
A HYBRID ANALOGICAL LEARNING SYSTEM
AND ITS APPLICATION IN EMPLOYMENT

ACCIDENTS DOMAIN

Mohammed El-Sedeek1, Khaled Shaalan2, Said Mabrouk3, Ahmed Rafea4

Abstract

Analogy is one of the central inference methods in human cognition. Several
analogy methods have been developed, they were different in the technique used
to establish the analogy, estimate the similarities, and transform the concepts
and knowledge from the source situation to the target situation. All of these
methods were used separately in different learning approaches. In this paper, we
propose a learning system based on hybrid model of analogy, learning is done
using different analogy strategies, according to the learning task. Using one
model of analogy in a learning system will constrain the learning task, while the
possibility of using multi-methods of analogy in one model will contain two
main features. First, it will integrate different models of analogy in a hybrid
learning system. Second, it will help in selecting and applying the suitable
analogy method according to the given learning task and the given knowledge.
The developed learning system consists of four main modules: Knowledge Base,
User Interface, Retriever and Learning Modules. A set of real cases from the
domain of employment accidents is used to demonstrate the learning capability
of the system.

Key Words: Machine Learning, Learning by Analogy, Case-Based Learning.
�

�����������	
�������	������������������������	��	��� �!�������	�"��#�$�#��%&
����'()���#�'���&�����������������*�������+�,����-.���� �!�$�/��0���&����	�����1�2�&�����������3�/�4���2����0(�5!�-����2#

��������6��1��7�8�9�7�	������6������-.�:���'�9��6���+7���������&��	�����;3�/�1<��������=5���#�>���<�?��������@+"�,�
�����������$(���(���	���A������0(�5!�-��86�!�'��B �
����6C���)��(,0�!��������������$�(�#�=��D��E	��2��F�:
����3�/�'��&

�������������������6�������$(���������6���G�2
��H�I&����������$(��(���0(�5�����	���� !� 86!��I"���'()�'�
!����=�5���J�
�������"��$(�#�=�D��'�����������$(��(��@��&��2�	�������������$�(�#�=��D��=�5���9������K!9��������L�$(���������(�)� !�:��M

�����������������������������	��� �!�1�!�K�!�=��D��A'�����M"����������6�/��L�@��)�-�N���!�����O"K��M"�������(���	����7��!
�����)����M"��������<�L����������$(����'()��������6��������(K������1�:���
������������������$(������2�	��+���P9�

�?���H�I&�����6!���H�3<&���"(�����$(������������-��!"(�����@)�%�'��@	�"����&�@�������Q R�,5��&�-�!"(������
��������'/&�����R+�-��"K!�S�+�� !�O"K���+"�����$(�����=�D��T��������SU	���!�L�=5���������6U�&�L����	�����@�)�%

����$(�����@�&�L��6�������-.�:��������������-����V9�W�8!�'�����%�&�-.���'()��2�
�#�$#�=�D���&��X��Y"���1
+"�����$(�����=�D���'(�����*�
���������K!9���

1. ISSR, Cairo University, M.Sc.of Computer Science, sedeek@hotmail.com
2. Computer Science Dept., Faculty of Computers and Information, Cairo Univ., shaalan@mail.claes.sci.eg
3. Central Lab for Agriculture Expert Systems (CLAES), Ministry of Agriculture, said51@hotmail.com
4. Computer Science Dept., American University in Cairo, rafea@aucegypt.edu

1. Introduction and Background

From the beginning of AI, researchers have sought to understand the process
of learning and to create computer programs that are able to construct new
knowledge or to improve already possessed knowledge by using input
information. Machine learning [1], is a branch of AI concerned with the study
and computer modeling of learning processes. Some things we might call
“learning” could also be called “problem solving” or “reasoning”. Different
learning strategies have been issued: rote learning, learning from instruction,
learning from examples, learning from observation, and learning by analogy.

Learning by analogy [2] is one of the central inference methods in human
cognition, in which, we transfer knowledge applicable in one domain to perform
a similar task in another domain or to extract knowledge from past successful
problem-solving situations that bear a strong similarity to the current situation.
The ability to learning by analogy is particularly important, because it permits
the extension of knowledge of a target domain by virtue of its similarity to a
base domain via a process of analogical learning. The general procedure for
analogical learning involves coping structure from the base to the target in
which missing information is generated, and substitutions are made for items for
which analogical correspondences have already been found. The elaboration of
analogies is achieved by using a metric measuring the distance between
conceptual descriptions of objects. Many researchers have done some pioneering
work in analogical learning. The most notable ones are briefly described below.

Carbonell [3] proposed a computational model of learning by analogy based
on an extension of means-ends-analysis (MEA). He presented an analogical
inference engine and provided a framework for automated example generation
that enables one to apply learning-from-examples techniques in order to acquire
generalized plans. Thus the system was capable of integrating skill refinement
and plan-acquisition processes. Russel [4], considered the conditions under
which propositions inferred by analogy are true or sound. They concerned with
normative criteria for analogical transfer rather than a descriptive or heuristic
theory. Their goal was to provide a reliable, programmable strategy that will
enable a system to draw conclusions by analogy only when it should. They
proposed a method for generating correct generalizations and analogical
inferences, given correct determination rules. Winston [5] investigated analogy
as a powerful mechanism for classifying and structuring episodic descriptions.
He devoted his work to study the learning by analogy via a computational
model. He deals mainly with representing story plots (such as Romeo and Julie,
and Macbeth) and the determination of some measure of plot similarity. These
stories are represented via a network of frames, i.e. a graph, and using a
constrained matcher, a value representing the number of similar components is
determined. Vrain and Kodratoff [6], describe how to apply the analogical
process to incremental similarity-based learning. They illustrated the analogy

and showed how relationships between background knowledge enable to use
analogy in the domain of concepts formation from a set of examples, and
showed the importance of dissimilarities in the process of analogy. They, finally,
raised a set of problems about this approach: how to get the most useful
analogies, how to improve the generalization to cover the new example, and
how to use an analogical process to do incremental learning.

However, poor analogies do not support learning - or worse, they cause
“negative learning” by adding incorrect or unsound information to the target
domain. Markman [7] and others point out that analogy is too profligate an
inference mechanism, and constraints on inferences are necessary. Markman
also notes that the one-to-one mapping constraint also acts to constrain the
inference set, when n-to-m mappings might be generated. Because analogies use
domains that are rarely fully isomorphic [8] computational models can easily
over-generate inferences.

A considerable body of recent research has shown that similarity comparisons
can involve a process of structural alignment [9]. This view characterizes
knowledge as structured hierarchies encoding objects, object attributes, relations
between objects and relations between relations. Given these representations it is
assumed that similarity comparisons involve the alignment of relational
structure to find the most structurally consistent match between two systems of
concepts, that satisfies the constraints of parallel connectivity; if two relations
match, their arguments must match and one-to-one mapping; that each item in
one structure may only be mapped to one other item [10, 11]. Indeed, structural
alignment has been mooted as a unified account of a diverse range of
phenomena including similarity, analogy, metaphor and concept combination
[12, 13, 14].

Several analogy methods have been developed: transformational analogy,
derivational analogy, proportional analogy, determination-based analogy,
computational analogy, analogy by rendition, and predictive analogy. These
methods of analogy process are different in the technique used to establish the
analogy, estimate the similarities, and transform the concepts and knowledge
from the source situation to the target situation. All of these methods are used
separately in different approaches; using one model of analogy in a learning
system will constrain the learning task. In our work, we propose a learning
system based on hybrid model of analogy, in which we integrate different
methods of analogy in one model. The possibility of using multi-methods of
analogy in one model will contain two main features. First, it will integrate
different models of analogy in a hybrid learning system. Second, it will help in
selecting and applying the suitable analogy method according to the given
learning task.

Our domain of application is the employment accidents. The identification of
“employment accident” is a challenge. When encountering a new case of
employment accident, perhaps we cannot find a direct law to be applied. Then

the expert would compare it with previous situations and find an analogical
situation to use it as a guide for the solution of the current case. Since these
different previous cases may have different structures and knowledge
representations, thus we need to deal with different methods of analogy
according to the given knowledge, i.e. we need a hybrid model of analogy.

This Paper is organized as follows: In Section 2 we review some related work
on different analogy methods. In Section 3, we describe the hybrid analogy
methods of the proposed learning system. Section 4 concludes this paper and
gives some final remarks. An appendix presents two experimental examples as
a case study is included.

2. Related Work

Analogical learning and case-based learning are sometimes used as

synonyms. Case-based learning can be considered a form of single domain
analogy, while, analogical learning solves new problems based on past cases
from different domains of analogy [15]. Indeed, the analogical learning
technique takes different forms of learning methods. Our survey on analogy
reveals different models and usage of analogy. Literature that sheds the light on
the different methods of analogy process is briefly discussed below.

Solving a problem using a transformational analogy [16] is just copying a
solution for an old very similar problem to be a solution for our considered
problem with some modifications. The concept of the transformational analogy
is as: Given a problem Pnew, target problem, the system is first reminded of a
familiar problem Pold, source problem, with a solution Sold, where Pold and Pnew
are so similar that Sold is an approximate solution for Pnew. Then, the system
modifies selected components in Sold to obtain a candidate solution Snew for Pnew.
Thus, in transformational analogy the entire solution Sold is transferred to Snew
and modified to fit the specifications of Pnew. In transformational analogy, the
modified knowledge typically is associative, and often is based on domain
specific heuristics [2]. Transformational analogy does not look at how the
problem was solved; it only looks at the final solution. It looks for a similar
solution and copies it to the new situation making suitable substitutions where
appropriate, e.g. it generates proofs in geometry and simple number theory from
proofs of related theorems.

Derivational analogy [17] represents a problem solving plan as a hierarchical
goal structure, showing how and why each goal was decomposed into sub-goals
i.e. a history of the problem solution. A derivation history of a problem is a tree
showing the top-down decomposition of a goal into sub-goals terminating in a
subroutine. Solving a new problem is by replacing this plan top-down. When the
sub-plan for a sub-goal fails, the plan is patched by solving that sub-goal from
scratch. The derivational analogy process constructed as: Given the target
problem Ptarget, the system will decompose it to some elementary sub-problems

p1,p2,…,pn, solving these sub-problems by analogy to get their solutions
s1,s2,…,sn , then the system recompose these solutions to find the target
problem’s solution, Starget.
The process of derivational analogy consists of:

• Storing derivation histories of solving problems, sub-problems and
their justifications in the source problem plan in an episodic memory.

• Retrieving an appropriate case from the memory that shares
“significant” aspects with a current problem.

• Transferring the derivation of the retrieved solution to the new problem
by replaying relevant parts of the solution and modifying the
inapplicable portions in light of the new context of the target problem.

One of the meanings of the Greek word “analogy”, from which analogy
originates, is proportion [18]. A proportion problem often has the form "A is to
B as C is to What?", the familiar geometric-analogy intelligence-test problem is
an example of a proportion problem with grouped two dimensional objects for
A, B, and C. The proportional analogy [18] has a procedure concerned with the
relations which having the form "A is to B as C is to D". The process is that,
given three terms of proportional analogy, the system will generate the fourth
term. Associating a description with every object called “natural description”,
then to know an object is to know it from some perspective under some
description. Therefore, syntactic proportional analogy relation can be
comprehended from the natural descriptions of its objects and on the other hand,
if a re-description of at least one object is necessary, then the analogy relation is
interpretive. Thus, what is a syntactic proportional analogy relation for one
person could be an interpretive proportional analogy relation for another.

The Determination-Based analogy [19] is a type of analogy based on
knowledge in the form of determination rules between two relations. Its
procedure is concerned with a determination rule between two relations R1 and
R2 of the form "R1 (x , y) determines R2 (x , z)". If two entities X1 and X2 are
characterized by the same entity Y0, then it is very likely that they are also
characterized by the same entity Z0. We say that R1 functionally determines the
value of R2, because the value assignment for R1 is associated with a unique
value assignment for R2 i.e."∀ x, y R1 (x) = R1 (y) � R2 (x) = R2 (y)".
Determination rules may be useful in analogy for two reasons: First, in many
domains a strong theory may not be available, where as determination rules can
be provided, and the system can gain expertise through the acquisition of
examples from which it can reason by analogy. Second, even when a strong
theory is available, its complete education may be difficult, and it may be easier
to elicit knowledge by extracting determination rules.

Another analogy method is the Computational Analogy. Here the method for
modeling analogy [20] consists of:

• Matching procedure: it matches the source problem and the target problem,
obtaining pairwise correspondences between the two problems, in order to
determine the analogy.

• Mapping procedure: the analogy, the pairwise correspondences, is used to
map relationships known to hold in the source domain to the target domain.

Then the system maps the solution of the source problem to get the target
solution An important issue is the form of knowledge representation to be used
by the two algorithms, which provides matching and mapping.

In Rendition Analogy Method [18], we do not need to find a direct solution for
a problem, but we need to make the strange familiar and the familiar strange.
Here, the analogy procedure is “Seeing the target problem as the source
problem”. In the analogy by rendition, the similarities between the target and the
source do not exist prior to viewing one as another; the analogy process creates
the similarity, e.g. seeing the paintbrush as if it were a pump, viewing the
paintbrush as a pump created the similarities that were not there before.
Whenever we notice that two objects are similar, we can do so only with respect
to their existing ontology and descriptions. However, in analogy by rendition a
new ontology and a new level of description are created for the target problem.
The major research problem facing this mode of analogy lies in explaining how
the new perspective is created. When we perceive any situation, we do so in
terms of a conceptual system. In viewing one site as another, we forcibly
interpret the conceptual system associated with the source situation in the
context of the environment of the target situation. The target situation is re-
described by using the terminology of the source system of symbols. This mode
of analogy is closely related to models as in, scale model of a ship, wind tunnel,
Bohr’s model of atom.

Many frameworks for analogy research have arisen, and are typically multi-
phase models operating primarily in a sequential manner. Many of these
frameworks refer to an evaluation phase, but supply little detail on its operation.
These frameworks are notable by their lack of an explicit verification activity,
which operates on the candidate inferences mandated by an analogy. None
propose a validation activity based on the soundness of candidate inferences. For
example, Kokinov [21] identifies phases of retrieval, mapping, transfer,
evaluation and learning; Forbus, Gentner, Markman et al [22] decompose
analogy into retrieval, mapping (alignment and projecting inference) and
abstraction. Hummel and Holyoak's [10] Lisa model encompasses phases of
access, mapping and induction. However, throughout this paper we use the
framework:

Representation � Retrieval � Matching � Refinement � Learning
In this section, different methods of learning by analogy are discussed. For

each method, a definition, and an evaluation of the method are presented. To use
an intelligent analogical-based learning system in real application, such as the
employment accident domain, the system must contain several analogical

methods, in a hybrid manner. To achieve this goal and avoid the weakness of a
single analogy method in some situations, we proposed a learning system based
on a hybrid model of analogy.

3. The Proposed Hybrid Analogy Methods Learning System

To reuse past experiences, we must both recognize the salient features of the
past as well as build a mapping of how that experience may be used in the
present situation. In the previous section, we discussed different models of
analogy; each one of them has its own strategy to map the experience from the
old situations to the new one. Using one model of analogy in a learning system
will constrain the learning task, while the usage of hybrid analogy model will
have two main features. First, it must integrate different models of analogy.
Second, it selects and applies the suitable analogy method according to the given
learning task. The major objective of this work is to develop a learning system
from analogical examples using a hybrid model of analogy, which will integrate
automatic case retrieval and storage, case replay, and modification as required.
Learning is done by using different models of analogy strategies based upon the
task of learning. The proposed learning model consists of four main modules, as
shown in Figure 1. They are: Knowledge Base, User Interface, Case Retriever,
and Learning Module.

User Interface Module

Target
Problem

Case Retriever Module

Learning Module

Target
Solution�

Knowledge Base�

Background
Knowledge Case Base

Figure 1: System Architecture�

In this section, we will explain the structure and the function of each of these
modules. In the description of the system components that follows, we use
examples from the employment accidents domain.

3.1 Knowledge Base Module

The knowledge base consists of two main parts: the case base and the
background knowledge. The case base contains the previous solved problems
and their solutions. The background knowledge contains the required knowledge
to find the solution of new problems, such as determination rules, hierarchy
relations and if-then relations.
Case Base:

It contains three different structures: category, case, and generalized case. The
category is a collection of cases; all of them have common features, which
constitute the category, while the generalized case is a set of cases of the same
category having some additional common features. Each of the three structures
is represented using frames. A frame is a collection of slots (attributes),
associated values, and possibly constraints on values; this collection describes
some entity. Frames are connected to each other by virtue of the fact that the
value of a slot of one frame may be another frame. Three different types of
frames may be used to represent the case base structures. These frames are
category-frame, case-frame, and generalized-case-frame. Each slot in a frame
may be associated with three attributes: value, facet and confidence factor.
Value is the abstract value of the slot. Facet is a method, pointer to another
frame, or procedure to find the derived value of the slot. Confidence factor is an
importance rank, to evaluate the confidence of this slot with respect to the frame
entity.

The category structure is represented by the category-frame. Figure 2 illustrates
an example of a frame of the category injury at work taken from the domain of
employment accidents.

FRAME : injury-at-work
slot value facet c-factor

accident-place work-place(W) LWP-hierarchy 1.0
accident-time work-time(T) LWT-hierarchy 1.0
accident-property accident-condition(C) WAC-hierarchy 0.9

Figure 2: Category Frame

In this figure the name of the category frame is injury-at-work. It has three
slots: accident-place, accident-time, and accident-property. Each of these slots is
associated with the previously discussed three attributes: value, facet, and
confidence factor. The value of the accident-place slot will be derived using the
work-place(W) procedure. This procedure in turn will use the hierarchy of the
legal-work-place, shown in Figure 3, to verify that a given place belongs to, or
not, the hierarchy. Similarly, the two other slots, accident-time and accident-
property, will use the two procedures, legal-work-time and work-accident-
condition in a similar manner.

The case structure will be represented as a frame. Figure 4 illustrates a typical

case frame that belongs to the category of injury-at-work, which was shown
above. When more than one case belonging to the same category are sharing
additional common features, then these cases can be generalized to a general
case, taking into consideration that these common features may be derived using
hierarchy structures of these features. The common features will be factored out
from the frames of the cases into the generalized case. These frames are set to
inherit from the generalized case frame. In this sense, the generalized cases can
be viewed as subcategories. Their existence will improve the efficiency of both
the storage and the retrieval of cases.

Legal Work Place

Main Place Related Place

Work Shop

Production Control Quality Control Stock Room Restaurant� Clinic Room

Engine

Electric

Hydraulic

Assurance

Inspection

Material

Maintenance

Job

Figure 3: Legal work place hierarchy�

FRAME : C05

slot a-value facet c-factor
a-kind-of injury-at-work
accident-place machine-room LWP-hierarchy 1.0
accident-time over-time LWT-hierarchy 1.0
accident-property suddenly WWP-hierarchy 0.9
body-injury complete-amputation 0.8
organ-injury right-arm 0.7
inability partial 0.6

Figure 4: Case Frame
Background Knowledge:

It contains three types of knowledge: hierarchy relations, importance ranks
table and equations and rules. The similarity relations among the different
features of the cases are represented as hierarchical relations, which control the
specialization and the generalization of these features and their values. As an
example, the features that represent the related work times are represented in a
hierarchical relation, as shown in Figure 5.

legal work time

main time extra time

work time break time travelling time over time emergency time

Figure 5: Hierarchy Relation

The importance rank table contains the confidence factors of all features used in
the domain as they extracted from the expert. The contents of this table may be
modified or grown during the system interactions. As an example, the table
shown in Figure 6 represents the importance ranks of some accident features.

Feature Importance Rank
accident place 1.0
accident time 1.0
accident property 0.9
body injury 0.8
organ injury 0.7
inability ratio 0.8

Figure 6: Importance Ranks Table

The equations and rules are extracted from the domain, which could be used or
applied during the learning process. These rules are in the form of proportional
rules, determination rules, and if-then rules. The following are examples for
such rules:
• Proportional rule:

polluted acupuncture is to nurse as poison gas inhalation is to miner
• Determination rule:

inability ratio determine injury compensation
• If-Then rule:

if inability ratio > 80% then injury pension

3.2 User Interface Module

The user interface module facilitates communication between the system and
the user. Therefore, its main function is to exchange information between the
user and the system modules in three manners. First, by accepting the target case
and the user request. Second, for browsing the target solution and the learning
result for the user. Third, by requesting some decisions from some expert user
during the case classification and retrieval processes, when the system has no
knowledge to take these decisions.
The user may be a normal user or an expert. The expert user can interact with
the system to modify or create a new knowledge in the case base or the
background knowledge in various situations that require a decision or in case of
failure states. The user interface accepts the target case from the user as a feature
list. The output will be a solution of the target problem, an answer of the user
request, or a learning knowledge for the user.

3.3 Case Retriever Module

The case retriever module is essentially responsible for the process of
retrieving suitable source case from the case base, which will be analogical to
the target case. As a partial result, there will be classification process of the
target case to some category class in the case base. The case retriever module, as
shown in Figure 7, consists of four sub-modules: Feature Classifier, Category
Retriever, Matched Cases Extractor, and Most Analogical Case Selector.

Each step of the case retriever algorithm performs a basic task of the retrieving
process. First, the feature classifier procedure classifies the features of the target
case to extract its category features. Second, the category retrieval procedure
uses the target case category features to retrieve its category class from the
stored categories in the KB. Third, the matched case extractor procedure
searches for the analogical source cases, which belongs to the target case
category. Finally, the most analogical case selector applies a metric procedure
on each case of the set of analog source cases to select the most analogical one.

Feature Classifier:

The target case, received from the user interface module, is a set of different
features, which describes the case. Each feature has a confidence factor, called
feature importance rank, which is used to evaluate the importance of the feature
with respect to its case. For Example if feature1 has an importance rank greater
than the importance rank of feature2, then feature1 is seemed to be more
valuable for its case than feature2. Thus, the importance ranks can be used to
differentiate between the features of the case and classify them to different
classes of features.

Measuring the difference between cases: The process of retrieving an
analogical case (source case) to the target case is based on finding the common
and the different features between the two cases. This commonality is occurred
either by identical features or by analogical features. In case of identical
features, the common features can be found by applying the normal intersection
process between the two sets of features. While in case of analogical features,
the intersection process must take into consideration the background knowledge
about the analogy relations among the features. This is what will be called, the
generalized intersection between two sets of features.

Set of Matched
Cases

Most Analogical
Case Selector

Target Case
Category Class�

Knowledge Base�

Background
Knowledge Case Base

Matched Cases
Extractor

Feature
Classifier

Category
Retriever�

Category,
Reminding and
Tail Features

Target Case

Source Case

Figure 7: Case Retriever Module

For example, if we have the two sets of features:
L1 = {F1, F2, F3}, L2 = {F2, F4, F5}, and we have in the background
knowledge that F1 and F5 are analogical to each other, then:
Generalized Intersection (L1, L2) = {F2, F5}, Difference (L1, L2) = {F3}, and
Difference (L2, L1) = {F4}.
Category Retriever:

The set of category features resulted from the feature classifier procedure is
used as a guide to retrieve the suitable category class of the target case from the
stored classes of categories in the KB. This procedure retrieves the category
class, which has the maximum common features with the target case. These
common features may be identical or analog to each other. Thus, the procedure
will use the generalized intersection procedure to find the category class of the
maximum intersections with the target case.
Matched Cases Extractor:

The reminding features, obtained from the feature classifier procedure, are the
case features that are common with the reminding features of the analogical
cases. The matched cases extractor procedure applies the generalized
intersection procedure on the target case reminding features and all cases, which
belong to its category class in the case base. Thus, it extracts a set of similar or
near-similar cases for the target case. This set of cases can be filtered again by
applying the generalized intersection, once more, on the target case tail features
and the tail features of the set of cases to extract the matched cases of our target.
Most Analogical Case Selector:

From the previous procedure, matched cases extractor, a set of matched cases
for the target case is generated. From this set of matched cases, the most
analogical case selector selects the most matching one to the target case. This is
done using the importance ranks, which is associated with the features of the
source cases, to calculate a matching rank for the case as a whole. Then, it gets
the case of the highest matching rank, which is considered as the most
analogical source case to our target case. The case matching rank is calculated
using the average sum, a linear metric relation, depending on the values of the
features ranks.

3.4 Learning Module

The learning module is responsible for performing the learning process and
finding the required solution for the given problem.

Different Learning Situations: The output resulted from the case retriever
module is the analogical source case of the target case and its category class. In
analyzing this output, one of the following situations can be encountered:
• An analogical source case, with a classified category for input target case.
• A classified category for the input target case, with non-similar case.

• Neither analog source case, nor classified category for input target case.
In the first situation, we have analogical source case for our target case. Thus,

we must scan the features of the two cases to extract the difference between
them. This difference will lead us to find the solution of the unknown features of
the target case. It may also lead to create, or modify some features of the source
case. Consequently, some relations in the background knowledge may be
created or modified. If the target and source case have the same features and
their values are typical or analog to each other, we can generalize the two cases
to a generalized case. In the second situation, we get the category class of the
target case but no analogical source case was found. Thus we can store this
target case as a new case in the retrieved category. Finally, in the third situation,
there is no category in the KB that can be common with the category features of
our target case. In this situation, an interaction with domain expert to enter the
knowledge of a new category can take place. Then, this new category class is
created and the given target case is stored as the first case in this category. In all
previous situations, it may be needed to modify some existing knowledge or to
create a new one. The learning algorithm performs the different learning
situations during the process of analyzing the retrieved analogical case and its
comparison with the target case. The procedure gets, as input, the retrieved
target case with its category, and the source case. Then, it produces the target
solution and the learned knowledge. To summarize, the following different
seven learning problems can be encountered:
• Finding target case's solution. • Creating a new case.
• Creating a new category . • Refining existing category.
• Refining the source case. • Refining the knowledge base.
• Generalizing cases.

Analogy Method Selection: The selection process of the analogy method to
be applied in the learning task is done according to the type of the matched
features and the relations between them as they appeared in the knowledge
base, e.g. hierarchy relation, proportional relation or determination rules.
The learning task in any of the previous seven learning situations can be
done using one of the following methods of analogy:
• Transformational analogy, by transferring the solution of the features from the

source situation to the target situation, if the features are related to each other
in a form of hierarchy relation.

• Proportional analogy, by simulating features properties from the source
situation to the target situation, if the features are related to each other in a
form of proportional relation.

• Determination-based analogy, by using some determination rules, between
two analog situations features, if the features are related to each other in a
form of determination rule.

The learning module is responsible for performing the different previous
discussed learning situations. Figure 8 shows the essential components of the
learning module, which are: Analogical Case Analyzer, Expert Requester,
Case/Category Creator, Case Refiner, Case Generalizer, and Knowledge
Refiner.

Learning Submodules:

Analogical Case Analyzer:
The analogical case analyzer procedure receives the retrieved source case and its
category class, resulted from the case retriever module. Depending on this
output, one of the following procedures is performed:
• Expert request procedure: If no retrieved category was found for the target.
• Case/Category Creator procedure: When there is no analogical case.
• Case Refiner procedure: When an analogical case of a classified category exist.
Expert Requester:
If there is no retrieved category for the input target case; that is, there is no such
category which includes our target case, then a need for help from domain
expert will be required. This can be performed through the expert requester
procedure. The expert is asked to take the decision for creating a new category
and to enter all its required knowledge. The system receives this knowledge and
interacts with the expert through the user interface module.
Case/Category Creator:
The case/category creator procedure is responsible for the process of creating
new cases using the target case, and the process of creating new categories,
through domain expert interaction. The procedure gets the new knowledge of a
case or a category and transforms it in a suitable format compatible with the
knowledge format stored in the KB.
Case Refiner:
In case of retrieving an analogical case for our target case, a refining process is
required to copy or reuse some features in the source case to the target case,
resulting in a solution for the requested or unknown features of the target case.
On the other hand, in case of retrieving an analogical case for the target case, it
may contain more detailed information than the source case. Thus, the target
case can be used to improve the stored source case. The case refiner procedure
makes a comparing process between the two cases, target and source cases, this
process will result the following two sets of features:
• Source Candidate Features: these are the features of the source case, which

are not found in the target case features.
• Target Candidate Features: these are the features of the target case, which are

not found in the source case features.
The set of source candidate features can be used to find the unknown features

of the target case or to refine its knowledge by reusing or transforming these

�

Figure 8: Learning Module

features to the target case using the analogy rules that are related to the features
in the KB. Similarly, the set of target candidate features can be used to refine
the source case knowledge. The target case may contain more detailed
information than the source case. Thus the target case can be used to improve
the stored source case. According to both of source/target candidate features and
their relevance to the background knowledge, which could be a proportional
relation, determination rule, or hierarchical relation, one of the three analogical
learning methods will be selected i.e. proportional analogy, determination-based
analogy, and transformational analogy.
Case Generalizer:
The case generalizer procedure is used to generalize two typical analog cases
that have common features with the same or analogical values, to get a more
general case. These generalized cases can be viewed as subcategories. Storing
common cases as subcategories may improve the efficiency of the storing and
retrieval processes.
Knowledge Refiner:
In case of new category creation, new case creation, or refining an existing case,
some knowledge may be added or modified in the KB, to satisfy the new case
situation. This is done using the knowledge refiner procedure. The knowledge
refiner algorithm may refine a case or category frame by adding new slots. It
may also modify the structure of a hierarchy and add a new analogy or
determination-based relation into the KB.

Case/Category
Creator�

Case
Refiner�

Analogical Case
Analyzer�

Knowledge
Base

Target Case

Source Case

C
at

eg
or

y
�

 �
,

 C
as

e
=
�
�

Case
Generalizer�

Expert�
Category = � , Case = ��

Knowledge
Refiner�

Category � � , Case � ��

4. CONCLUSION

The learning by analogy approach is concerned mainly with the previous
experience in solving similar new problem situations, instead of solving it from
scratch. The objective of using the learning by analogy was to reduce the time
and the exerted effort when solving a new problem. This paper has described a
new learning by analogy system that integrates different methods of analogy in
one hybrid model. Using one method of analogy in a learning system constrain
the learning process. The different structures of the background knowledge and
the given target cases features will require different methods of analogy, thus we
developed a hybrid learning model to get the benefits of the different methods of
analogy and to provide the suitable analogy method for every target case. The
domain of employment accidents used to demonstrate the capability of the
proposed learning system on a two real cases from the domain.

5. References

[1] J.G.Carbonell & Ryszad S. & Tom M. , “An Overview of Machine
Learning,” Machine Learning, An Artificial Intellgence Approach, Pub.
Morgan Kaufmann, Palo Alto, 1986.

[2] D.M.Boase-Jelinek & D.Milech, “Role of Analogical Reasoning as a Tool
for Training,” Proc. 5th International Conference on Human-Computer
Interaction, Orlando, Florida, Vol. II, Ed. G.Salvendy & M.J.Ssmith, Pub.
Elsevier Science, Amsterdam, 1993.

[3] J.G.Carbonell, “Learning By Analogy: Formulating and Generalizing Plans
from Past Experience,” Machine Learning, An Artificial Intellgence
Approach, Pub. Morgan Kaufmann, Palo Alto, 1986.

[4] Stuart J. Russel, “Analogy and Single-Instance Generalization,” Proc.
4th International Workshop on Machine Learning, Univ. California,
Irvine, pub. Morgan Kaufmann, Los Altos, 1987.

[5] P.H. Winston , “Learning and Reasoning by Analogy,”
Communications of the ACM, (23), 1980.

[6] Christel Vrain, Yves Kodratoff, “The Use of Analogy in Incremental SBL,”
Proc. Knowledge Representation and Organization in Machine Learning,
LNAI 347, Ed. K.Morik, Pub. Springer-Verlag, 1987.

[7] Markman, A. “Constraints on Analogical Inference”, Cognitive Science, 21,
4, 373-418, 1997.

[8] Holyoak K. J. Novick L. Melz E. “Component processes in Analogical
Transfer: Mapping, Pattern completion and Adaptation”, in Analogy,
Metaphor and Reminding, Eds. Barnden and Holyoak, Ablex, Norwood,
NJ: 1994.

[9] Markman, A.B. & Gentner, D.. Structure mapping in analogy and
similarity. In P. Thagard (Ed.), Mind readings. Cambridge, MA: MIT
Press, 1998.

[10] Hummel, J. E. Holyoak, K. J. “Distributed Representation of Structure: A
Theory of Analogical Access and Mapping”, Psychological Review, 1997.

[11] Veale, T. & Keane, M.T. The competence of sub-optimal structure
mapping on ‘hard’ analogies. IJCAI’97: The 15th International Joint
Conference on Artificial Intelligence. Morgan Kaufmann, 1997.

 [12] Costello, F. & Keane, M.T. Efficient creativity: Constraints on conceptual
combination.Cognitive Science, 2000.
[13] Gentner, D., Holyoak, K.J., & Kokinov, B. The Analogical Mind.

Cambridge, MASS; MIT Press, 2001.
[14] Keane, M.T. & Costello, F. Why Conceptual Combination is Seldom

Analogy. In D. Gentner, K.J. Holyoak, & B. Kokinov (Eds.), T h e
Analogical Mind. Cambridge, MASS; MIT Press, 2001.

[15] Agnar Aamodt & Enric Plaza, “Case-based reasoning: Foundational
issues, methodological variations, and system approaches,” AI-
Communications, Vol 7, No.1, 1994.

[16] Ashok K. Goel. “AI in design: Design, Analogy, and Creativity,” IEEE,
Intelligent systems & their applications, Vol.12-No.3, 1997.

[17] Jack Mostow, “Design by Drivational Analogy: Issues in the Automated
Replay of Design Plans,” Machine Learning Paradigms and Methods, Ed.
J.G.Carbonell.

[18] Bipin Indurkhya, “Modes of Analogy,” Proc. Analogical and Inductive
Inference International Workshop, Reinhardsbrunn Castle,GDR, LNAI
397, Ed. K.P.Jantke, Pub. Springer-Verlag, 1989.

[19] Manfred Kerber, “Some Aspects of Analogy in Mathematical
Reasoning,” Proc. Analogical and Inductive Inference International
Workshop, Reinhardsbrunn Castle,GDR, LNAI 397, Ed. K.P.Jantke,
Pub. Springer-Verlag, 1989.

[20] Ken Wellsch & Marlene Jones, “Computational Analogy,” 7th European
Conference on Artificial Intelligence ,Advances in Artificial Intelligence-
II, Brighton, U.K., Ed. B.Boulay, D.Hogg, L.Steels, Pub. Elsevier Science,
Amsterdam, 1986.

[21] Kokinov, B. N. “A Model of Reasoning by Analogy”, in Analogy,
Metaphor and Reminding, Eds. Barnden and Holyoak, Ablex,.
Norwood, NJ: 1994.

[22] Forbus, K. Gentner, D. Markman, A. Ferguson, R. “Analogy just looks
like high level perception”, Journal of experimental and Theoretical
Artificial Intelligence, 1999.

6. Appendix: Two Case Studies

The following two real cases, from the domain of employment accidents, are
used to demonstrate the learning capability of the system.
Case Study 1
Given the following target case: “An employment injury, at the daily work time,
due to the collapse of the stockroom over him when he was bringing some spare
parts to his machine, and this result in a complete amputation for his left leg and
a total inability”. For this target case the frame that represents its features with its
values and importance ranks, is shown in Figure 9

FRAME: Target Case1

Slot Value Facet Confidence
Factor

accident_place stockroom LWP hierarchy 1.0

accident_time daily_work_time LWT hierarchy 1.0

accident_action collapse WAC hierarchy 0.9

body_injury complete_paralysis motion_organ hierarchy 0.8

inability total 0.7

organ_injury right_leg 0.6

work_activity bring_spare_parts 0.3

Figure 9: Target Case1 frame
Find:

1- Type of category that covers this case.
2- Inability_pension and different compensation for the injured employment.

Solution:
Step 1:

The user interface module gets the target case features and passes it to the case
retriever module, which has as a first procedure the feature classifier module.
Using the importance ranks of each feature the feature classifier module will
classify the target case features into three sets, which are:

Category features =
{(accident_place, stockroom) ,
(accident_time, daily_work_time),
(accident_action, collapse)}

Reminding features =
{(body_injury, complete_amputation),
(organ_injury, right_leg),
(inability, total)}

Tail features =
{(work_activity, bring_spare_parts)}

Step 2:
The second procedure of the case retriever module is the category retriever,

which gets the obtained category features and applies the generalized
intersection procedure on it with all the category classes stored in the case base.

Considering the legal_work_place, and legal_work_time hierarchies, which are
shown in Figures 3, 5, and 10. The stockroom is a related_work_place, which is
consequently a legal_work_place. Also, daily_work_time is a main_time, which
is consequently a legal_work_time. Considering the work_accident_condtion,
hierarchies the collapse is a suddenly_accident, which is consequently a proper
accident_condtion. Thus, the three category features of the target case are
equivalent to the three features of the category class injury_at_work. Therefor,
the applying of generalized intersection procedure result the injury_at_work
category class, which is the first requirement.

work_accident_condition

suddenly_accident external_reason

collapse collision explosion fire transportation

collision
earthquake

Figure 10: Work accident condition hierarchy

Step 3:
The third procedure of the case retriever module is the matched cases extractor,

which gets the target case reminding features, {(body_injury,
complete_amputation), (organ_injury, right_leg), (inability, total)}, and the
retrieved category class, injury_at_work. Then, it applies the generalized
intersection procedure with all the cases that belong to the retrieved category
class stored in the case base. Now, consider the following cases, C01, C02, C03,
and C04 which belong to the retrieved category class and their reminding
features are:
C01:

{(body_injury, complete_paralysis),
(organ_injury, right_leg), (inability, partial)}

C02:
{(body_injury, complete_bone_break),

(organ_injury, right_leg), (inability, total)}
C03:

{(body_injury, deep_wound),
(organ_injury, right_leg), (inability, partial)},

C04:
{(body_injury, complete_amputation),
(organ_injury, left_arm), (inability, partial)},

motion_organ_incapability

amputation paralysis

complete partial complete partial

Figure 11: Motion organ incapability hierarchy
Considering the motion_organ_incapability hierarchy, which is shown in Figure
11, that describes the incapability of motion organ, the amputation of a motion
member is equivalent to paralysis of it. Also, both of the right leg and the left
arm are members of motion. Where, the inability feature is common between
them but with different values, total and partial, thus the case retrieval module
will return the two cases, C01 and C04 as two analogical source cases to the
target case.
Step 4:

The fourth procedure of the case retriever module is the most analogical case
selector. This procedure gets as input the set of analogical source cases, C01 and
C02, for our target case, then using the importance ranks of the features of the
target case it finds the most analogical source case with the target case. Since the
ranks of amputation and leg features are 0.8 and 0.6, thus:

Rank of amputation > Rank of leg
Therefore, the matching of “amputation” feature between our target case and
C04 is more preferable than the matching of “leg” feature between the target
case and C011. Thus the most analogical selector will consider C04 to be the
most analogical source case that can be retrieved.
Step 5:

The case retriever module will pass the retrieved analogical source case C04 to
the learning module, which has as a first procedure, the analogical case
analyzer. This procedure will explore C04 and discover that it is a proper case,
thus it will divert the case to the case refiner procedure. Our retrieved analogical
case, C04, has the following tail features:

{(salary_compensation,100%), (transportation_charge,100 LE),
(inability_ratio, 60%), (inability_pension, 30%)}

The case refiner procedure will compare the tail features of both the target and
the retrieved case and find that, the retrieved case has features that can be
suggested to be new features for the target case with little modification. Using
the background knowledge we find that the learned knowledge are:
• The category name is injury_at_work.

• The salary_compensation is a fixed ratio 100%, thus it is transferred as it is
to the target case.

• The transportation_charge is variable to each case, so it is transferred as a
new feature without suggested value to the target case.

• The inability_ratio depending on the organ, which has amputated, from the
background we find it is 80% for the left leg, so the inability_ratio feature
transferred with value 80% as a new feature to the target case.

• Finally, the inability_pension is a fixed ratio 30%, thus it is transferred as is
to the target case.

Case Study 2

Now, consider adding a new source case, shown in Figure 12, to the case base
and running the system on the target case, described in case study 1. Then, the
resulted matched case will be this new one. The reason is that both of the source
and target cases have a higher degree of similarity than found in the former
source case in case study 1. As a matter of fact, all the known features of the
target case are found in the source case and their values either identical or
analogical. Also the unknown features of the target case can directly be matched
with the source case features. That is, Target case features – Source case
features = Φ, and

Source case features – Target case features = Target unknown features
Thus the learning module will transfer the missing feature values from the

source to the target case, then the case generalizer will create a new generalized
case to comprise them as a sub-categories. This is shown in Figure 13.

slot value

a_kind_of ?
accident_place stockroom
accident_time daily_w_time
accident_property suddenly
accident_descrip. collapse
body_injury comp_amput..
organ_injury left_leg
disability ?
injury_ratio ?
injury_pension ?

injury_compens. ?
Target Case�

slot value

a_kind_of injury_at_work
accident_place machine_room
accident_time over_time
accident_property suddenly
accident_descrip. machine_falling
body_injury comp_amput.
organ_injury right_arm
disability total
injury_ratio 100 %
injury_pension 130 %
injury_compens. 30 %

Source Case�

Figure 12: Target/Source case frames

Figure 13: Case Generalizing

category: injury_at_work �
work_place�accident_place�
work_time�accident_time�
accident_condition�accident_properties�

generalized C01�
complete_amputation�body_injury�
total�disability�

�

generalized C02�
semi_paralysis�body_injury�
partial�disability�

�

case C01�
left_leg�injury_organ�

�

case C02�
right_arm�injury_organ�

�

