds
IDrirect reasoning methods |

Figure 11 The Bodified KIROL Imnference Engine swwith tightly coupling

The algorithm of tight coupling is:

1- The inference engine searches in working memory (cash objeth)sfattribute.
2- If this value is found then
Take it and stop.
Else
Get the source of value of this attribute from the common knowledge bas
3- In case of source of value is database do the following:
3.1 Determine the relation and the field order of this relation.
3.2 Determine the Case ID.
3.3 Fetch this field from the database.
3.4 Assert this data in the knowledge base object.

Figure 12 illustrates the interactions between the tightly coupling tsbjEke interaction starts

when the system needs to get an attribute value.

Inference Emngine Cache O mtolo = DELMS
F F
Set_atr_wrabaer Omono AT
-
Is_cacheds Onto ko2, atr, I
-
I rephe = }_
-
Sonarce _of_wrahae Catrb, Sowarce .
¥ Souarce = databakel DEO Fec . Wabis 3
-
Ok B0, Fec . Wabae 7.

set Wh_arr buare bor b weahae

cachedd Oreolo s, a1

F

FEg . AT Frober aciion Diagran of Tigletly Cougpled Sysbermn

A

3.Case Study

There are three expert systems that are developed - at CLAE&ASed on the two-coupled

systems. These expert systems are CUPTEX, CITEX and TOMATHEX.chapter lists briefly the

three expert systems and explains in detailsGheus expert system CITEX). A comparison

between the two approaches is discussed.

CUPTEX [Dessouki 93] is a complete expert system for managing the cucumberplastec
tunnels from seedling to harvest stages. CUPTEX generates coimpdetiion and fertilization
schedules, gives the advice for tunnel preparation and provides diagnosisaamemnt for total
39 different disorders. CUPTEX was used in many locations. The ecostudig proved that
the net profit of the greenhouses that are cultivated by the expennsigsi56.9% compared to

greenhouses that are cultivated without using expert system [TR 97].

CITEX [Salah 93] is a complete expert system for managing the Orangi& @am seedling to
harvest stages. CITEX assesses suitability of Orange Orchidageseomplete irrigation &

fertilization schedules and provides diagnosis and treatment for total 38 diffeadedss

TOMATEX is an expert system for diagnosis & treatment for Tomato disordetsr low
tunnels, greenhouse, and open fields. TOMATEX provides diagnosis and trefimertd| 38

different disorders.

3.1 The Citrus expert systemCITEX) [TR 97.5]

There are two implementation versions for coupling CITEX with dagadsch called “Egypt”.

The first version is implemented as loosely coupling. The second vessimplemented as tightly

coupling.

Egypt Database E — R diagram

Climate Soil Water Chomre muoTate
Feferernce Fefererce Fefererce

Clirnate Soil Whater Drirectorate
Refersrwe Refererue Refererce

Chrmate Soil WEter
Fefererwe Fefererce Fefererce
Flartatioe Sell WHTeT Climate Sail
Bscescrnert

Figure 13 Endbly- Reladio nship dia gram for the CITEX database sysban

\4

figurel3 represents the Entity-relationship diagram of “Egypt” dataitdseh coupled with
CITEX.

The implementation of the loosely coupled CITEX

In the loosely coupling all needed database fields are collectedtisanview. The collection of
the database fields is done through the method collect data that eshadnof object called

data_check.

The parameter of the collect_data is a list that contains n@wes. These views contain the

database fields. In CITEX the views that contain the needed database fields are:

Plantation view: contains plantation data.

Soil view: contains soil and water data.

Soil_ass_view: contains soil data that support the assessment process.

Climate view: contains climate data for 12 months.

The CITEX developers encode this coupling. The inference engine does not suppiatabase
coupling. The database fields are asserted in memory before th&X GB&Sion starts. Also the
developers encode the mapping between the knowledge attributes and da¢ddmsisihg attr/2

method.
The implementation of the tightly coupled CITEX

In this version, the CITEX developers update the ontology only. They encode the sbualues

soil :: {

super (domai n_cl ass) &
dynamc texture/l &
dynamic ec/1 &

dynamic s_status/1 &

sour ce_of _val ue(texture/1,

[dat abase(farmsoil (S, G D, O F, Texture, _, , _, _, _,_), Texture)]) :-
data_check :: user_id(S,GD OF) &
sour ce_of _val ue(ec/ 1, [dat abase(farmsoil (S, GD OF,_, ,EC _, ,_,_),EQ]) :-

data_check :: user_id(S,GD OF) &
source_of value(s_status/1,[derived]) &

pronpt (ca_carbonate/ 1, ca_carbonate, []) &

type(texture/ 1, nomnal) &
type(ec/1l,real) &
type(s_status/1,nomnal) &
mul tiple(s_status/1l) &

| egal (texture/1l, texture) &
I1(ec/1,0.1) &

ul (ec/ 1, 10)

}.

of database attributes. The developers do not write another code. This #taiwhe tightly
coupling is easy to develop, where the modified inference engine supports dynamméabypling
mechanism. Figure 14 illustrates some knowledge base attributes abjsct that have sources of

values in the database.
3.2 Performance Comparison between the Loosely/ Tightly Coupling

The “statistics” command of SICStus prolog is used to measureguthdime of the two

approaches.

The statistics command displays the standard error streastissatelating to memory usage,

run time, garbage collection of the global stack and stack shifts.

The syntax of this command is:

Statistics (? Key , ? Value)

This allows a program to gather various execution statistics. debra the possible keys Key,

Value is unified with a list of values. To measure the runtime the following syntaxtesnuyr

Statistics(runtime, [since start of Prolog, sinc@revious statistics]).

This refers to the used CPU time during the execution, excluding thespent during garbage-
collecting, stack shifting, or during system calls. In Muse, these nseméfer to the worker that

happens to be executing the call to statistics/2, and so normally are not meaningful.

The comparison between loosely and tightly coupling is made for irrigatiosystem. The
irrigation of CITEX is done every month. The user must determinet#ite and the end of the
month of the needed irrigation. In the comparison, the irrigation is rum&2.tiThe first one is run
for only one month, the second is run for two months, and so on. This is done in isaths/e

the same machine and same database. Only a parameter that is changed is the cbupiing. tec

We can see that the loosely coupling is better than tight coupling lartg# of time at month
equal to or greater than three. The database fields that are ne@diggtion subsystem are equal

to 13 data fields + 5 fields for each month.

In loosely coupling, the database fields that are collected arel88 iireall cases. It does not

depend on the number of months.

In tightly coupling the database fields that are accessed are given from the followitigrequa

Number of fields = 13 + (5 * N) where N is the number of month,

The maximum database fields that are accessed = 13 + (5*12) = gwhhiber is less than the
maximum database fields that are accessed by the loosely couplings bhsause in the loosely

coupling all data fields in the view is collected whether these fields are needed or not

The loosely coupling mechanism accesses the database 17 times oabth breess, it fetches
all fields’ data in one relation and consequently asserts thesefields in the corresponding
knowledge base attributes. In each time of accessing, a relatietniésed. This reduces the time
of database access. The inference engine in tightly coupling actesskdabase for each needed
database fields. The number of accessing of the database is eitpeahtonber of needed database
fields. The minimum access number = 13+5 = 18 times. The maximwessasamber = 13 + 60 =

73 times.

The time of loosely coupling equals 17 with all cases. The timalofiyticoupling is less than
the time of loosely coupling in cases of one or two months. It equals 133acmhsequently. This
difference of time is due to the loosely coupling retrieves all filgltés from database whether they
are used in expert system session or not. Also, there are somepshaions, which are occurred
during the collection data process in loosely coupling. These processes@eg the database
fields with knowledge base attributes and asserting them. The timighty coupling is greater
than the time of loosely coupling in other cases of months. This diffler@ntme is due to the
tightly coupling accesses the database for each attribute, but loosglyng access the database

for each relation.

The development of CITEX proved that the TCS is better than the-Lf@#n expert system

development point of view - for the following reasons:

In TCS, there is no need for write interface program between thbad® and the expert system,

where the interface is already existing.
No need to map between the database fields and knowledge base attributes.

This means that the expert system developer does not make tedious work when he uses TCS. The
developer handles the database attribute as handles the derivedeattriibe definition of

knowledge base attributes.

Also, the TCS overcomes the dynamic environment changes that male araiolem in LCS.
The CITEX and CUPTEX are bi-lingual expert systems (Arabic argligh). If the expert system

user starts system with Arabic language, and all data are ddtdme database using LCS, and if he

Yy

changes the application language into English language, a translation probies) bt TCS this

problem is solved.

Another point of view is the system speed. In this thesis, two equdtiahsalculate the time
are derived from the TCS and LCS algorithms. These equations showhé¢haystems speed
depends on the ratio of database fields that are used in expert.shiseeb'CS speed is constant in
all expert system sessions where all database fields aeveetin all cases whether they are used
during the session or not. In this thesis a real measure of spbethaystem were achieved. In
this measure, all parameters are the same for the both systenesmachine, same data, and so on.

The measure results are equivalent to the two system time equations.

Another point of view is the used memory in both systems. The LCS usegeaamount of
memory comparing with the TCS. These due to the TCS only retrieve®dbeed data from

database, but LCS retrieves all data from database.
4. Conclusion

In this paper, we have discussed two methods of coupling knowledge-basessysatam
database systems. These methods are loose and tight coupling. The unsigsteimg are Loosely
Coupled System (LCS) and Tightly Coupled System (TCS). To build thessnsys/e made the

following:

* We built an object-oriented layer on the top of the external storddg otiSICStus Prolog
language.
* In TCS we modified the searching method of the KROL inference engine.
To illustrate the difference between the two systems, they wgs@ in building two real expert
systems that are CITEX and CUPTEX. The development of CITEX &HTEX that the TCS is

better than the LCS - from expert system development point of view - for the followingseas

 InTCS, there is no need to write interface program between thbadat and the knowledge
base, where the interface is already existing.
* No need to map between the database fields and knowledge base attributes.
Another point of view is the system speed. In this paper a two equ#ietnsalculate the time
are drived from the TCS and LCS algorithms. These equations show tegstées speed depends

on the total number of database fields that are used in the system..

Another point of view is the used memory in both systems. The LCS usegeaamount of
memory comparing with the TCS. These due to the TCS only retrieva®dbeed data from

database, but LCS retrieves all data from database.

Yy

Y¢

References

[Al-zobaidie 88] Al-zobaidie, A. & Grimson, J. BUse of Metadata to drive the interaction betweetaltise and
expert system”, Information and software techno|&fy, 484-469, 1998.

[Claude 88] Claude Bailly , Paul Y Gloess “comibhg an expert system with a data base for an egifon that
aids decision-making”, Artificial 1ntelligence, Esqp Systems and languages in Modelling and
Simulation, © IMACS, 1988.

[Dessouki 93] El-Dessouki, S. Edrees, S. EI-Azh&@UPTEX: An Integrated Expert System For Crop sigement
Of Cucumber”, (ESADW-93) May, 1993, MOALR, Cair&gypt. A. .

[ESICM 92] ESICM, “Specifications of object-oriedtéanguage on top of prolog: KROL.”, Technical Rep
No. TR-88-024-25 Expert Systems Improved Crop Menaent. UNDP/FAO. EGY/88/024.

[Heng 97] Heng-Li Yang, “Simple Coupler iald expert systems with database systems, ExpeteSy with
Applications”, An International Journal, Vol. 12.p0179-188, Elsevier Science Ltd, 1997.

[Marcel 92] Marcel Holsheimer, “LIFE — WISDOM, database interface for the LIFE system”, Septeni982,
Master thesis, Department of Computer Science, éigity of Twente

[Maria 96] Maria Taboada, Roque Martin, JraiRamon P. Otero, “Integrating Medical Expertt€ys Patient
Data-Base and User Interfaces", Journal of Intefiiginformation Systems, Kluwer Academic
Publishers, Boston. 1996

[Nat 88] Nat Ballou, Hong-Tai Chou, Jorge F. Gar@Von Kim, Charles Petrie, David Russinoff, Donald
Steiner, Darrell Woelk “Coupling an Expert Systehebwith an Object-Oriented Database System”,
Journal of Object Oriented Programming (JOOP) Juhg/1988,

[Salah 93] Salah, H. Hassan, K. Tawfik, I. Ibrahisth Farahat, "CITEX: An Expert System for Citruso®
Management", (ESADW-93) May, 1993, MOALR, Cairogypt.

[Selmin 90] Selmin NURCAN, LI Lei, Jacques KOUL®IDJIAN , “Integrating Database Technology and
Logic Programming Paradigm”, ACM, 1990.

[Shaalan 98] Shaalan, K., Rafea, M, &.Rafea,"RROL: A Knowledge Representation Object LanguageTop of
Prolog, Expert Systems with Applications", An Imtational Journal, Vol. 15, pp. 33-46, Elsevier
Science Ltd, 1998.

[SICS 95] “Sicstus Prolog User's Manual”, Copyrig@1995 by Swedish Institute of Computer Science
“SICS”.

Yo

