
 �

AKL+: A Concurrent Language Based on Object-Oriented and
Logic Programming Paradigms

Khaled Shaalan^ Seif Haridi* Salwa El-Gamal^ Ahmed Rafea^

* Swedish Institute of Computer Science (SICS)
^ Institute of Statisitical Studies and Research (ISSR)

Abstract
Programming languages naturally play an essential role in the software development process. Finding more powerful
and better suited language has been the aim of language designers ever since the dawn of computer programming.
For instance, the most recent research in concurrent logic programming paradigm is directed towards concurrent
constraints framework where the development of the AKL (Agents Kernel Language) language is significant. AKL+
is a natural development which is derived from the fusion of concurrent constraint logic programming and object-
oriented programming paradigms. The result is more than a sum of its parts since many of the inadequacies of one
programming paradigm are compensated for by features of the other.

This paper is going to describe the AKL+ language. The schemes for developing an efficient implementation is
discussed. The AKL+ language has been implemented on UNIX-based workstations and they are parts of the official
release of the AKL system, AGENTS, developed at SICS (Swedish Institute of Computer Science).

�. Introduction
AKL+ is a concurrent object-oriented language based on the concepts of classes, generic
classes, metaclasses, multiple inheritance, delegation and abstractions of classes and
�������	
��
��

����
��
���
��
���
����������
����������
��������
���
����	
��������

methods and instances of classes can be expressed as first-class values in the language
which may be passed as arguments, returned as results and stored in attributes of
objects. Objects are the run-time instances of classes, the behavior of these objects is
defined by methods associated with classes. State is an object and this has the advantage
that uniform access and encapsulation is achieved. The language provides for both
higher-order and data-driven programming techniques.

The architecture of the language allows it to support object-oriented programming at
two levels. The highest level consists of a set of standard classes for most common
operations, such as creating objects. These classes act as the building blocks of AKL+
classes and are designed to meet the needs of most users. They provide a general-
purpose object-oriented language that embody the default behavior of the language. The
second level is the functional interface to AKL+, which allows the default behavior to
be customized on which the programmer can build his applications.

The AKL+ language has been implemented on UNIX-based workstations and it is part
of the official release of the AKL system developed at SICS (Swedish Institute of
Computer Science). The AKL system, AGENTS, is available from SICS for research
and educational purposes (contact agent-request@sics.se).

 �

�������
�
��������
���
��������
 ���
���
����
�������
����	
�������
!
��"��
�

����

������#
��
���	
�������
$
���%�
��
���

����
��������
��
���
���&
��������	
�������

'
��������
���
��������������
�������
��
���
��������
���
��� �
��
 �
���

���������
���&
��
��
���������
�����������
��������	
�������
(
���������
���
�����	

�. Previous work
In the last few years, a large number of languages have been proposed which combine
logic programming and object-oriented programming. We distinguish between three
����
������
��
�����
�������)*�+
�
,���-oriented languages extended with logical
�����������
*�+
� �

���
���������
*�
,���-��������
���
�����+�
�����������
���
*!+
�����

based object-oriented languages, either logic based languages extended with object-
oriented constructs or higher object-oriented languages built on top of logic based
languages.

Mergers with a logic based language are the most numerous. The historically earliest
��������

#
�������
���
-�%�����
��.�
���
/������
��$�
��"�
���
������
���������
��

the development of this group, and may thus be also viewed as belonging here.

In what follows we compare our language (AKL+) with the most related ones, i.e. with
those languages that are based on concurrent logic programming. We will compare with
Vulcan, Polka, Sandra, Logic Program with Inheritance, and Oz.

Vulcan ��!��$� supports inheritance by code copying. This reduces the run-time costs,
but increases the size of classes. In AKL+, the inheritance is computed at compile time
in such a way that the class dispatcher is cleanly captured. Like Vulcan, both inheritance
and delegation are supported. Vulcan resolves the interference of state change by an
auxiliary method definition that works on the new sate. Unlike Vulcan, AKL+ utilizes
the state threading through the method body. Another difference is that AKL+ provides
mechanisms for resolving multiple inheritance conflicts in at least two ways. An AKL+
instances of class “object” is like instances in Vulcan. However, state is encoded as a
separate object whose identity is held as the unshared argument in the process of the
object, which is generalized to be included in other types of objects. This has the
advantage that if state is represented as an object at the language level then uniform
access and encapsulation are achieved. Another similarity is that verbose description of
state change is avoided.

Polka �!�
������ts delegation where the class hierarchy is searched each time a method
is invoked. With multiple inheritance, this causes a problem since languages based on
concurrent logic programming cannot use backtracking to search through the inherited
objects for the right clause, and once a message has been forwarded to a particular
object, the choice is fixed. Polka utilizes broadcasting primitives which automatically
make unique copies of a message for each inherited object. Even so, problems still
remain about what to do if more than one copy of the message is successfully processed,
or if all the copies fail to deal with. In AKL+, the method dispatching mechanism does

 !

not allow such a situation. Another difference is that Polka does not provide any
solution for resolving multiple inheritance conflicts. An AKL+ instance of class
“object” is like an instance in Polka but the state is held as unshared argument in the
process of the object.

Sandra
�$�'�
��������
����������
 ����
���
�����
��������#
��
��������
����
�ime a
method is invoked. Unlike AKL+, it is the designer's responsibility of the inheriting
guardian to resolve any name conflicts due to multiple inheritance. Another difference is
that in Sandra it is required to define the types and the mode of instantiation of the
method's arguments.

Logic Program with Inheritance
�0�
��������
�����������

#
����
���#���	
��
���&�

the inheritance is computed at compile time in such a way that the class dispatcher is
cleanly captured. Self-reference is not allowed and “self” is used as a sugared syntax for
the tail recursive call that simulates a state change. In AKL+, both self-reference and
base-reference are allowed. Another difference is that Logic Program with Inheritance
does not suggest any capabilities to resolve the multiple inheritance conflicts. Like
AKL+, Logic Program with Inheritance differentiates between global and local
arguments. Global arguments in both languages have the same treatment. However,
local arguments in AKL+ have a scope limited to a method definition rather than the
entire class definition.

Oz ��.���� is perhaps the most closest to AKL+. There are some similarities between
Oz and AKL+. Both use an efficient data-structure to represent the object's state. Both
resolve the interference of state change by threading the state through the method body.
The method application construct of Oz is equivalent to method delegation of AKL+.
Both can express privateness. Both support cell based and port based objects with the
same functionality. Both support abstractions that provides for all higher-order
programming techniques. Both adopt class based inheritance. However, we differ in the
approach used in handling multiple inheritance. Oz strategy specifies a linear, overall
order of classes, and then specifies that application of a class method or attribute starts
����
���
����
��������
�����	
��
�������
���

#
��#���
�����
���
����
���
���
 ���
����

approach is that the ordering of superclasses in a class declaration has significant
semantic implications. In AKL+, we don't flatten the inheritance graph into a linear
chain, and then deals with this chain using the rules for single inheritance but instead we
model the inheritance graph directly. AKL+ provides mechanisms for resolving multiple
inheritance conflicts.

Other differences which hold with all the above languages are the following. AKL+
supports features which are unique to the above related languages. AKL+ provides the
synchronization schemes that resolve the “inheritance anomaly”. AKL+ supports
differential inheritance where the designer is able to be selective about what is
inherited. AKL+ supports the qualification of reference where each method is executed

 $

in the context of class that can be changed. AKL+ supports data-driven programming
like, specifying daemons, default methods, and class-specific methods.

�. AKL
In this section, we will present AKL because it was chosen as concurrent constraint
logic programming element of our language. The reasons for this include its use of deep
guards, its use of don't know nondeterministic capabilities of Prolog and the constraint
logic programming languages with the process-describing capabilities of concurrent
logic languages such as GHC, and the simplicity and flexibility in its support of multiple
programming paradigms, such as concurrent, object, functional, logic, and constraint
programming. In addition, AKL offers a large potential for automatic parallel execution.

�.� Basic Concepts
In a concurrent constraint programming language, a computation state consists of a
group of agents and a store that they share. Agents may add pieces of information to the
store, an operation called telling, and may also wait for the presence in the store of
pieces of information, an operation called asking. These two operations provide the
necessary primitives for concurrent communication and synchronization. The
information in the store is expressed in terms of constraints, which are statements in
some constraint language, usually based on first-order logic. If telling makes a store
inconsistent, the computation fails. Asking a constraint means waiting until the asked
constraint either is entailed by (follows logically from) the information accumulated in
the store or is disentailed by (the negation follows logically from) the same information.
In other words, no action is taken until it has been established that the asked constraint
is true or false. For example, ����� is obviously entailed by ����� and disentailed by X
���.

The notion of constraints in AKL is generic. The range of constraints that may be used
in a program is defined by the current constraint system, which in AKL, in principle,
may be any first-order theory. Constraint systems as such are not discussed here, for
����
�������
���
���	
1��
���
�������
��
����
�������������
 �
 ���
���
�
������
����������

�#����
 ���
�
��
�
"����
������������
 ����
��
����������#
����
��
2�����
����
���
34�

��!�	
-����
�����������
��
���
 ���

�
��������
��
���
����
 <expression>=<expression>
 <expression>≠<expression>
 <expression><<expression>
and the like.

�.� Language Design
In this section AKL is introduced one language construct at a time, also explaining its

���"���	
1��
�
������
����������
��
���
�����������
�����
���
���� ����
�5����(�6�	

The agents of concurrent constraint programming correspond to statements being
executed concurrently. Constraints, as described in the previous section, are atomic

 '

statements known as constraint atoms (or just constraints). When they are asked and
when they are told is discussed in the following. A procedure atom statement of the
form

 <name>(X�,..., Xn)

is a defined agent. In a procedure atom, <name> is the functor, an alpha-numeric
symbol, and n is the arity, the number of arguments, of the atom. The variables X�, ..., Xn

are the actual parameters of the atom. Occurrences of procedure atoms in programs are
sometimes referred to as calls. Atoms of the above form may be referred to as name/n
atoms, which uniquely identifies the corresponding procedure atom.The behavior of
atoms is given by procedure (agent) definitions of the form

 <name> (X�, ..., Xn) :=<statement>

The variables X�, ..., Xn must be different. During execution, any atom matching the left
hand side will be replaced by the statement on the right hand side. For example,

 plus(X, Y, Z) := Z = X + Y.

is a definition of ��	
��.

A composition statement of the form

 <statement>, ..., <statement>

builds a composite agent from a sequence of agents. Its behavior is to replace itself with
the concurrently executing agents corresponding to its components. A hiding statement
of the form

 X�, ..., Xn :<statement>

introduces variables with local scope. The behavior of a hiding statement is to replace
itself with its component statement, in which the variables X�, ..., Xn have been replaced
by new variables.

A choice statement of the form

 (<statement> %<statement>
 ; ...
 ; <statement>%<statement>)

where symbol % is one of →, ?, | and to these correspond conditional choice,
nondeterminate choice, and commit choice of clauses, respectively. The components of

 (

the choice statement are called (guarded) clauses, the components of a clause guard and
body, and a clause may be enclosed in hiding. The guards of a choice execute with
corresponding constraint stores. If the guard fails, the corresponding clause is deleted. If
all clauses are deleted, a method fails. Conditional choice corresponds to if-then-else in
Prolog. If the first remaining guard succeeds, the goal is replaced with the body of this
clause (The clause is promoted). Nondeterminate choice corresponds to disjunction in
Prolog. If only one clause remains, and its guard is successfully reduced, the choice is
said to be determinate. The clause is then promoted. Otherwise, if there is more than
one clause left, the choice statement is said to be nondeterminate, and it will wait.
Subsequent invocations may make it determinate. If eventually, a state is reached in
which no other computation step is possible, each of the remaining clauses may be
promoted in different copies of the state. The alternative computation paths are explored
concurrently. Commit choice corresponds to guarded clauses in committed-choice
languages. If any of the guards is successfully reduced, the corresponding clause is
promoted.

AKL exploits the module system facilities. Procedures declared as “public” in a module
declaration are exported, e.g.

 :- module calc.
 :- public
����7!	

exports the definition of� ��	
�� defined in module calc. Normally only exported
procedures may be imported, e.g. calc.plus(X,Y,Z) calls the agent ��	
�� in the module
calc.

�.� Objects
Objects are realized as processes that take as input a stream of requests. The list is by far
most popular communication medium in concurrent logic programming. In this context
lists are usually called streams. The stream preserves the identity of the object. The data
associated with the objects are held in the arguments of the process. An object definition
typically has one clause per type of request, which performs the corresponding service,
and one clause for terminating (or deallocating) the object.

Example: A standard example of an object is the bank account, providing withdrawal,
deposits, etc.

 :- module bank.
 :- public
��%�8
��%8�������7�	

 make_bank_account(S) :=
 (true →

��%8�������*��
.++	

 bank_account(Stream, N) :=

 6

 (Stream = []→ true
 9
��:�;�)
������
<
� ������ *�+=:�
→
;�
��
;
- A,

��%8�������*:�
;�+
 9
��:�;�)
������
<
��������*�+=:�
→

;�
��
;
&
��

��%8�������*:�
;�+
 ; M,R: Stream = [balance(M)|R] → M = N,
 bank_account(R, N)).

A computation starting with

 bank.make_bank_account(S),
 �
<
�
������*>�+�
�������*6+�
 ������ *!+�

������*>�+�

yields
 >�
<
.�
>�
<
$

Finally, there are a few things to note about these objects. First, the type of inheritance
that follows naturally from this model supposes that all the ancestors of an object from
which it inherits properties are themselves fully fledged objects. This can be easily
modeled within the concurrent logic programming languages: each object has separate
private channels back to the ancestor through which it passes back the information. The
hierarchical structure of the objects is reflected by the structure of the communication
network that they form. This can also cope with multiple inheritance using several
channels, though the mechanisms used become somewhat cumbersome.

Second, when we create an instance of an object, it is also necessary to create a fresh
instances of all its ancestors. So instead of creating one object, we may need to create
half a dozen separate objects, each of which has the normal object overhead.

Third, there is another perhaps more important difficulty with inheritance in this model
which has to do with dynamic binding and the “self” variable. To be able to provide this
facility with the explicit channel system that is used in this model, an inheritance path
would need to have two channels, one to pass the message up, and the other to pass the
self messages back down again. But when they reach the original object, there is a
possibility for deadlock. It is currently awaiting a response to its original message and to
do that it must defer the consideration of other incoming messages. But this message is
itself an incoming message.

Fourth, verbose description of objects with state and communication. Each method must
at the very least repeat the names of the state variables in both the head of the method
and in the tail recursive call. Each method must explicitly fetch the next method from
the stream and then recur on the stream of the remaining messages. Such tedious
repetition easily results in subtle mistakes.

 0

Fifth, relying on streams as a communication medium may cause problems. These
���
����
���
���"��
��
���

#
�����������
2����
�����
�
,����
*������+
����

communicate by posting and checking constraints upon bags.

Sixth, no syntactic support for object-oriented programming was proposed.

As shown, this model did not deal with some of the fundamental issues involved in
object-oriented programming, such as multiple inheritance conflicts, self
communication, the accessing of state variables and clauses. Consequently, the
concurrent logic based object-oriented programming languages developed since can and
should provide solutions to these problems.

As its name suggests, AKL is a programming language kernel. AKL supports the basic
object-oriented style. This enables us to design and efficiently implement a complete
language on top of AKL with a proper linguistic support and semantics.

�. AKL+
The notion of a class is central to AKL+: every object is an instance of a class. An
AKL+ class determines the structure and behavior of the objects that are its instances. In
AKL+, a class is declared by writing it in the form

 :- class <class name>.
 :- supers [<super�>,...,<supera>].
 :- attributes [<attribute�>,...,<attributeb>].
 :- private [<selector�>,...,<selectorc>].
 <method�>.
 ...
 <methodm>.

The <class name> is an expression of the form <identifier>(X�,...,Xn
�� ����� and
X�,...,,Xn represent variables. The <identifier> is an alpha-numeric symbol. <method�>,
..., <methodm��������
� are method definitions. The superclasses are the classes given
in the supers declaration. It is possible to be selective about what is from a superclass,
so-called differential inheritance, by writing the superclass in the following form

 <super >-[<selector�>,..., <selectord>]

where <selectori> consists of the functor and arity of the excluded method. A method
that its selector is given in the private declaration is hidden. AKL+ makes it possible to
declare a list of attributes with their initializations. The attribute declaration takes the
form

 5

 <attributei > =(X)\\<statement>

where attributei, an alpha-numeric symbol denotes an attribute name, will be assigned
its initial value returned through the (output) argument X after applying <statement>.
Note that the definition of the initialization method is bound to an attribute's storage
(state variable), tagged with the attribute name, which we call method abstraction. The
difference between a class method and a method abstraction is that a class method
belongs to the class in which the definition textually appears, while a method
abstraction has no statically bound context. A method abstraction takes the general form

 M = (X�,...,Xn)\\<statement>

Not only we can define a method abstraction as first-class value but also we can define a
class as first-class value. An abstraction of a class takes the form

 X = # <class name>

such that the <class name> can be passed along to any method or class. Defining
classes and methods as abstractions provides for all higher-order programming
techniques. The behavior of an object is given by method definitions of the form

 <identifier>(X�, ...,Xn):= <statement>

The <identifier> is an alpha-numeric symbol denotes the functor of the methods and n
denotes its arity. The variables X�,..., Xn must be different and are called formal
parameters. The method definition has the normal control structures of the AKL
���������
����������
*���
�������
!	�). It also inherits the concurrent constraint
programming of its host language. AKL+ maintains a “threaded” state such that only
one of the state-using sections in a method body can at the same time be entered.
Atomic statements in method body are described below. Variables that appear in these
statements are called actual parameters. Their occurrences in programs are sometimes
referred to as calls.

Reserved variables. In AKL+, each method is executed in the context of a class, called
“base class”. This class may not be the class where the method is defined. The current
contextual class is used to determine dynamically which methods are called. Within a
method, the base class is referred to by the reserved context variable Self and the state is
referred to by the reserved variable State.

Procedure call. From the object-oriented system perspective, calling a procedure in a
module behaves like calling a method in a class. An invocation to the AKL procedure
definition p/n which is defined in module m takes the form

 m.p(X�, ..., Xn)

 �.

Method delegation. A delegation to a method definition takes the form

 p (X�,...,Xn) # q

where q is a class name. The method p/n may be defined in q or in any ancestor class of
q. Within p/n, the Self variable will be bound to the same context as the calling
definition, i.e. delegation preserves Self.

Method invocation. An invocation of a method definition takes the form

 p(X�,...,Xn) <# q

The method p/n may be defined in q or in any ancestor class of q. Within p/n, the Self
variable will be bound to the abstraction of the called class.

Class application. An application of the method p/n to the class abstraction Q takes the
form

 p(X�,...,Xn) # Q

where Q is a variable that is to be bound to a class abstraction. A key feature is the
possibility to call methods of the base class, so-called base-class reference. Simply, the
base-class reference is an application of a method to Self which takes the form

 p (X�,...,,Xn) # Self

and may have the syntactic sugar

 p (X�,...,Xn)

Method application. An application of a method abstraction bound to a variable Y,
with the actual parameters ��������� takes the form

 Y(X�,...,Xn)

Message sending. A class can have a create method, e.g. new, for generating instances.
An instance incorporates both the data representing its current state and has access to
methods to perform its processing. Methods can send messages to other objects, or,
using the self attribute, back to their target object. The message send takes the form

 p(X�,...,Xn)^Object

 ��

At any point in time, the object holds a state called its current state. When an object is
applied to a message, the object advances to a possibly new state by applying the
method identified by the message.

 State.

State�

 Staten

In AKL+, state is an object able to access and update attribute values only through
messages. Consequently, encapsulation of state and uniform access are realized.

Note that the difference between the message sending and the method call is that the
method call is performed immediately on the current state, whereas the other messages
ma y be taken and change the state before the message is received.

�.� Standard Classes
One of the most important design issues, in AKL+, is to supply programmers with the
minimum set of efficient and effective built-in standard classes (library). This fulfills the
users computational needs as it provides him with a simpler, and easier-to-use
computing environment. The programmer of the language can use, specialize, or extend
some of these classes to define an initial class for the class hierarchy at the topmost
level of the class hierarchy. AKL+ standard classes are classified into two categories:
state representation standard classes and object type standard classes. AKL+ provides
two standard state classes: the “state_hash” class and “state_array” class as an important
piece of global information that is used by instances or other clients of the class. These
standard classes greatly improve the efficiency in manipulating attributes. AKL+
provides three standard object type classes: the “object” class for creating port objects,
the “cell” class for creating light-weight objects that provides a minimal form of state
change, and a “sync_object” class for synchronizing the acceptance of messages to the
objects. These standard classes create objects with encapsulated state. AKL+ provides
two standard classes for programming the synchronization constraints namely:
“synchronizers” and “transitions”. The main advantage to the synchronization
constraints schemes in AKL+ is the clean separation of concurrency control and the
method specification such that they can be inherited, overridden, or extended separately
without affecting each other. Furthermore, one scheme can be integrated and composed
with other schemes. These standard protocols are provided to support synchronization
�������
���
�����"���
���
?�����������
������#@
��'��(��6��0].

�.� Implicit Behavior
A set of implicit behavior is defined for each class definition. These are attributes
manipulation, class membership, method dispatcher, and default methods.

message� message� messagen

 ��

�.�.� Attribute Methods
Attributes declaration implicitly define a set of methods which has a behavior
describing how attributes is manipulated.

Example: Consider the class counter with class ur_object, an initial class, as a
superclass. Class counter defines the attribute val and the method ����� that increments
the current value of val by one. The prefixes get_, set_, and init_ of an attribute name
with arity one are chosen for attribute access, update, and initialize methods,
respectively

 :- class counter.
 :- supers [ur_object].
 :- attributes [val=(V)*A<.+�	

 inc :=
 (true → get_val(V),

����	���*A�A�+�

���8"��*A�++	

The attributes definition of class counter implicitly defines the following methods:

• the attributes reference method ��������. This method returns a list of all attribute
names.

• the attribute initialization methods: �����
����� for the self attribute inherited from
ur_object and ���������� for the val attribute. For example, sending the message
init_val(X) to the object O of class counter through:

 init_val(X)^O

 binds X with �.

the attribute property method: ������	���������� �!. This method tabulates the
method abstractions of initialize, access, and update methods of each attribute. It
is very useful in defining generic attribute access and update methods where the
attribute name may not known until run-time, e.g. the definition of the generic
attribute access method may be as follows:

 get(A,V):=
 (true → attribute_property(A,_Init,Get,_Set),
 Get(V)).

It should be noted that users can also define and implement alternative state
representation and object type classes for class instances by the virtue of programming
at the meta level. In this case the attribute access and update methods should be
provided.

 �!

�.�.� Class Membership Method
A definition of the method � ������ is implicitly defined for each class definition. This
method is used to determine the identity of the class of an object. A main usage of this
method, is the possibility of defining class-specific methods

���	
B���
�
�����-specific
method is invoked the appropriate method is executed on the basis of the identity of the
target classes.

Example: consider the following definitions for classes representing geometric solids.

 :- class solid.
 :- supers [ur_object].

 :- class sphere.
 :- supers [solid].
 :- attributes [radius=(V)*A<.+�	

 :- class cube.
 :- supers [solid].
 :- attributes [edge=(V)*A<.+�	

 :- class cone.
 :- supers [solid].
 :- attributes [radius=(V)*A<.+�������<*A+*A<.+�	

We might define class-specific behavior for spheres, cubes and cones that computes the
volume as follows:

 volume(V):=
 (true → get_self(GeometricSolid),
 typeof(ClassType)^GeometricSolid,
 volume(ClassType,V,GeometricSolid)).

 volume(SolidClass,V,GeometricSolid):=
 (SolidClass = sphere | get_radius(R)^GeometricSolid,

A
��
$7!C!	�$C:C:C:
 ; SolidClass = cube | get_edge(E)^GeometricSolid
 V is E*E*E
 ; SolidClass = cone | get_radius(R)^GeometricSolid,
 get_height(H)^GeometricSolid,

A
��
!	�$C:C:C47!+	

 �$

�.�.� Method dispatcher
A definition of the method dispatcher is implicitly defined for each class definition. The
clauses of the method dispatcher is the entry point to the method handler. When a
message M, is sent to object O of class C, we apply the method dispatch(M) on class C.

�.�.� Default Methods
Sometimes it is useful to declare a class with a default behavior. Default behavior is a
catch-all method. It is automatically invoked when the received message is not
previously defined or inherited by the class. In AKL+, default behavior is provided in
the form of message not understood and user-defined default methods.

Message not understood. For each class, this method is implicitly defined unless a user
default method is defined or inherited. The message not understood method is very
useful in exception handling. It reports that the message is not understood by the class
that handles the message.

Example: Consider delegating the method �����
 from class countUp to the class
counter when the base class is countUP

 :- class countUp.
 :- supers [ur_object].
 ...
 ���*!+
D
�������
 ...
This will report the following

 Message not understood:
���*!+
 Self: countUp
 Handler: counter

which indicates that the message �����
 cannot be understood by class counter, the
handler, when the base class, referred to by Self, was countUp. In other words, since the
message ����� is not part of the counter interface, counter cannot serve this message.

User-defined default method. The method "����	���� is chosen to denote a user-
defined default method. For example, the following default method delegates the
unknown messages to the target object

 '$default'(Msg):=
 (true → get_self(Obj),
 unknown(Msg)^Obj).

 �'

�.� Generic Classes
A class gains a generic property by associating it with parameters. The scope of these
parameters is the class methods. A parameter of a parameterized class lies in four
categories: class abstraction, constant, object, or method abstraction.

Example: A good example for showing the usefulness of generic classes is a general
sorting algorithm. Imagine different classes that needs sorted list according to several
criteria such as ascending, descending, cartesian product of two domains, and so on.
Sorting the list with respect to any criterion only differs in the way the elements of the
list are compared. So, good software design is to write one general sorting algorithm and
several comparing algorithms and pass the appropriate comparison for each sorting
application. Using a parameterized sorter class it is possible to generalize the sorting as
follows.

 :- class sorter(Method).
 :- supers [ur_object].

 ����*�.�
�+)<
 *
�.
<
��
→ L = []
 9
�.
<
�E�
=
�����
→
F�����*E��
������
�+�

����*�����
�����++	

Note that passing the comparing function to the sorting algorithm is one way to emulate
higher order functions.

�.� Synchronization
The language supports the basic synchronization schemes that achieve the concurrency
control for a concurrent object. This is realized by providing the concurrency control
mechanisms for sending messages in a batch, serializing messages, acknowledgment of
messages between a sender and a receiver objects, and by specifying the synchronization
constraints for an object to accept or delay its messages according to its current state.

The concept of inheritance anomaly has been introduced into object-oriented concurrent
�����������
��
��'�
���
�������
�������
��
��(��6�	
��
 ��
��� �
����
�G������

synchronization schemes are weak in one or more of these anomalies. The appearance
of these anomalies has a great significance because, from now on, any forthcoming
proposals for language tools in object-oriented concurrent programming can and should
be demonstrated to successfully solve these critical cases. In our language, we have
provided two standard protocols, transitions and synchronizers, to support
synchronization schemes for resolving the anomaly. A synchronizer is a combination of
a guard specification (an activation condition for a method), enabling specifier and a list
of accept method sets. In essence, this synchronization scheme is similar to a guarded
method but is more flexible in that a single guard can be assigned to multiple methods
in the accept method sets. Transitions can be used as an alternative to the

 �(

synchronization scheme synchronizers. A transition specifies the transitional behavior
of an object's accept method set, that reflects the synchronization constraint dictated by
the internal state of the object. The transitions are specified on a method-by-method
basis. The following example shows the definition of a bounded buffer with
synchronizers.

Example: Consider the definition of the bounded buffer, buffer_sync, class with
synchronizers. It is a first-in first-out buffer that can contain at most MaxSize items. It
has two public methods �	��� and get��. The method �	��� stores one item in the buffer,
an array, and #���� removes the oldest one. Two attributes in and out that act as indices
into the buffer. Upon creation, the buffer is in the empty state and the only message
acceptable is �	���; arriving #���� messages are not accepted but kept in the message
queue unprocessed. When a �	��� message is processed, the buffer is no longer empty
and can accept both �	��� and #���� messages, reaching a ”partial” (non-empty and non-
full) state. When the buffer is full, it can only accept #����, and after processing the #����
message, it becomes partial again. The method �
���$ defines the possible accept
method set of the bounded buffer with their identifiers. The method
 ��%����&���$�
specifies the enabling of methods for each state of the bounded buffer.

 :- class buffer_sync(MaxSize).
 :- supers [synchronizers,state_hash].
 :- attributes [in=(V)*A<.+����<*A+*A<.+���H�<*A+*A<.+�

 buffer=(Array)*�%�	�� 8����#*F�G��H��.�����#++�	

 mset(SetId,Mset):=
 (SetId = initially → mset(empty,Mset) # buffer_sync(MaxSize)
 ; SetId = empty →
F���<
����7��

 ; SetId = full →
F���
<
����7��

 ; SetId = partial →

����*����#�F����+
D

�����8�#��*F�G��H�+�

����*�����F����+
D

�����8�#��*F�G��H�+�

����	���8�����*F�����
F�����
F���++	

 synchronizer(MethodSet,Enables):=
 (true → get_size(Size),
 enable(Size,MaxSize,MethodSet,Enables)).

 enable(Size,Max,MethodSet,Enables):=
 *
��H�
I
.�
��H�
J
F�G
→ Enables = partial
 ; SiH�
<
.
→ Enables = empty
 ; Size = Max→ Enables = full).

 put(Item) :=/ * store an item * /

 �6

 get(Item) := / * remove an item */

Note that the code for accessing the local array storage for insertion and removal is
omitted for brevity. However, this is the piece of code that represents the part which is
to be inherited rather than re-implemented, i.e. overridden.

�. Implementation
AKL+ is an object-oriented language built on top of the AKL language. The AKL+
classes translate to AKL code at compile time in such a way that a method dispatches in
constant time.

�.� The Class Expansion
The class expansion is transparent to the user. Every defined class will translate to a
definition of an AKL module with the same name as the functor of the class atom. As a
simple example that shows how AKL+ code expanded to AKL code, consider the
definition of the class ord_list that follows.

 :- class ordlist.
 :- private

�������8��G7'�	

 :- attributes [list=(V)\\(V=[])].

 insert_element(El):=
 (true ? get_����*�.+�

 set_list,(L),

������*E���.��++	

 ������*E��
�.�
�+)<

 *
�.
<
��
→ L = [El]
 9
�.
<
�E
=
���
→ less(El,E,YesNo) # Self,

������8��G*E��
E�
K��;��
���
�+
D
�������+	

 ������8��G*E��
E�
K��;��
���
�+)<

 (YesNo = yes →
�
<
�E��E
=
���

 ; YesNo = →
�
<
�E
=
����

������*E��
���
��+
D
�������
+	

 ����*���
���
K��;�+)<

 *
��

J

��
→ YesNo = yes
 ; true → YesNo = no).

The above definitions are expanded to AKL code, as follows:

 :- module ord_list.
 :- public ��������7$	

 �0

 :- public
�#����7$	
 :- public
����7(
 :- public
������8�������7$	
 :- public
������7(
 :- public
����8����7$	
 :- public
������7$	
 :- public
�����
���8�������#76	

 typeof(Class,Self)-State:=
 (true ? Class = ord_list).

 init_list(V,Self)-State:=
 (true ? V = []).
 attribute_property(Att,MethInit,MethGet,MethSet,Self)-State:=
 (Att = list →

 MethInit = (V,Self)-State\method_apply(Self,[init_list(V)])-State,
 MethGet = (V,Self)-State\method_apply(Self,[get_list(V)])-State,
 MethSet = (V,Self)-State\method_apply(Self,[set_list(V)])-State).

 domain(domain(X),Self)-State:=
 (true ? X = [list]).

 insert_element(El,Self)-State:=
 *
����
L
������8����#*���������*������.+�+-State,
 method_apply(Self,[set(list,L)])-State,

������8����#*������������*E���.��+�+-State).

 ������*E���.�������+-State:=
 *
�.
<
��
→ L = [El]
 9
�.
<
�E
=
���
→ method_apply(Self,[less(El,E,YesNo)])-State,

������8��G*E��E�K��;�����������+-State).

 ������8��G*E��E�K��;�����������+-State:=
 (YesNo = yes →
�
<
�E��E
=
���
 ; YesNo = no →
�
<
�E
=
����

������*E������������+-State).

 ����*������K��;������+-State:=
 *��
J
��

→ YesNo = yes
 ; true → YesNo = no).

 dispatch(Msg,Self)-State:=
 *
F��
<
������8�������*����→
������8�������*�����F#���������+-State
 9
F��
<
������*�������������!+
→
������*�������������!�����+-State

 �5

 9
F��
<
����*�������������!+

→
����*�������������!�����+-State
 9
F��
<
�#����*����+
→
�#����*���������+-State
 9
F��
<
����8����*����+
→ init8����*�����F#���������+-State
 9
F��
<
�����
���8�������#*�������������!����$+
→

�����
���8�������#*�������������!����$�F#���������+-State
 9
F��
<
������*����+
→
������*�����F#���������+-State
 ; true → method_apply(Self,[typeof(Class)])-State,
 akl.stdout(S),
 io.format('~nMessage not understood: ~w ~nSelf: ~w ~nHandler:
 ~w~n', [MSG,Class,ord_list],S,_)).

The ord_list class is expanded with additional definitions: � �����!, ��
����%�!�
�������
��!, �������!, ������	���������� �', and public definitions.

The definition to which a method expands depends on whether or not the class being
defined is parameterized:

Where the argument Message is the received message (a method atom), the argument
Myself is the class atom of the class being defined, the argument Self is an abstraction of
the base class, the argument State is the state at the time of message reception, and the
(output)argument State is the state that results from the method activation. The
difference arises from the need to expand the parameterized class methods with a
parameter that will hold the class parameters which is not needed in case of a non-
parameterized class. This definition is optimized by considering the first argument
indexing of the method code.

Inheritance can be thought of as constructing a new definition of the method dispatcher
from existing ones. Definitions are inherited along the inheritance graph, excluding
differentially inherited and hidden definitions encountered, until redefined in a class. If
a class inherits definitions with the same selector from more than one superclass, a
default (implicit) differential inheritance is applied; excluding all the method definitions
with the same selector occurring further on the right. Inheriting a definition is not a
strict depth-first traversal of the inheritance graph since an exclusion of a definition by
the differential inheritance mechanism will affect the inheritance path.

�.� Efficiency
Object-Oriented languages have an undeserved reputation for inefficiency because some
early languages (Smalltalk and Lisp-based languages) were interpreted rather than

Message X Myself X Self X State → State

Message X Self X State → State

Method : {

 �.

��������
��5�	
-��
���&
��������
��
�
��������
��������
����
�G�����
�������
����

AKL code. The language is provided with mature standard classes. Two sets of standard
classes are supported: object type classes and state classes. The standard class object
defines port based objects which are active (heavy weight) objects communicated
through ports. The standard class cell defines data objects which are very fine-grained
(light weight) objects that provides a minimal form of encapsulated state. An
association of the synchronization constraints on message acceptance protocol to any of
the other types is possible. Two standard protocols are provided: synchronizers and
transitions. The main advantage of these protocols is the clean separation of
concurrency control and the method specification such that they can be inherited,
overridden, or extended separately without affecting each other. Moreover, one scheme
can be integrated and composed with other schemes. Two standard state representation
classes are supported which provide efficiency in representing the object's state and its
access and update operations on attributes. The hash table representation described by
the standard state class state_hash, provides a direct attribute (key) access to the
attribute's value. The array representation described by the standard state class
state_array, provides a direct attribute (indexed) access to the attribute's value.

One aspect of object-oriented languages that seems inefficient is the use of method
resolution at run-time (also known as dynamic binding) to invoke methods. Method
resolution is the process of matching an operation on an object to a specific method.
This would seem to require a search up the inheritance graph at run-time to find the
class that implements the operation. AKL+ optimizes the look-up mechanism to make it
more efficient; a method dispatches in a constant time once its target class becomes
determinate regardless of the depth of the inheritance graph or the number of methods in
the class. Moreover, the dispatch table is cleanly captured and will only contain the
relevant information where all the excluded entries are removed.

The good programming styles that are employed on the AKL level can also be employed
on the AKL+ level. This language efficiency is realized by:

�. class representation as a special light-weight AKL module. This representation
facilitates efficient encapsulation of class primitives and enhances the code
execution through direct accessing of the class primitives.

�. the method dispatcher exploits the first argument indexing of the AKL compiler,
leading to direct access to the method clauses.

!. ��
�
�����M�����
��
�+
N
�+
���
���
�����
��������
����G���
���
�������
��

preserved.

$. the unfolding of class parameters is only performed for the method clause that uses
or passes any of these parameters.

'. preserving the last call optimization in recursive methods: the tail primitive is
expanded into tail recursive code. A tail recursive primitive is a definition that
invokes itself, i.e. calls a definition to itself in the class being defined. The expanded
code will invoke the expanded code directly instead of calling the dispatcher. Hence,
the tail recursive primitive definition is expanded into tail recursive AKL code.

 ��

(. enforce the override mechanism by applying the AKL conditional choice primitive
to the class dispatcher.

6. a method invocation during the execution of a message to an object may be directly
applied to the state without the need to schedule this message to the target object.

�. Conclusion
This paper has been concentrated on issues in the design and implementation of a new
concurrent object-oriented programming language called AKL+. The language was
built on top of AKL supporting all features that are needed for any object-oriented
application. It is based on the concepts of classes, generic classes, metaclasses, multiple
inheritance, delegation and abstractions of classes and methods. Several simple
examples have been used to illustrate the main features of the language and various
programming techniques such as higher-order and data-driven programming techniques.
Classes can be defined with attributes, methods, access control of methods, and
superclasses. Classes, methods and instances of classes can be expressed as first-class
values. Method definitions can be called in two ways: “method delegation” and
“method invocation”. The method delegation preserves the base class reference. The
target object is available under the special attribute “self”. Objects can be allocated or
destroyed dynamically. Objects can share a common object. AKL+ has achieved a
uniform message sending. A set of built-in standard classes has been provided to supply
programmers with the minimum set of efficient and effective built-in standard classes
(library).

The language has supported the basic synchronization schemes that achieved the
concurrency control for a concurrent object. AKL+ has provided two standard protocols,
“transitions” and “synchronizers”, to support synchronization schemes for resolving the
inheritance anomaly. The main advantage to the synchronization constraints schemes in
AKL+ is the clean separation of concurrency control and the method specification such
that they can be inherited, overridden, or extended separately without affecting each
other. Furthermore, one scheme can be integrated and composed with other schemes.

References

�. APaepcke, A. (ed.), Object-Oriented Programming: The CLOS perspective. MIT
Press�
�55!	

�. Carlson B., Compiling and Executing Finite DomainConstraints, Ph.D. thesis,
O������
O��"�����#�
� �����
�55'	

!. Davison A., Polka: A Parlog Object Oriented Language, Ph. D. thesis, Department
��
����������
��������
�������
��
��������
-��������#
���
F��������
�505	

 ��

$. Elshiewy N., Modular and Communicating Objects in SICStus Prolog, ()*+,--,
2����������
��P-�
-�%#��
�500	

'. Elshiewy N., Robust Coordinated Reactive Computing in Sandra, Ph.D. thesis,
Royal Institute
��
-��������#�
�55.	

(. Franzen, T. Logical Aspects of the Andorra Kernel Language. SICS Research
Report�
:5�)���
� �����
���������
��
��������
��������
�55�	

6. Franzen, T. Some Formal Aspects of the Andorra Kernel Language. SICS Research
Report�
:5$)�.�
� �����
���������
��
��������
��������
�55$	

0. Goldberg Y., Silverman W., Shapiro E., Logic Programs with Inheritance, ()*+,.$,
2����������
��P-�
-�%#��
�55�	

5. Haridi, S., Janson S., Kernel Andorra Prolog and its computation model. In the
Seventh International Conference of Logic Programming, Proceeding, MIT Press,
�55.	

�.. Henz M., Mehl M., Muller M., Muller T., Niehren J., Schiedhauer R., Schulte C.,
Smolka G., Treinen R., Wurtz J., The Oz Handbook, Research Report, RR-5$-.5�

3�����
:�������
������
���
����������
������������
*Q1��+�
��������H������ ��
!�

D-((��!
����
���%���
3�����#�
�55$	

��. Henz, M., Smolka G., Wurtz J., Object-Oriented Concurrent Constraint
Programming in Oz, in Saraswat V., Hentenryck V. (eds.), Principles and Practice of
Constraint Programming, MIT Press�
F���	��55'	

��. Janson S., AKL: a Multi-paradigm Language, Ph.D. thesis, Uppsala University,
� �����
�55$	

�!. Kahn K., Tribble, D., Miller M., Bobrow D., Objects in Concurrent Logic
Programming Languages, OOPSLA�
2����������
�50(

�$. Kahn K., Tribble, D., Miller M., Bobrow D., Vulcan: Logical Concurrent Objects, in
Shapiro, E. (ed.), Concurrent Prolog, MIT Press�
�506	

�'. Matsuoka S., Wakita K., Yonezawa A., Synchronization Constraints with
Inheritance: What is not possible-So what is?, Technical�/��������, Department of
��������
��������
���
���"�����#
��
-�%#��
�55.	

�(. Matsuoka S., Taura K., Yonezawa A., Highly Efficient and Encapsulated Re-use of
Synchronization Code in Concurrent Object-Oriented Languages, OOPSLA,
2����������
�55!	

�6. Matsuoka S., Yonezawa A., Analysis of Inheritance Anomaly in Object-Oriented
Concurrent Programming Languages, in Agha G., Wegner P., Yonezawa A.(eds.),
Research Directions in Concurrent Object-Oriented Programming, MIT Press�
�55!	

�0. Matsuoka S., Language Features for Re-use and Extensibility in Concurrent
Object-Oriented Programming Languages, Ph. D. thesis, Department of Information
��������
���
O��"�����#
��
-�%#��
�55!	

 �!

�5. Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W., Object-Oriented
Modeling and Design, Prentice Hall Inc	�
�55�	

�.. Shapiro, E., Takeuchi A., Object-Oriented Programming in Concurrent Prolog,
Journal of New Generation Computing�
�*�+)�'-$5�
�50!	

��. Snyder, A., Encapsulation and Inheritance in Object-Oriented Programming
Languages, OOPSLA�
2����������
�50(

��. Sterling K., Shapiro E., The Art of Prolog, MIT Press�
�55$	

�!. Ueda K., Guarded Horn Clauses, in Shapiro, E. (ed.), Concurrent Prolog, MIT Press,
�506	

�$. Zaniolo C., Object-Oriented Programming in Prolog, IEEE Symposium on Logic
Programming�
2����������
;R�
�50$	

