
A multiagent approach for diagnostic expert systems via the internet

Khaled Shaalana,*, Mona El-Badryb, Ahmed Rafeac

aDepartment of Computer Science, Faculty of Computers and Information, Cairo University, 5 Tharwat Street, Orman, Giza 12613, Egypt
bCentral Laboratory for Agricultural Expert Systems (CLAES), P.O. Box 100, Dokki, Giza, Egypt

cDepartment of Computer Science, American University, 113, Sharia Kasr El-Aini, P.O. Box 2511, 11511 Cairo, Egypt

Abstract

In recent years there has been considerable interest in the possibility of building complex problem solving systems as groups of co-

operating experts. This has led us to develop a multiagent expert systems capable to run on servers that can support a large group of users

(clients) who communicate with the system over the network. The system provides an architecture to coordinate the behavior of several

specific agent types. Two types of agents are involved. One type works on the server computer and the other type works on the client

computers. The society of agents in our system consists of expert systems agents (diagnosis agents, and a treatment agent) working on the

server side, each of which contains an autonomous knowledge-based system. Typically, agents will have expertise in distinct but related

domains. The whole system is capable of solving problems, which require the cumulative expertise of the agent community. Besides to the

user interface agent who employs an intelligent data collector, so-called communication model in KADS, working on the client sides. We

took the advantage of a successful pre-existing expert systems—developed at CLAES (Central Laboratory for Agricultural Expert Systems,

Egypt)—for constructing an architecture of a community of cooperating agents. This paper describes our experience with decomposing the

diagnosis expert systems into a multi-agent system. Experiments on a set of test cases from real agricultural expert systems were preformed.

The expert systems agents are implemented in Knowledge Representation Object Language (KROL) and JAVA languages using KADS

knowledge engineering methodology on the WWW platform.

q 2003 Elsevier Ltd. All rights reserved.

Keywords: Expert systems; Agents; WWW

1. Introduction

As computer hardware and software become increas-

ingly powerful, so do applications, which used to be

considered beyond the scope of automation. To cope with

increased demands, software systems are becoming

correspondingly larger and more complex (Genesereth &

Ketchpel, 1994; Jennings & Varga, 1993; Jennings &

Wooldridge, 1995). In recent years, there has been

considerable interest in the possibility of building complex

problem solving systems as groups of co-operating

experts. Distributed Artificial Intelligence (DAI) is the

study of how such systems might be built. Historically,

empirical research in DAI has focused on three main

areas: blackboard architecture (Engelmore & Morgan,

1988; Nwana, 1996), systems based on negotiation

(Smith, 1980), and multi-agent planning systems (Durfee

and Lesser, 1988). More recently, co-operating expert

systems have emerged as a research area of some

importance (Nwana & Ndumu, 1999).

Agent-based computing represents an exciting new

synthesis both for Artificial Intelligence (AI) and, more

generally, Computer Science. It has the potential to

significantly improve the theory and the practice of

modeling, designing, and implementing computer systems

(Jennings, 2000). Since the 1980s, software agents and multi-

agent systems have grown into what is now one of the most

active areas of research and development activity in

computing generally (Jennings & Wooldridge, 1998).

There are many reasons for the current intensity of interest,

but certainly one of the most important is that the concept of

an agent as an autonomous system, capable of interacting

with other agents in order to satisfy its design objectives, is a

natural one for software designers (Wooldridge & Ciancar-

ini, 2001). Just as we can understand many systems as being

composed of essentially passive objects, which have state,

0957-4174/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2003.12.018

Expert Systems with Applications 27 (2004) 1–10

www.elsevier.com/locate/eswa

* Corresponding author. Tel.: þ2-012-2223377; fax: þ2-02-761-7628.

E-mail addresses: shaalan@mail.claes.sci.eg (K. Shaalan); mona@

mail.claes.sci.eg (M. El-Badry); rafea@aucegypt.edu (A. Rafea).

http://www.elsevier.com/locate/eswa


and upon which we can perform operations, so we can

understand many others as being made up of interacting,

semi-autonomous agents.

There are several benefits of using the intelligent agent

paradigm for software systems. Agents can provide a high

level of abstraction for dealing with intelligent systems and

distributed systems. The agent abstraction is a natural

extension of object-oriented technology, encapsulating the

agents knowledge within an active process and providing a

standard interface for intercommunications. This leads to

another benefit of agent-based systems, interoperability

(Genesereth & Ketchpel, 1994). With a common agent

communication Language, such as KQML (Finin, Fritzon,

Mckay, & McEntire, 1994; Finin, Labrou, & Mayfield,

1997; Labrou & Finin, 1997), programs written as agents

can communicate and cooperates with other such programs.

In other words, agent-based system architecture provides a

consistent interface for intelligent systems to interact with.

Finally, agent systems often provide a high-level ‘human-

like’ interface to take the GUI revolution one step further

(Moore et al., 1997).

Multi-agent systems are the best way to characterize or

design distributed computing systems (Huhns & Stephens,

1999). Multi-agent systems are commonly intended as

computational systems, where several (semi-) autonomous

entities interact or work together to perform some tasks.

There are several motivations for having multiple agent

systems (Nwana, 1996). They include:

† To solve problems that are too large for a centralized

single agent to do due to resource limitations or the sheer

risk of having one centralized system;

† To allow for interconnecting and interoperation of

multiple existing legacy systems such as expert systems

and decision support systems;

† To provide solutions to inherently distributed problems

such as distributed sensor networks (Durfee and

Rosenschein, 1994) or air-traffic control;

† To enhance modularity (which reduces complexity),

speed (due to parallelism), reliability (due to redun-

dancy), flexibility (i.e. new tasks are composed more

easily from the more modular organization) and

reusability at the knowledge level (hence shareability

of resources).

The rationale for interconnecting computational agents

and expert system is to enable them to cooperate in solving

problems, to share expertise, to work in parallel on common

problems, to be developed and implemented modularly, to

be fault tolerant through redundancy, to represent multiple

viewpoints and the knowledge of multiple experts, and to be

reusable (Huhns & Stephens, 1999). Nevertheless, With the

advent of the Internet, many researchers have been taking a

closer look at distributed software systems. Recently, a large

share of this research has focused on intelligent distributed

systems, which have come to be known as multi-agent

systems. As a result, new development methodologies

specifically designed for multi-agent systems have been

introduced (Iglesias, Garijo, & Gonzalez, 1998) and several

tools are now available for building multiagent systems

(Raphael & Deloach, 2000).

At the Central Laboratory for Agricultural Expert System

(CLAES), at the Agriculture Research Center of Ministry of

Agriculture and Land Reclamation in Egypt, a number of

successful agricultural expert systems were developed and

deployed to a large number of users (Rafea, 1995, 1998;

Rafea, El-Azhari, & Hassan, 1995; Rafea, El-Azhari,

Ibrahim, Soliman, & Mahmoud, 1995; Rafea, Hassan, &

Hazman, 2003; Rafea & Mahmoud, 2001; Rafea & Salah,

1994; Rafea, Warkentin, & Ruth, 1991, 1992). These

applications are traditional standalone systems. In these

expert systems, the knowledge acquired from multiple

domain experts that belongs to different disciplines are

implemented as an integrated system. The aim of this

research is to harness the potential of the agent technology

for constructing a community of cooperating agents capable

of diagnosing disorders in the agriculture domain. By

implementing expert systems as multi-agents that perform

their tasks remotely, the expertise can be published on the

Web. Expert systems running on the Internet can support a

large group of users who communicate with the system over

the network.

This paper is organized as follows. Section 2 gives an

overall structure of the proposed architecture of our system.

Section 3 describes the user interface agent. Section 4

introduces the coordination agent. Section 5 presents the

selected expert systems agents. Section 6 shows the ability

of the system in producing diagnosis of disorders based on a

set of input observations from real-world cases in the multi-

agent environment. Section 7 concludes the paper.

2. Overview of the proposed system

Our proposed system considers the two most common

synergetic expert system applications—diagnosis and treat-

ment. From the architectural point of view, the system

provides a framework to coordinate the behavior of several

specific agent types. The society of agents in our system

consists of expert system agents (diagnosis agents, and a

treatment agent) working on the server side, The diagnosis

knowledge is distributed among several agents, each agent

is an autonomous expert for a certain domain knowledge.

Typically, agents will have expertise in distinct but related

domains. The whole system is capable of solving problems,

which require the cumulative expertise of the agent

community. In addition to the user interface agent who

employs an intelligent data collector working on the client

sides. Those agents communicate by passing messages to

the coordination agent. The clients communicate with the

server through socket connection via the Internet. At the

client side the user interface agent send requests for

K. Shaalan et al. / Expert Systems with Applications 27 (2004) 1–102



diagnosis/treatment services to the server. Answers are sent

back to clients. We have applied our system in the domain

knowledge of diagnosing disorders of the grapes crop, see

Fig. 1.

A diagnosis agent is responsible for producing diagnosis

of disorders based on a set of input observations. The

treatment agent, who is responsible for finding a suitable

recommendation to treat a certain disorder taking into

consideration the possible causes of this disorder, provides a

set of operations to be performed in order to treat the

disorder and remove the causes. The treatment agent can

only be consulted after a successful diagnosis session.

In the early stage of this research, we have designed the

system with only two expert agents, diagnosis and

treatment. But later on, we discovered that the diagnosis

agent combines different specialization that are well defined

in the agricultural domain. Consequently, we improved our

architecture by furtherly decomposing the diagnosis agent.

In the agent community decomposition concerns the

partitioning of the problem domain into agents. The key

problem lies in deciding how the domain is to be partitioned.

This decision can only be reached by the extensive

consultation with the domain experts. In our case, we

figured out that the grape diagnosis consists of six agents,

namely: fungal agent, insect agent, nematode agent, snail

agent, mites agent, and nutrition deficiency agent. The new

architecture concerning diagnosis has the following advan-

tages:

† It tries to simulate what may happen in real world in a

very fine-grained manner. Each agent corresponds to a

domain expert specialization.

† Partitioning of domain knowledge makes it easy to

maintain knowledge, and to improve performance.

In real life, the domain expert who diagnoses a certain

disorder can also give the treatment method of this disorder.

The treatment methods suggested by different domain

experts may conflict with each other such that a decision

is needed to decide which one is applied first, and so forth.

So, we proposed in our architecture to separate the treatment

process from the diagnosis process, and collectively kept

into the treatment agent in order to resolve conflicts that

may arise in the treatment application.

Expert systems agents include a bilingual KQML

translator module. The message transferred through the

system takes the KQML format. Expert system agents are

implemented in KROL (Shaalan, Rafea, & Rafea, 1998),

while the user interface agent is implemented in Java.

KQML message needs to be translated to/from Prolog. So

we have designed a module which performs this bilingual

translation. Similarly, another module for translating user

interface messages is designed, which translates KQML to

Java and the vice versa.

3. The user interface agent

The user interface agent provides access to the expert

systems agents. For portability, this program is a Java

applet. When a user browses the WWW page of the system,

this applet is downloaded. This is responsible for providing

means through which the user could initiate problem-

solving sessions, by activating the communication model, as

well as handling the presentation of the expert system

results. The communication model acts as an intelligent data

collector. The user interface agent includes a Java-KQML

bilingual translator.

3.1. The communication model

Common-KADS project has addressed many issues

related to the development of expert system. One of the

most important issues is known as the communication

Fig. 1. The society of agents.

K. Shaalan et al. / Expert Systems with Applications 27 (2004) 1–10 3



model (Hoog et al., 1992). One of the best advantages of the

communication model is that it completely separates the

user interface model from the knowledge model. However,

dividing an integrated expert system into a two-component

architecture—the problem solving component and an inter-

face or a front-end component—is not usually a straightfor-

ward task since the control of the interface is usually

managed by the problem-solving component itself. In what

follows we show the importance of the communication

model in our system.

For instance, in many expert systems, the questions to be

asked are determined by answers to previously asked

questions. In this case several solutions are possible. The

first and the simplest of these, is devising an application

specific interface where the user is presented with all

possible inputs. Needless to say, this approach will not meet

the needs of any reasonably large application, and in

addition, will confuse the user. Another approach entails

keeping control embedded within the problem solving

server application. In that case, the interface will be used to

present the user with an input request upon receiving such a

request from the server. While this approach might seem

reasonable, it suffers from major limitations. First, it relies

on heavy communication between the server application

and the client front-end, so the user may have to wait for

prolonged periods of time depending on the network traffic

and bandwidth. In case of synchronous communication, it

can engage the server in one connection for an indefinite

amount of time, making it impossible for other users to

make use of that same server. Although time-out operations

could be implemented to avoid indefinite postponement, the

application server will still not be fully utilized. In case of

asynchronous communication the server will have to

maintain extra knowledge such that data inputs could be

mapped to application clients. This would be necessary in

order to maintain data values that are consistent with its

clients.

If however, the interface component employed a

communication model that had just enough knowledge

about which inputs it should ask about and in which cases,

then the client could use this knowledge to collect all needed

inputs in an intelligent fashion. Next, send them in one batch

to the server for processing. In this case the connection

between the client and the server will only be open for the

period of sending the inputs, processing them at the server

and receiving the output. For most practical applications,

this period is usually reasonably short. Meantime, if other

clients need to service a request, the request will be placed

in a wait queue where the waiting time will be short enough

to make that wait transparent. However, care must be taken

in selection of the queue size. Otherwise, if the number of

the clients for the application grows, then wait times might

also grow to unsatisfactory figures.

The implementation of the communication model is

inspired by the hierarchical classification model (HC). HC is

a problem solving method identified by Chandrasekran

(1988) for solving diagnostic types of problems as part of

his Generic Task approach to expert system development. In

HC, knowledge is represented as hypotheses hierarchically

organized in a tree structure such that a general hypothesis is

always above more specific ones in the tree. Using a control

strategy known as ‘establish and refine’, hypothese are

explored top down. If a hypothesis at the top level succeeds

(establishes), its immediate descendants are required to be

established themselves one by one. This process of

attempting to establish the descendants is referred to as

‘refining’ the parent hypothesis. If, on the other hand, a

hypothesis fails, then it is said to be ruled out and so are all

the hypothese beneath it in the tree (El-Beltagy et al., 1995).

In our model, knowledge components for which input is

desired, are also organized in a hierarchical fashion.

4. The coordination agent

This component acts as the interface between the user

interface agent and other agents. It is responsible for

establishing the communication link with the desired expert

system agent based on the user request, through the socket

connection. In the proposed agent society, TCP/IP is chosen

as the low-level transport mechanism for agent-to-agent

communication.

In our implementation, a general-purpose client sockets

class ESClient is defined that inherits from Socket class of

the java.net package. Each time the user interface agent

needs to communicate with any of the other agents, it sends

to the coordination agent a message. The coordination agent

in turns creates an instance of this class giving it both the

host names of the target agent, and the port number on

which the agent’s server socket resides. Host names and port

numbers are passed in the first place to the coordination

agent as parameters from the applet’s initiating HTML

page.

5. The expert system agents

Each expert system agent consists of two basic

components, a mediator and the expert system itself. As

indicated by its name, a mediator is the module responsible

for sending and receiving messages through the network

connection. This communication can be established through

a server socket. All agent communication takes place

through the coordination agent. The expert system consists

of three sub-components:

Domain knowledge: it contains the static knowledge of

the domain, concepts, properties, and two types of

relations. A concept is identified through its name.

Concepts can have properties that are defined through

their names and descriptions of the values that the

property can take. The relations may be relations

K. Shaalan et al. / Expert Systems with Applications 27 (2004) 1–104



between concepts or relations between property

expressions.

Inference knowledge: describes what inferences can be

made on the basis of the knowledge in the domain

knowledge. It describes what inference can made, but not

how or when they are made. In KADS the selected

knowledge engineering methodology, the following

terms are used to denote the various aspects of a

primitive inference: inference step, and role. An

inference step performs an act that operates on some

input data and has the capability of producing a new

piece of information as its output. The elements on which

inference steps operate or produce are called roles. A role

can be an input role or an output role. It acts as a

placeholder for domain objects. Domain objects can be

linked to more than one role.

Task knowledge: actually describes the steps of execut-

ing the knowledge sources in the inference knowledge.

In a previous work (Shaalan et al., 1998), we described

the implementation of expert systems in KROL. In KROL,

Webkrol is the library that handles all the network necessary

function.

5.1. The diagnosis agent

As mentioned above there are six diagnosis agents. The

user interface agent is responsible for loading the diagnosis

communication model in the client side through a WWW

browser. The diagnosis session proceeds as follows, see

Fig. 2.

1. The diagnosis communication model asks the user about

all the observations and collects his responses.

2. The user interface agent calls the Java-KQML translator

module to convert the collected observation into a

KQML message format.

3. The user interface agent sends this message to the

coordination agent.

4. The coordination agent initiates the socket connection

with the server and broadcast this message to all

diagnosis agents at the server site.

5. At the server side, for each agent, after receiving the

diagnosis data, the Prolog-KQML translator translates

the KQML message into a prolog term. This message is

directly interpreted and executed by the diagnosis expert

system.

Fig. 2. Observation and disorder flow in the diagnosis session.

K. Shaalan et al. / Expert Systems with Applications 27 (2004) 1–10 5



6. The results are converted again to a KQML format and

sent back to the coordination agent.

7. The coordination agent collects all the answers and sends

it to the user interface agent.

8. The user interface in turn formulates the output and

displays it.

5.2. The treatment agent

Treatment agent session can be conducted after a

successful diagnosis session. The treatment sessions that

correspond to this behavior is described as follows. After the

diagnosis session reaches a successful disorders (i.e. at least

one of the diagnosis agent find disorders). This information

is sent to the coordination agent that transfers it to the user

interface agent. If the user requests a treatment for these

disorders, the user interface agent calls the treatment

communication model and start collecting data related to

treatment. Both the treatment input data and the diagnosis

result (the confirmed disorders) will transfer to the

coordination agent. The coordination agent in turn opens

the connection with the treatment agent and mediates this

information to it. The treatment agent in turn tries to get a

treatment for these disorders and sends the results back to

the coordination agent that will transfers it to the user

interface agent that will display its contents through the

WWW browser, see Fig. 3.

6. An example of utilization and testing

To bring out the advantages of employing multi-agent

technology and expert systems, it was necessary to look at

some real test cases from their conception to realization. We

Fig. 3. Disorder and treatment flow from a diagnosis session to a treatment session.

K. Shaalan et al. / Expert Systems with Applications 27 (2004) 1–106



have generated test cases that trigger mostly knowledge of

the six diagnosis agents. For each case a brief description of

its objective is given as well as its related input/output

screens in diagnosis session and in treatment session. The

function of coordination agent is shown through screens at

run time. It is recommended that the end user of our system

use a java enabled browser (e.g. internet explorer).

Throughout this section we show screens taken from

running our system on the MS Internet Explorer. When

the user connects to the server site through any available

web browser, the front page shown in Fig. 4 appears. This

page initiates the user interface agent and carries the

necessary information about the address and the port

numbers of all expert system agents.

We have adopted a testing methodology based on

manually generated test cases taken from the diagnosis

and treatment documents of grapes crop. The objective is to

cover all the agents, verify the proposed system by

considering the number of expert systems agents that

succeed in diagnosis: 0-agent succeed, 1-one agent succeed,

and many agent succeed. The methodology also trace down

the function of the coordination agent in each case. The

main steps in our methodology are:

1. Walk through the diagnosis design document and

manually generate random test cases. It is worth noting

that the generated test cases are by no means exhaustive.

The test case is generated by walking backward through

the inference chain, starting from a target disorder(s) and

randomly selecting values that conclude the selection

reached at any given point in the inference chain.

2. For each disorder obtained from step 1, walk through the

treatment design document and manually generate

random test cases. This time the test cases are generated

by walking through the inference chain to get the

treatment operation(s).

3. Merge two or more test cases in order to test the behavior

of the multi-agent environment. This will try to simulate

real life situations, when it may happen that one or more

disorders appear at the same time (this step is used for

testing the possibilities of many-agent succeeded).

4. Run the generated test cases on the system.

5. Compare the results with the target disorder.

For time and space constraints, we will show a test case

that tries to diagnose and treat disorders in case of three

diagnosis agents respond.

6.1. Verify three diagnosis agents: nutrition deficiency,

mite, and snail

Objective. The objective of test case is to conduct an

experiment that demonstrates the capabilities of the system

to diagnose and treat disorders in case of three diagnosis

agents respond. In this case we choose disorders that belong

to nutrition deficiency, mite, and snail expert agents. This

test case covers the diagnosis and the treatment for the

disorders due to iron deficiency, zinc deficiency, manganese

deficiency, mite, and land snail disorders. The treatment of

iron deficiency will be on date 26/05/2001, the material used

is iron_chelate. The treatment of zinc deficiency will be on

date 20/05/2001, the material used is zinc_sulphate. The

treatment of manganese deficiency will be on date

23/05/2001, the material used is manganese_sulphate. The

treatment of mite will be on date 01/06/2001, the material

used is vertamic. The treatment of land snail will be on date

29/05/2001, the material used is iron_sulphate.

6.1.1. Diagnosis session

Diagnosis input:

Growth stage: vegetative

Leaves color: yellow

Leaves status: small, drop

Color of spots: brown

Position of leaves color: whole leaf

Type of infection: new leaves

Range of infection: adjacent spots

Depth of water: medium

Snail exist: yes

Fig. 5. An example of input screens in the diagnosis session.Fig. 4. Front page screen.

K. Shaalan et al. / Expert Systems with Applications 27 (2004) 1–10 7



An example of input screens is shown in Fig. 5.

After all the required symptoms are collected, the user

interface automatically sends them to the coordination

agent. Which in turn will establish the connection and

broadcast the collected data to all the diagnosis agents. The

answers from those agents are sent back to the user interface

agent.

Diagnosis output: The output from the diagnosis agents

of this case is shown in Fig. 6, which indicates that the three

agents that are involved in the test case have found that the

input symptoms match a certain disorder in their knowledge

base.

The user interface asks the user whether or not it may call

the treatment agent. Assume we continue with the treatment

agent.

6.1.2. Treatment session

The user interface agent will call the communication

model of treatment. Then the treatment communication

model start asking about some information concerning

treatment, such as the infection range, and the material used.

After that the coordination agent starts the connection with

the server and calls the treatment agent.

Treatment input: Zinc used material: zinc sulphate.

Treatment output: The result from treatment agent again

returns back to the user interface agent through the

coordination agent. The recommended treatment includes

the date of the treat operation, the material used, the material

quantity, the method if any, and the treatment advice, see

Fig. 7. The right screen, is the detailed screen of the disorder

shown on its left.

6.1.3. Coordination agent

Fig. 8 shows a trace of the flow of control of the output

from coordination agent to the diagnosis agents, and the

input from each agent at run time. Each agent located in a

server with server name listen to a port number. The input

shows that there are three agents answer with reply (at port

1095, 1070, 1075) and all the other three agents answer with

sorry. The coordination agent will then send to the treatment

agent.

7. Conclusions

In this paper we have described our experience with

decomposing the diagnosis expert system into a multi-agent

system. Our approach consists of a number of cooperating

agents capable of solving the diagnosis and treatment

problem in the agricultural domain. It has been applied to

the grapes crop for providing services to a large group of

users over the internet. The system can be geared towards

any other related system or application. The widespread use

of the internet and WWW provides an opportunity for

developing ES that fit into the agent technology widely

available.

Fig. 6. Output in the diagnosis session.

Fig. 7. An example of output screens in the treatment session.

K. Shaalan et al. / Expert Systems with Applications 27 (2004) 1–108



The new architecture concerning diagnosis has the

following advantages:

† It tries to simulate what may happen in real world in a

very fine-grained manner. Each agent corresponds to a

domain expert specialization.

† Partitioning of domain knowledge makes it easy to

maintain, easy to understand, and improve performance.

† The distribution of responsibilities among agents,

achieves modularity and reduced complexity.

† Re-usability at the knowledge level was achieved since

the proposed agents are capable of providing their

services to other expert systems as well as to other

applications provided that these other applications use

the same ontology and understand the same communi-

cation language.

The expert systems agents are implemented in KROL

using KADS knowledge engineering methodology. The

user interface agent and the coordination agent are

implemented in JAVA. Experiments on a set of test cases

from real agricultural expert system were performed. The

results observed in our experiments were satisfactory and

proved that the system is robust. The system can diagnose

and treat 26 disorders and the domain ontology consists of

66 concepts and more than 100 rules.

References

Chandrasekaran, B. (1988). Generic tasks as building blocks for knowl-

edge-based system: the diagnosis and routine design examples. The

Knowledge Engineering Review, 3(3), 183–210.

Durfee, E. H., & Lesser, V. R (1988). Using partail global plans to

coordinate distributed problem solvers. In A. H. Bond L. Gasser, &

Kaufmann, (Eds.), Readings in Distributed Artificial Intelligence

(pp. 285–293). San Mateo, CA.

Durfee, E. H., & Rosenschein, J. S (1994). Distributed problem solving and

multi-agent systems: Comparisons and examples. In Proceedings of the

13th international DAI workshop.

El-Beltagy, S., Rafea, A., Kamel, A., Sticklen, J., Schulthess, U., & Ward, R

(1995). An expert system for wheat disorders diagnosis and treatment

using a hierarchical classification problem solver. Second IFAC/IFIP/

EurAgEng workshop on artificial intelligence in agriculture, Wagenin-

gen, Netherlands. New York: Pergamon Press.

Engelmore, R. S., & Morgan, T. (Eds.), (1988). Blackboard systems.

Reading, MA: Addison-Wesley.

Finin T., Fritzon R., Mckay D., & McEntire R (1994). KOML as an agent

communication language. In the proceeding of the third international

conference on information and knowledge management. New York:

ACM Press. Available at http://www.cs.umbc.edu/KQML/papers.

Finin, T., Labrou, Y., & Mayfield, J. (1997). KQML as an agent

communication language. In J. M. Bradshaw (Ed.), Software agents

(pp. 291–316). Cambridge, MA: The MIT Press.

Genesereth, M. R., & Ketchpel, S. P. (1994). Software Agents Communi-

cations of the ACM, 37(7), 48–53.

Hoog, R. de., Martil, R., Wielinga, B. J., Taylor, R., Bright, C., & Velde,

V. D. W (1992). The CommonKADS Model Set. Deliverable ESPRIT

project P5248, KADS-II/WP I-II/RR/UvA/018/4.0. Amsterdam: Uni-

versiteit van Amsterdam.

Huhns, M. N., & Stephens, L. (1999). Multiagent systems and societies of

agents. In G. Weiss (Ed.), Multiagent systems. A modern approach to

distributed artificial intelligence (pp. 79–120). Cambridge, MA: MIT

Press.

Iglesias, C., Garijo, M., & Gonzalez, J. (1998). A survey of agent-oriented

methodologies. In J. P. Müller, M. P. Singh, & A. S. Rao (Eds.),

Intelligent agents: Agents theories, architectures, and languages (Vol.

1555). Lecture Notes in Computer Science, Berlin: Springer.

Jennings, N. R. (2000). On agent-based software engineering. Artificial

Intelligence, 117, 277–296.

Jennings, N. R., Varga, L. Z., Aarnts, R. P., Fuchs, J., & Skarek, P. (1993).

Transforming standalone expert systems into a community of

Fig. 8. Output/input to the coordination agent.

K. Shaalan et al. / Expert Systems with Applications 27 (2004) 1–10 9

http://www.cs.umbc.edu/KQML/papers


cooperating agents. Engineering Applications of Artificial Intelligence,

6(4), 317–331.

Jennings, N. R., & Wooldridge, M. (1995). Applying agent technology.

Applied Artificial Intelligence, 9(4), 357–369.

Jennings, N. R., & Wooldridge, M (1998). Applications of intelligent

agents. Chapter 1. Agent technology: foundations, applications, and

markets. Berlin: Springer.

Labrou Y., & Finin T (1997). A proposal for a new KQML specification.

Online at http://www.cs.umbc.edu/kqml/papers/.

Moore, R., Dowding, J., Bratt, H., Gawron, J. M., Gorfu, Y., & Cheyer, A

(1997). CommandTalk: A spoken-language interface for battlefield

simulations. In Proceedings of the fifth conference on applied natural

language processing, Washington, DC (pp. 1–7). Association for

Computational Linguistics.

Nwana, H. S. (1996). Software agents: an overview. The Knowledge

Engineering Review, 11(3), 205–244.

Nwana, H. S., & Ndumu, D. T. (1999). A perspective on software agents

research. The Knowledge Engineering Review, 14(2), 1–18.

Rafea, A (1995). On integrating agricultural expert systems with databases

and multimedia. In Proceedings of the first international conference on

multiple objective decision support systems for land, water, and

environmental management: concepts, approaches, and applications,

Honolulu, Hawaii, USA.

Rafea, A. (1998). Agriculture. In J. Liebwitz (Ed.), A chapter in the

handbook of applied expert systems. Boca Raton, FL: CRC Press.

Rafea, A., El-Azhari, S., & Hassan E (1995). Integrating multimedia with

expert systems for crop production management. In Proceeding of the

second IFAC/IFIP/EnrAgEng workshop on artificial intelligence in

agriculture, Netherlands.

Rafea, A., El-Azhari, S., Ibrahim, I., Soliman, E., & Mahmoud, M (1995).

Experience with the development and deployment of expert systems in

agriculture. In Proceeding of IAAI-95, Montreal, Canada.

Rafea, A., Hassan, H., & Hazman, M. (2003). Automatic knowledge

acquisition tool for irrigation and fertilization expert systems. Expert

System with Applications (ESWA): An International Journal, (4),

49–57.

Rafea, A., & Mahmoud, M (2001). The evaluation and impact of NEPER

wheat expert system. Fourth international workshop on artificial

intelligence in agriculture IFAC/CIGR, Budapest, Hungary.

Rafea, A., & Salah, A. (1994). Guiding object-oriented design via the

knowledge level architecture: the irrigated wheat testbed. Mathematical

and Computer Modeling, 20(8), 1–16.

Rafea, A., Warkentin, M., & Ruth, S (1991). An expert system for

cucumber production in plastic tunnels. In Proceeding of the world

congress on expert systems, Florida, Orlando, USA (pp. 909–916).

Rafea, A., Warkentin, M., & Ruth, S. (1992). Knowledge engineering:

Creating expert systems for crop production management in Egypt.

In C. Mann, & S. Ruth (Eds.), Expert systems in developing

countries: Practice and promise (pp. 89–103). Boulder, CO:

Westview Press.

Raphael, M. J., & Deloach, S. A (2000). A knowledge base for

knowledge-based multiagent system construction. National aero-

space and electronics conference (NAECON), Dayton, OH, October

10–12.

Shaalan, K., Rafea, M., & Rafea, A. (1998). KROL: a knowledge

representation object language on top of prolog. Expert System with

Applications (ESWA): An International Journal, 15, 33–46.

Smith, R. G. (1980). The contract net protocol. IEEE Transactions on

Computers, C-29(12).

Wooldridge, M., & Ciancarini, P. (2001). Agent-oriented software

engineering: The state of the art. In P. Ciancarini, & M. Wooldridge

(Eds.), Agent-oriented software engineering. Lecture Notes in AI

Volume, Berlin: Springer.

K. Shaalan et al. / Expert Systems with Applications 27 (2004) 1–1010

http://www.cs.umbc.edu/kqml/papers/

	A multiagent approach for diagnostic expert systems via the internet
	Introduction
	Overview of the proposed system
	The user interface agent
	The communication model

	The coordination agent
	The expert system agents
	The diagnosis agent
	The treatment agent

	An example of utilization and testing
	Verify three diagnosis agents: nutrition deficiency, mite, and snail

	Conclusions
	References


