
A Case-based Collaborative Knowledge acquisition Tool

Mahmoud Rafea
Central Lab. for Agricultural Expert System CLAES

mahmoud@claes.sci.eg

Abstract: We describe a fault tolerant client-server application that supports collaboration between knowledge
engineers for developing case-based expert systems. The server holds knowledge bases and performs cases
acquisition-verification, cases maintenance, cases reasoning, multimedia acquisition, and security checking. The
clients are a number of specialized components which have the following functionalities: creating new
knowledge base, acquiring cases, attaching multimedia files to cases, defining users for security checking, and
deducting solutions using generic reasoning component for the purpose of application testing. Copyright © 2004
IFAC

1. INTRODUCTION

The issue of collaboration is very important in
complex knowledge bases. In such knowledge
bases, the domain is multi-disciplinary with the
involvement of a group of domain experts and a
group of knowledge engineers. Using such a
collaborative tool will enhance productivity and
quality of final application. This is because it will
not only enable acquiring knowledge in parallel,
but also enable reuse of shared concepts, and
ensure consistency through online verification.
Further, the ability of using Internet/Intranet to
access a knowledge-base-server is very useful;
domain experts can review knowledge remotely;
and working location is selected flexibly.

The case-based reasoning model that has been used
is described in [Rafea, 1995]. This model is re-
implemented using Mozart programming system
[Mozart Consortium, 1999]. The Mozart
programming system has been used because it
completely separates application functionality from
distribution structure, and provides primitives for
fault-tolerance, open computing, and partial
support for security [Haridi & Franzén, 1999].
Also, the language library contains useful modules
for a number of techniques of distributed
programming and fault-tolerant programming,
beside a multitude of useful abstractions, such as
cached objects, stationary objects, fault-tolerant
stationary objects, mobile agents, and fault-tolerant
mobile agents, and facilitates developing of new
abstractions [Haridi, et al, 1998].

In this article, we describe the implemented tool. In
the next section, the research goal, objectives and
motivation are stated. In section 3, the overall tool
architecture is described. The functionalities
supported by the tool are delineated, in section 4.
Finally, hints about deployment of final application
are given.

2. GOAL, OBJECTIVES AND MOTIVATION

The research goal of this work is to overcome the
problem of knowledge acquisition and verification
(KAKV) in complex domains and/or when more
than one person is involved in encoding a
knowledge-base. The problem of KAKV is worse
in complex domains due to difficulties in
knowledge management. To achieve this goal, the
first and most important objective, is to enable
sharing of acquired knowledge between different
participants involved in the knowledge acquisition
process so that each authorized participant can add,
edit, and/or review a piece of knowledge that is
acquired by him or by others. This prevents
surprises which usually appear when integration is
done later.

The second objective is to automate KAKV
process. In order for automation to be successful,
we found that:
• Knowledge Representation (KR) should be

suitable to domain features. For instance, in
clinical diagnosis, a case is suitable as a model,
while in plant diagnosis and engineering fault
diagnosis, rules are better. This is because, in
the former, diagnosis usually leads to a single
disorder (or syndrome), but in the latter,
diagnosis involves different plants/faults,
which may lead to explosion in the number of
cases which represent combination of
disorders.

• Communication Model (CM) should be
suitable to KR. This, not only facilitates
knowledge encoding, but also help the
development of efficient system. Examples of
CMs that we usually use in tools developed in
our laboratory are formulae, tables, frames (a
concept with facets), rules, cases, etc.

• Details of KR are better to be hided so that
users can concentrate on the quality of
knowledge without being distracted by syntax.

Blackboard
• Domain

spcs.
• Prpoerties
• Cases
• Multimedia
• Active

Users
• Security

DB

Create new
or open

application

Define
participant

authorization

Acquire or
maintain
properties

Acquire or
maintain

cases

Server

Acquire or
maintain

multimedia

Test
application

Application
thread I

Application
thread II

Application
thread III

.

.

.

The motivation is to develop clinical expert
systems in the veterinary domain. CBR have been
used after several trials in which different
knowledge engineering (KE) methodologies have
been used. It should be remarked that the reason of
using CBR is the selection of the associated CM by
a consortium of domain experts and knowledge
engineers. The KE methodologies that have been
tried are Hierarchical Classification Generic Task
[Gomez and Chandrasekaran 1981; Mittal, 1980].,
and common-KADS methodology [Waern et al.
1993].

3. ARCHITECTURE

The tool consists of a set of components with
client-server architecture. The server holds
knowledge bases and performs cases acquisition-
verification, cases maintenance, cases reasoning,
multimedia acquisition, and security checking. The
clients are specialized for the following
functionalities: creating new knowledge base,
acquiring cases, attaching multimedia files to cases,
defining users for security checking, and deducting
solutions using generic reasoning component for
the purpose of application testing. In fact, clients
are shadows of server components. So, clients have
only communication models: one to communicate
with a server, and the other to communicate with
users.

3.1 Server architecture

The server is designed to support development of
more than one expert system application in the
same time. Consequently, the server creates a
thread for each application. The client
communicates with the created thread through a
ticket provided by the server. The conceptual
architecture of the server is depicted in figure 1.

3.2 Knowledge base architecture

A knowledge base consists of three representations.
The first is a table of properties. Properties
represent a simplified ontology of terms. We define
a property as an ordered-pair: (name, value). The
table consists of two fields. The first field is the
property-name. Sometimes we refer to property-
name with the word attribute. The second field is a
set of property-legal-values which are the possible
values an order-pair can have.

The second representation is cases hierarchical tree.
First we need to define what a case is. A case can
be defined as a function that maps two sets of
properties. The first set represents specifications of
a problem and the second set represents

specifications of a solution to this problem. One of
the solution property-names is special because it is
used to group cases together in a cluster. It is called
the cluster’s determining property (CDP). The top
node of cases hierarchical tree declares these
specifications so that it can be used by the KAKV
algorithm and the reasoning algorithm. Nodes of
the second level contain CDP. Hence they are
called cluster nodes and represent all possible
solutions in the problem domain. Nodes of next
levels are called case nodes and contain: case
properties and any other case-specific solution
properties. Figure 2 depicts the graphical
representation of the knowledge base.

Figure 1: Conceptual server architecture

Figure 2: Knowledge architecture

Notice that all descendants inherit CDP.
Consequently, for each value of this particular

Domain Top Node�

Cluster 1 Cluster J� Cluster

Case 11 Case 1M

Case 1M1� Case 1Mn�

Case N1 Case NM�

Case CaseN1n�

property, cases cluster is created. This means that
the number of clusters, in a particular domain, is
the number of possible solutions. For example, if
the domain is the diagnosis of some disorders, then
the number of clusters is the number of disorders.
Accordingly, the diagnosis property is the cluster’s
determining property while, for instance, treatment
property will be related to a particular case or
group of cases that can inherit this property. In this
way, any real-world case complexity can be
mapped easily to this representation.

The hierarchical organization of cases depends on
the subset relation. Case properties, in a leaf node,
must represent a proper subset of case properties in
a super node. Therefore a leaf case is subsumed in
its branch super cases. Furthermore, a node to the
left (Figure 2) may be subsumed in a right sibling.
This happens when the left case is acquired first.
This feature is the basis for both indexing of cases
and reasoning search algorithm.

There are two anomalies that can occur while
acquiring a new case. The first anomaly is
“redundancy” which means that the new case
already exists. The second anomaly is “conflict”.
Conflict occurs when properties that will be stored
as problem specifications are similar to properties
in an already existing case-node, while properties
that will be stored as solution specifications are
different. The verification mechanism uses the
reasoning algorithm to search for anomalies. The
idea of the reasoning algorithm is to parse the
knowledge-base tree until finding the best
matching case. The parsing is directed using subset
relation while a case-node is found through a
mechanism for index generation. The algorithm
details can be found in [Rafea, 1995].

The third representation is multimedia files
associated with cases. The case-index is used, also,
as a key in multimedia tables. The picture files
associated with a particular case are indexed by that
case-index. Similarly, video clips files are stored in
the same way. Notice that cases also inherits
multimedia associations from their super-case.

4. CLIENTS COMPONENTS

Client components communicate with the server
through a fault-tolerant TCP/IP link. The fault
tolerant connection is important because the
Internet link can go down during a session and
restart without affecting intermediate results of a
client’s session and a client may shutdown or crash
without affecting a server performance with respect
to ongoing sessions of other clients. Technically
faults are detected, abstracted and reflected to a
component-level using an orthogonal mechanism
for lazy fault-detection and handling.

4.1 Tool manager

The tool manager is designed to help application
developer to administrate a number of expert
system applications. The manager component,
figure 3, is used either to run a server component
on a server-machine, or retrieve a handle of an
already remotely running server. Selecting a server
handle will enable a user to run clients that
communicate with a selected server.

Figure 3: Manager dialogue showing one active
project server: “c:/inetpub/wwwroot/cowses”

4.2 KAKV component

The KAKV component is illustrated in figure 4. A
developer can define or maintain cases-properties
(e.g., symptoms and signs). The case properties are
used to construct cases. A case consists of
Conclusion-properties (solution properties), and
problem properties which are captured as And-
findings, and Or-findings. For instance, a problem
properties of: (A And B) And (C Or D) generates
two cases: (A And B And C) and (A And B And
D).

Figure 4: Case acquisition and verification dialogue

The communication model is designed to do all
necessary maintenance actions while ensuring
integrity of a knowledge base. For instance, if user
wants to change a property name or one of its
values, then all the cases containing this
property/value are updated with newly entered
name/value. Further, a user can browse cases or
search for cases having a particular property/value.

4.3 Multimedia component

The multimedia component, figure 5, is used to
attach multimedia files to a case. Two types of files
are allowed: pictures and video clips. The
communication model is designed to help a user in
finding files on the local network, browse them,
and do any necessary updating. The selected file is
uploaded to the application directory in the server;
then URI of the file is captured and encoded in KB
with an appropriate description title.

Figure5: Multimedia acquisition dialogue

4.4 Security component

The security component, figure 6, is used to define
participants (users) working in the application.
Four groups are pre-defined: administrator,
knowledge engineer (KE), domain expert, and
guest. Each group has its privileges. There are 4
privileges: Browse KB, Cases acquisition,
Properties acquisition, and Server-thread
management: KB saving and thread termination. A
user privilege record is of the form (B/C/P/S).
Guests can browse knowledge-base and run the
generic component for testing. Consequently, a
guest user privilege record will be (+/-/-/-). Experts
can modify cases (+/+/-/-). Knowledge engineers

can modify properties (+/+/+/-). Administrator can
save knowledge-base and terminate a running
server thread (+/+/+/+).
.

Figure 6: Users dialogue used to define new users
for project authentication

5. APPLICATION DEPLOYMENT

A final application usually needs a user-interface
that is designed according to specifications and
requirements collected from end-users (and/or
domain experts). Mozart library and COM
component are provided to facilitate this important
step. Mozart code is platform independent.
Consequently, the tool or a final application can
run in all platforms supported by Mozart.
Meanwhile, a deployment programmer should use
an appropriate technology for a front-end (screen
forms, dialogues, etc.), use Mozart library, and
acquired KB to develop a final application.

6. CONCLUSION

The tool has been used successfully in developing
two commercial expert systems: Bovine expert
system and Caprine expert system. The aim of
those clinical expert systems is to diagnose
affections including different age groups and
diseases of infections, noninfectious, surgical and
genital diseases. Both systems contain multimedia,
which covers images of major ailments as well as
video clips. In effect, they improve the knowledge
of veterinarians as well as provide the line of
treatment and control of all diseases.

In the near future, the knowledge-base will be
represented using one of the Semantic Web
languages. The properties will be part of ontology
for veterinary domain. The tool components will be

implemented as web services. Consequently, final
applications will be available as web services, too.

7. REFERENCES

Mozart Consortium, (1999), “The Mozart
programming system”, Available at
http://www.mozart-oz.org/

Gomez, F., & Chandrasekaran, B, (1981).,
“Knowledge organization and distribution for medical
diagnosis”, IEEE Transaction on Systems, Man, and
Cybemetics, SMC-11(1), 34-42 .

Mittal, S., (1980), “Design of a distributed medical
diagnosis and data base systems”, Computer and
Information Science Department, Ohio State
University.

Rafea, M., A, (1995) “computer Tool for
Knowledge Acquisition in Different Domains”.
Ph.D. thesis, Institute of Statistical Studies and
Research, Cairo University.

Haridi, et al, (1998) Haridi, S., Van Roy, P.,
Brand, P., & Schulte, C., Programming
Languages for Distributed Applications. New
Generation Computing, n3 v16, Omsha, Ltd. and
Springer-Verlag

Haridi, S., & Franzén, N., (1999) Tutorial of Oz.
http://www.mozart-
oz.org/documentation/tutorial.

Waern, A., Hook, K., Gustavsson, R., & Holm,
P., (1993) “The common-KADS communication
model”, KADS-II/M3/SICS/TR/006/V.2.0,
http://swi.psy.uva.nl/projects/CommonKADS/pu
blications.html.

