Generic Integrated Design for Irrigation and Fertilization Applied on Tomato

1. Introduction

This report is intended provide a detailed generic design for the Fertigation system. Valid for any crop including tomato (our current system which is cultivated in different environments, open field, under high tunnel, under low tunnel). Both Irrigation and Fertilization systems have been designed and developed for this crop separately [TR/CLAES/72/99.5] [TR/CLAES/140/2000.5]. Therefore, the purpose of this report is to concentrate on the integration point of view taking into consideration also the comments in the updating and reviewing technical reports number TR/CLAES/195/2001.1, and TR/CLAES/189/2001.1

The report is organized as follows: section two provides an overview of the system architecture. Section 3 enumerates the irrigation and fertilization system common concepts and relationships (Common Knowledge). Section 4 and 5 provide the irrigation and fertilization system updating remakes (in terms of addition, deletion, or renaming of concepts, properties, and/or relations). Section 6 describes the integrated system global Interface. Section 7 shows the integrated system overall Control. Finally section 8 contains a description of the testing method.

2. System Architecture

The overall architecture of the Fertigation system is shown in figure 1. As shown in this figure the system consists of:

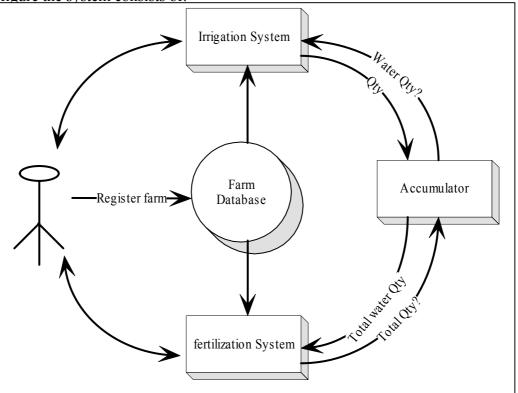


Figure 1: Fertigation System Architecture

- 1. Irrigation system that accept the farmer, and the weather data from either user or through database, and provide an irrigation schedule suitable for that specific farm.
- 2. Fertilization system, which acts the same way the irrigation system do, but in this case it will provide a fertilization schedule
- 3. Database: work as repository
 - a. Farm data
 - b. Weather data
- 4. Accumulator. Its job is to invoke the irrigation system several time to calculate the total irrigation water a specific fame may need. This information is sent to the fertilization system to start its function for calculating the appropriate nutrition quantities and schedule. The algorithm of this module is shown in figure 2.

```
accumulator :: {
water requirment total :-
              wr total :: set(previous wr(0)),
              :findall(W/D/Q/I/M1/N, irr result(W, D, Q, I, M1, N), Irr List1),
              :: wr loop(Irr List1)&
wr loop([]) &
wr_loop([_/_/Q/_/_/_|List]) :-
water requirement :: set(value(O)),
       irrigation task user ::
mathematical dependency mechanism([wr total]),
       wr total :: get(value(W1)),
       wr total :: set(previous wr(W1)),
       wr loop(List)&
wr total/fed :-
       wr total :: get(value(W1)),
              farm :: get(type(Type)),
              (Type ='open field'; Type ='low tunnel') ->
       (
              irrigation task user ::
mathematical dependency mechanism([wr total o]),
wr total o :: get(wr value(M1))
       ;
              Type = 'high tunnel' ->
              irrigation task user ::
mathematical dependency mechanism([wr total h]),
              wr total h :: get(wr value(X1)
```

Figure 2: Accumulator Algorithm

3. Common Knowledge

3.1 Common Ontology

concept irrigation;

properties :

sub-type-of : operations. method: NOMINAL, VALUE-LIST(dripping; flooding) SOURCE(D.B.) SINGLE NECESSARY.

- schedule_type : NOMINAL, VALUE-LIST(daily; weekly), SOURCE(User).
- irrigation efficiency: INTEGER, NUMBER RANGE(0;100), SOURCE(D.B., derived[table, irrigation efficiency t]) SINGLE.
- number of dripper : INTEGER, NUMBER-RANGE(100,4000), SOURCE(D.B.) SINGLE.

rate_of_dripper_flow: REAL, NUMBER-RANGE(1,100), SOURCE(D.B.) SINGLE NECESSARY. control of dripper: NOMINAL, VALUE-LIST(yes;no), SOURCE(D.B.) SINGLE.

controled_water: NOMINAL, VALUE-LIST(yes;no), SOURCE(D.B.) SINGLE NECESSARY.

user_suggested_interval: integer, NUMBER-RANGE(1;30), SOURCE(D.B.) SINGLE. saa: REAL, %soil absorbed area NUMBER-RANGE(0,1000), SOURCE(D.B.; Derive[table, Saa_t]) SINGLE. last irr date: DATE, %last irrigation date SOURCE(user) SINGLE. Last_wr: REAL, %last water requirement

NUMBER-RANGE(0,1000), SOURCE(user) SINGLE.

concept current_planting;

properties :

no_of_plants: INTEGER, NUMBER-RANGE(1,2000), SOURCE(D.B.) SINGLE NECESSARY.

date : DATE, SOURCE(D.B.) SINGLE NECESSARY.

agriculture_method: NOMINAL VALUE_LIST(seeding;transplanting) SOURCE(D.B.) SINGLE. NECESSARY. death_of_plants: NOMINAL VALUE_LIST(yes,no) SOURCE(User) SINGLE. NECESSARY.

concept water;

properties:

eciw: numeric; source of value: DB; cardinality: single;

Ca quantity: numeric; source of value: user; cardinality: single;

N quantity: numeric; source of value: user; cardinality: single;

P quantity: numeric; source of value: user; cardinality: single;

K quantity: numeric; source of value: user; cardinality: single;

Mg quantity: numeric; source of value: user; cardinality: single; Fe quantity: numeric; source of value: user; cardinality: single;

Zn quantity: numeric; source of value: user; cardinality: single;

Mn quantity: numeric; source of value: user; cardinality: single;

Cu quantity: numeric; source of value: user; cardinality: single;

qty: numeric; % the irrigation volume in cubic meter/feddan source of value: user; cardinality: single;

concept material.

concept fertilizer; sub-type-of : material

concept soil

properties:

texture: NOMINAL, VALUE-LIST(heavy clay; silt clay; loam; silt loam; silt clayloam; sandy clay loam; sandy loam; loam fine sand; medium fine sand), SOURCE(D.B.) SINGLE.

type: (fine, medium, coarse); source of value: Derived[soil_type relation]; cardinality: single;

sp : REAL, %soil saturated percentage NUMBER-RANGE(0,1000), SOURCE(D.B.); Derived[table, sp_t], SINGLE.

sbd: REAL, %soil bulk density
 NUMBER-RANGE(0,1000),
 SOURCE(D.B.;
 Derived[table,sbd_t])
 SINGLE.
ec: numeric; % in m. mhos
 source of value: DB;
 cardinality: single;

	calcium carbonate: n source of valu cardinality: sin	e: user;	% percentage
	Ca quantity: numeric; source of value: user; cardinality: single;		% in ppm
	N quantity: numeric; source of value: user; cardinality: single;		
	P quantity: numeric; source of value: user; cardinality: single;		
	K quantity: numeric; source of value: user; cardinality: single;		
	Mg quantity: numeric source of value: user; cardinality: single;	.;	
	Fe quantity: numeric; source of value: user; cardinality: single;		
	Zn quantity: numeric; source of value: user; cardinality: single;		
	Mn quantity: numeric source of value: user; cardinality: single;	. ,	
	Cu quantity: numeric; source of value: user; cardinality: single;	,	
sub-type-of : for properties: name: source of	e manure; ertilizer. {chicken magazer, chi of value: DB; ity: single;	cken bayade, c	cattle, horse, pigeon};
weight: num source c	eric; of value: derived;	% weight of 1	cubic meter in Kg

cardinality: single;

quantity : numeric,

source of value: DB; cardinality: single;

ratio of N: numeric; source of value: derived; cardinality: single;

ratio of P: numeric; source of value: derived; cardinality: single;

ratio of K: numeric; source of value: derived; cardinality: single;

ratio of Ca: numeric; source of value: derived; cardinality: single;

ratio of Mg: numeric; source of value: derived; cardinality: single;

concept chicken magazer;

sub-type-of: organic manure;
properties:

weight: {250};

ratio of N: {0.015}; ratio of P: {0.012}; ratio of K: {0.005}; ratio of Ca: {0.0}; ratio of Mg: {0.0};

concept chicken bayade;

sub-type-of: organic manure;
properties:

weight: {575} ratio of N: {0.013}; ratio of P: {0.007}; ratio of K: {0.005}; ratio of Ca: {0.0}; ratio of Mg: {0.0};

concept cattle;

/* the volume of organic manure in cubic meter for the whole area */

sub-type-of: organic manure; properties: weight: {700} ratio of N: {0.005}; ratio of P: {0.0014}; ratio of K: {0.004}; ratio of Ca: $\{0.0\}$; ratio of Mg: $\{0.0\}$; concept horse; sub-type-of: organic manure; properties: weight: {250} ratio of N: {0.02}; ratio of P: {0.0066}; ratio of K: {0.016}; ratio of Ca: $\{0.0\}$; ratio of Mg: $\{0.0\}$; concept pigeon; sub-type-of: organic manure; properties: weight: {300} ratio of N: {0.04}; ratio of P: {0.036}; ratio of K: {0.026}; ratio of Ca: $\{0.0\}$; ratio of Mg: $\{0.0\}$;

concept plant;

properties:

name: {tomato, cucumber, melon, rice, bean, fababean, ...}; / This property will

source of value: user; cardinality: single;

init stage : INTEGER,

NUMBER-RANGE(0,1000), SOURCE(User.; Derived[relation, growth_stages]) SINGLE.

only be used when we integrate more than one crop/

ve_stage : INTEGER, %vegetative stage NUMBER-RANGE(0,1000), SOURCE(User.; Derived[relation, growth_stages]) SINGLE. fl_stage : INTEGER, %flowering stage NUMBER-RANGE(0,1000), SOURCE(User.; Derived[relation, growth_stages]) SINGLE. fr_stage : INTEGER, %fruiting stage NUMBER-RANGE(0,1000), SOURCE(User.; Derived[relation, growth stages])

SINGLE. growth period : INTEGER, NUMBER-RANGE(0,1000), SOURCE(Derived[function, growth_period_f]) SINGLE. init_ve_stage : INTEGER, NUMBER-RANGE(0,1000), SOURCE(Derived[function, init ve stage f]) SINGLE. init ve fl stage: INTEGER, NUMBER-RANGE(0,1000), SOURCE(Derived[function, init ve fl stage f]) SINGLE. elements: nominal; source of value: derived; cardinality: multiple; variety: nominal; source of value: derived; cardinality: single; predicted yield factor: numeric; /* a coefficient when multiply by the optimum yield gives the predicted yield */ source of value: derived; cardinality: single; N ratio: real number; source of value: derived; cardinality: single; P ratio: real number; source of value: derived; cardinality: single; K ratio: real number; source of value: derived; cardinality: single; Ca ratio: real number; source of value: derived; cardinality: single; Mg ratio: real number; source of value: derived; cardinality: single; Fe ratio: real number: source of value: derived; cardinality: single; Mn ratio: real number;

source of value: derived; cardinality: single;

Cu ratio: real number; source of value: derived; cardinality: single;

Zn ratio: real number; source of value: derived; cardinality: single;

N content: real number; source of value: derived; cardinality: single;

P content: real number; source of value: derived; cardinality: single;

K content: real number; source of value: derived; cardinality: single;

Ca content: real number; source of value: derived; cardinality: single;

Mg content: real number;

source of value: derived; cardinality: single;

Fe content: real number; source of value: derived; cardinality: single;

Mn content: real number; source of value: derived; cardinality: single;

Cu content: real number; source of value: derived; cardinality: single;

Zn content: real number; source of value: derived; cardinality: single;

concept farm; properties : latitude: REAL NUMBER-RANGE(0,1000) SOURCE(D.B.) SINGLE.

altitude : REAL NUMBER-RANGE(0,1000) SOURCE(D.B.) SINGLE. area: REAL. NUMBER-RANGE(1,2000), SOURCE(D.B.) **SINGLE** drainage system: NOMINAL, VALUE-LIST(good;medium;bad), SOURCE(D.B.) SINGLE type: NOMINAL VALUE LIST([open field,low tunnel, High tunnel]) SOURCE(D.B.) SINGLE. NECESSARY.

concept tomato;

properties:

elements: {N, P, K, Ca, Mg, Fe, Zn, Cu, Mn};

N ratio: {0.05}; P ratio: {0.005] K ratio: {0.04] Ca ratio: {0.02} Mg ratio: {0.005} Fe ratio: {0.00014} Mn ratio: {0.000145} Cu ratio: {0.00002} Zn ratio: {0.00004}

concept plantation;

properties:

cultivation capability: {yes, no};

source of value: drived; cardinality: single;

optimum-yield: numeric; source of value: drived; cardinality: single;

expected-yield: numeric; source of value: drived; cardinality: single;

3.2 Common Relations

relation soil_type;

properties: texture, type; argument-1: soil; argument-2: soil; axioms :

> <u>**R1: If</u>** (texture of soil = "clay; clay loam; silty clay; silty clay loam" <u>**Then**</u> type of soil = fine</u>

<u>**R2:** If</u> (texture of soil = "sandy clay; sandy clay loam; silt loam; silty loam"

<u>Then</u>

type of soil = medium

<u>**R3:** If</u> (texture of soil = "sandy loam; sand; loamy sand" <u>Then</u> type of soil = coarse

4. Irrigation System

4.1 Added Items

4.1.1 Ontology

concept : wr_total; sub_type_of : domain_class properties:

> value : numeric; source of value: drived; cardinality: single;

previous_wr : numeric;

source of value: drived; cardinality: single;

concept : wr_total_h; sub_type_of : domain_class properties:

> wr_value : numeric; source of value: drived; cardinality: single;

concept : wr_total_o; sub_type_of : domain_class properties:

> wr_value : numeric; source of value: drived; cardinality: single;

4.1.2 Function

- 1. wr_total_f = (value of water_requirement + previous_wr of wr_total)
- 2. wr_total_h_f = (value of wr_total * 4200)/area of farm)
- 3. wr_total_o_f = (value of wr_total/ area of farm)

4.2 Deleted Items

concept eggplant_family sub-type-of (vegetable)

concept tomato sub-type-of (eggplant_family)

concept tomato_open_field sub-type-of (tomato)

concept tomato_early_summer sub-type-of (tomato_open_field)

concept tomato_summer sub-type-of (tomato_open_field)

concept tomato_autumn sub-type-of (tomato_open_field)

concept tomato_winter sub-type-of (tomato_open_field)

concept tomato_nile sub-type-of (tomato_open_field) **concept** hagen_6130 sub_type_of (tomato_early_summer)

concept v_f_n_8
 sub_type_of (tomato_early_summer)

concept nemarok
 sub_type_of (tomato_early_summer)

concept astren_b
 sub_type_of (tomato_summer)

concept zena_692
 sub_type_of (tomato_summer)

concept super_astren_b
 sub_type_of (tomato_summer)

concept csael_rok sub_type_of (tomato_autumn)

concept alex_61 sub_type_of (tomato_autumn)

concept ty70_84 sub_type_of(tomato_autumn)

concept ty70_70 sub_type_of (tomato_autumn)

concept ty20 sub_type_of (tomato_autumn)

concept facolta_38
 sub_type_of (tomato_autumn)

```
concept veuna
    sub_type_of (tomato_autumn)
concept jakal
    sub_type_of (tomato_autumn)
```

concept e445 sub_type_of (tomato_autumn)

concept tomanour
 sub_type_of(tomato_autumn)

concept sarea
 sub_type_of (tomato_autumn)

concept taefon
 sub_type_of(tomato_autumn)

concept dora
 sub_type_of(tomato_autumn)

concept super_mar_mind sub_type_of (tomato_winter)

concept mar_mind sub_type_of (tomato_winter)

concept extra_emar_mind sub_type_of (tomato_winter)

concept c_1_150 sub_type_of(tomato_winter)

concept neam_1400 sub_type_of (tomato_nile)

concept tomato_low_tunnel
 sub_type_of(tomato)

concept tomato_high_tunnel
 sub_type_of(tomato)

concept cherry_tomato_high_tunnel
 sub_type_of (tomato)

concept al_wadey
 sub_type_of (tomato_low_tunnel)

concept ty_70 sub_type_of (tomato_low_tunnel)

concept gs_12
 sub_type_of(tomato_low_tunnel)

concept orient

<pre>sub_type_of (tomato_low_tunnel)</pre>
<pre>concept model sub_type_of (tomato_low_tunnel) concept lamec sub_type_of (tomato_high_tunnel)</pre>
concept gc_779 sub_type_of (tomato_high_tunnel)
concept terkewaza sub_type_of (tomato_high_tunnel)
concept kowmat sub_type_of (tomato_high_tunnel)
concept nomy sub_type_of (tomato_high_tunnel)
concept sweet_million sub_type_of (cherry_tomato_high_tunnel)
concept pink_debut sub_type_of (cherry_tomato_high_tunnel)
concept yellow_debut

sub_type_of (cherry_tomato_high_tunnel)

4.3 Updating legal values

Old Item		New Item			
Concept	Property	Value	Concept	Property	Value
Irrigation	Method	VALUE- LIST(drip; flooding)	irrigation	method	VALUE-LIST (dripping; flooding)
Organic_ manure	name	VALUE- LIST(cattle, hog, chicken, chicken bayade, chicken magazer, sheep, hourse, pigeon)	organic_ manure	name	VALUE-LIST (chicken magazer, chicken bayade, cattle, horse, pigeon)
Vegetable	variety	al_wadey, alex_61, alex_63, astren_b, beto_86, beto_bride, brigad, c_1_150, casel_rok,	tomato	variety	al_wadey, alex_61, alex_63, astren_b, beto_86, beto_bride, brigad, c_1_150, casel rok, ,dora,

dara	avtra anan min
dora,	extra_emar_min
e445,	d,facolta_38,
crystena	floraide,
extra_emar_min	'gs-12',
d,	hagen_6130,
facolta_38,	jakal,
floraide,	mader,mar_mind
gc_779,	, neam_1400,
'gs-12',	nemarok,
hagen_6130,	sarea, super_astre
jakal,	n_b,
kowmat,	super_mar_mind
lamec,	,
mader,	taefon,
mar_mind,	ty20,
model,	ty70 70,
neam_1400,	ty70 ⁸⁴ ,
nemarok,	ty_70,
orient,	u c 973,
nomy,	v f n 8,
pink_debut,	veuna,
sarea,	,
super astren b,	lamec,
sweet million,	gc 779,
super mar mind	terkewaza,
,taefon,	kowmat,
terkewaza,	nomy,
tomanour,	crystena,
ty20,	-)
ty70 70,	
ty70_84,	
ty_70,	
u_c_973,	
v f n 8,	
yellow_debut,	
veuna,	
'zena-692'	
2011-092	

5. Fertilization System

5.1 Updating legal values

Old Item		New Item			
Concept	Property	Value	Concept	Property	Value
Organic_	name	chicken manure	organic_	name	chicken magazer,
manure		for meat product,	manure		chicken bayade, cattle,
		chicken manure			horse, pigeon

		for egg product,			
		cow manure,			
		,			
		residual farm			
		manure, horse			
		manure, sewage			
		sludge manure,			
		town refuse			
		manure, pigeon			
		manure	•1		~ 1:
Soil	type	clayey, loamy,	soil	type	fine, medium,
		sandy			coarse
Plantation	type	Open field,	farm	type	open_field,
		tunnels, low			high_tunnel
		tunnels			low_tunnel,
Plantation	irrigation	flooding,	irrigation	method	flooding, dripping
	type	dripping,			
		sprinkling, pivot			
Tomato	variety	Peto 86,	tomato	variety	al_wadey,
		UC 97-3,			alex_61, alex_63,
		Cast rock,			astren_b,
		Floradade,			beto_86,
		Alex 63,			beto_bride, brigad,
		Peto pride,			c 1 150,
		Prigade,			casel_rok, ,dora,
		Madir,			extra emar mind, faco
		H-6130,			Ita $3\overline{8}$,
		Estrine-B,			floraide,
		Super estrine-B,			'gs-12', hagen 6130,
		Alex 61,			jakal,
		TY,			mader, mar mind,
		Facolta-38,			neam 1400, nemarok,
		Fiona,			sarea, super astren b,
		Jacal,			super_mar_mind,
		Saria,			taefon,
		Taifon,			ty20,
		Dora,			ty70 70,
		Super marmend,			ty70_84,
		Marmend,			ty 70,
		Extra marmend,			u_c_973,
		H-CL-150,			u_c_ <i>y</i> 73, v f n 8,
		CL-150,			veuna,
		Valley,			, cana,
		Ben Shifar,			lamec,
		Orite,			gc 779,
		Н-5656,			gc_//9, terkewaza,
		H-G-S-12,			kowmat,
		V.F.N-8,			nomy,
		H-Nema Rock,			crystena,
		H-Nema-1400,			orystona,
		11-INCIIIa-1400,			

under tunnel		
variety, other		

5.2 Updating properties

Organic manure: volume \rightarrow organic manure: quantity Plantation: date \rightarrow current_planting: date Plantation: type \rightarrow farm: type Soil: salinity \rightarrow Soil: ec Water: salinity \rightarrow Water: eciw

5.3 Deleted concepts

residual farm manure town refuse manure sewage sludge manure

5.4 Renamed concepts

chicken manure for meat product \rightarrow chicken magazer chicken manure for egg product \rightarrow chicken bayade cow manure \rightarrow cattle horse manure \rightarrow horse pigeon manure \rightarrow pigeon

5.5 Updating rules

The following rules in the technical report number TR/CLAES/140/2000.5 pages 23, 24 have been updated, the bolded items are added, the italic are modified to the items follows the arrow. These updating is due to that the volume of organic manure is in cubic meter for the whole farm area in the irrigation system, and also the farm area is in square meter in irrigation system while the volume of organic manure is in cubic meter per feddan in fertilization system.

```
(plant: name = X &

X: element = Ca &

soil: Ca quantity = SCaQ &

water: Ca quantity = WcaQ &

water: qty = WQ &

organic manure: name = M &

farm: area = A &

M: ratio of Ca = MRCa &

M: ratio of Ca = MRCa &

M: weight = MW)

CALCULATE ELEMENT IN ENVIRONMENT

(environment: Ca quantity = SCaQ + WcaQ * WQ/1000 + MRCa * (MQ*4200/A) *

MW)
```

```
(plant: name = X &
X: element = N &
soil: N quantity = SNQ &
water: N quantity = WNQ &
```

```
water: qty = WQ \&
            organic manure: name = M \&
            farm: area = A &
            M: ratio of N = MRN \&
            M: volume = MV \& \rightarrow M: quantity = MQ
            M: weight = MW)
        CALCULATE ELEMENT IN ENVIRONMENT
(environment: N quantity = SNQ + WNQ * WQ/1000 + MRN * (MQ*4200/A) *
MW)
            (plant: name = X \&
             X: element = P \&
            soil: P quantity = SPQ &
            water: P quantity = WPQ &
            water: qty = WQ \&
            organic manure: name = M \&
            farm: area = A &
            M: ratio of P = MRP \&
            M: volume = MV \& \rightarrow M: quantity = MQ
            M: weight = MW)
        CALCULATE ELEMENT IN ENVIRONMENT
(environment: P quantity = SPQ + WPQ * WQ/1000 + MRP * (MQ*4200/A) * MW)
            (plant: name = X \&
             X: element = K &
            soil: K quantity = SKQ &
            water: K quantity = WKQ &
            water: qty = WQ \&
            organic manure: name = M \&
            farm: area = A &
            M: ratio of K = MRK \&
            M: volume = MV \& \rightarrow M: quantity = MQ
            M: weight = MW)
        CALCULATE ELEMENT IN ENVIRONMENT
(environment: K quantity = SKQ + WKQ * WQ/1000 + MRK * (MQ*4200/A) *
MW)
            (plant: name = X \&
             X: element = Mg &
            soil: Mg quantity = SMgQ \&
            water: Mg quantity = WMgQ \&
            water: qty = WQ \&
            organic manure: name = M \&
            farm: area = A &
            M: ratio of Mg = MRMg &
```

```
M: volume = MV \& \rightarrow M: quantity = MQ
```

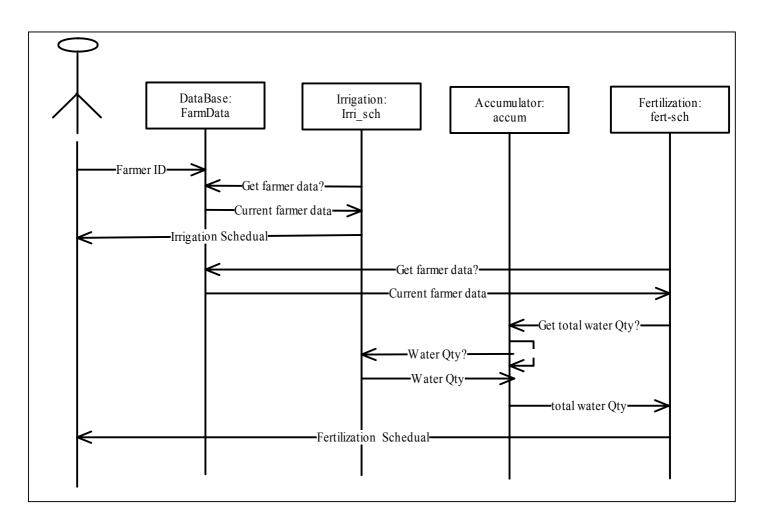
```
M: weight = MW)
```

```
CALCULATE ELEMENT IN ENVIRONMENT
```

(environment: Mg quantity = SMgQ + WMgQ * WQ/1000 + MRMg * (MQ*4200/A) * MW)

6. Global Interface

The main screen is shown in figure(3). About system button display a brief description about the expert system as follows: " This expert system contains two subsystems, fertilization and irrigation for tomato plant cultivated in open field, under low tunnels or high tunnels. When clicking on the "participants" button a pull down menu appears which contains the items [Agricultural Experts, Claes Staff]. When choosing either of them, a second screen appears containing the persons name according to the item selected.


Irrigation button invokes the irrigation system. Fertilization button invokes the fertilization system. Database buttons invokes the database.

Ag	of Agriculture & Land I gricultural Research Ce ab for Agricultural Exp	enter
	CL. DSP	!
Т	Comato Expert Syst	tem
About System		Participants
Irrigation	Fertilization	DataBase
	Exit	

Figure 4: the main screen

7. Overall Control

The system overall control in the sequence diagram shown in figure 4.

Figure 4: Fertigation Sequence Diagram

8. Testing Method

The integrated Fertigation system should run all the test cases provided for both standalone irrigation and fertilization systems and provide he same results approximately.