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that there are only two values, either 1 or 0 to indicate to what degree a data point 
belongs to a cluster. This requires well-defined boundaries between clusters, which is 
not the usual case for the real image. Most plant images present overlapping gray-
scale intensities for different tissues. In particular, borders between tissues are not 
clearly defined and memberships in the boundary regions are intrinsically fuzzy. 
Therefore fuzzy clustering turns out to be particularly suitable for the segmentation of 
plant image. One widely used algorithm is the fuzzy c-mean (FCM) algorithm. In this 
paper we apply FCM algorithm and adapt its parameters to meet our application. 
Section 2 presents materials and methods. Results of the case study are presented in 
Section3. Conclusions are presented in Section4.

2. Materials and methods

2.1 Case Description

The image data sets in this paper relate to cucumber crop. Some of them exist 
in the literature, these include the disorders, Gummy stem blight, Pesticide injury, 
Scab, Phosphorus def., High temperature, and White fly. The other sets were captured 
at central lab for agricultural expert system by high resolution 3-CCD color camera 
(DSC-P1 Cyber-shot, Sony) with 3.3 million-pixel sensitivity, 3X optical zoom lens, 
and auto focus illuminator light, Focal Length 8 - 24mm. The camera was placed at 
about 60mm from top of the leaves. The image from the camera is digitized into a 24-
bit image with resolution 720 x 540 pixels. The 90 defected images of cucumber are 
taken in cucumber green house to cover three categories of disorders, mainly powdery 
mildew, downy mildew, and leafminer. Figure1 represents examples of those images.

2.2 Fuzzy c-mean Clustering

Fuzzy c-mean clustering is a simple unsupervised learning method, which can 
be used, for data grouping. The FCM algorithm is the best known and most widely 
used fuzzy clustering technique. It was first presented by Dunn [8], further developed 
by Bezdek [2], and subsequently revised by Rouben[36], Trauwaert[46], Goth [11], 
Gu [14], and Xie [47]. However, Bezdek’s FCM remains the most commonly used 
[47]. The basic mathematical foundation of FCM is as follows:
Let X = {x1, …..,xn} be a data set. Let C be a positive integer greater than one. A 
partition of X into C clusters can be presented by mutually disjoint sets X1,…..,Xc  such 
that X1 U……... U  Xc  = X or equivalently by the indicator functions µ1,……….. µc
Such that

Figure1: Samples of defected images
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Initialize V={v1,….vc}
Initialize convergence criteria 
Initialize degree of fuzziness m >=1
Repeat

- VV previous =
-Compute membership function using Eq. 4
-Update Cluster centers using Eq 5

Until ε<−∑
=

c

i
i

previous
i VV

1

Figure 2:Fuzzy c-mean algorithm

µi(x)=1 if x is in Xi otherwise  µi(x)=0 for all i = 1,…C.This is known as hard c-
partition. The well-known hard c-mean is an iterative algorithm to minimize the 
objective function JHCM defined as:

Where a1,……….. ac is the cluster centers. 
The fuzzy extension allows µi(x) to be a membership function in a fuzzy sets µi on X, 
the degree of membership is between [0, 1] such that

In this case {µ1,……….. µc } is called fuzzy c-partition on X. Thus the fuzzy c-mean 
(objective function) JFCM    becomes

Where m is a number bigger than one to present the fuzziness. The FCM clustering 
algorithm is an iteration through the necessary conditions for minimizing JFCM  with 
the following equations

Where i = 1, ………., C               j = 1, ………., n

The FCM algorithm is shown in Figure 2
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2.3 Adaptation of FCM

The segmentation of defected plant images involves partitioning the image 
space into different cluster regions with similar intensity image values. The success of 
applying FCM to fit the segmentation problem depends mainly on adapting the input 
parameters value [24,25]. As a consequence, if the parameters are assigned an 
improper value, the clustering results in a partitioning scheme that is not optimal for 
the specific data set and that leads to a wrong decision. These parameters include, the 
feature of the data set, the optimal number of cluster, and the degree of fuzziness. 

2.3.1 Feature of the Data Set

We considered the image intensity as the main feature of the data set, since the 
defected part of the leaves has high intensity. The intensity image is defined as the 
average of the three components r, g, b. So the cluster with high intensity center 
represents the defected part of the leaves. The clustering algorithm does not directly 
incorporate spatial information and which makes it is sensitive to the noise and 
intensity in-homogeneities [9]. This lack of spatial information can be overcome by 
choosing the mean computed in a neighborhood of 5x5 pixels. In addition, the x, y 
coordinates of the pixels are used as a second and third feature respectively for spatial 
information.

2.3.2 Optimal Cluster Number

The problem of deciding the optimal number of clusters has been the subject 
of many research efforts [33,45]. Several cluster validation measures have been 
developed [5]. We will describe and use three of these measures: partition coefficient 
[2,10,25], partition entropy [2,10,25], compactness and separation [2,10,25]. The 
partition coefficient measures the closeness of all input samples to their corresponding 
cluster centers, as defined by:

The optimum choice by this measure is given by:

The partition entropy measures the average amount of the information contained [10]
as defined by:

The optimum choice by this measure is given by:

When all membership values are closed to 0.5 - which represent the high degree of 
fuzziness of the clusters- then the entropy gets large indicating poor cluster results. On 
the other hand, if all membership values are close to 0 or 1, then the entropy gets 
small indicating good clustering results [5,25]. The compactness and separation is a 
ratio between the average distance of the input samples to the corresponding cluster 
centers and the minimum distance between cluster centers [5]. It is defined as:

∑∑
= =

=
c

i

n

k
ikn

cUF
1 1

2)(1),( µ (6)

(7){ }),(max cUF 1,...,2 −= nc

∑ ∑
= =

−=
c

i

n

k
ikikn

cUH
1 1

)log(1),( µµ (8)

(9){ }),(min cUH 1,...,2 −= nc



5

The optimum choice by this measure is given by:

Good cluster results should make all input samples as close to their
possible, and all cluster centers separated as far as possible [5]. For
well separated clusters the value of S should be minimum [25]
applying those methods on our defected images to get the optimal c
in subsection 3.1

2.3.3 The degree of fuzziness 

The value of fuzzy exponent m remains, however, to be 
parameter m controls the amount of fuzziness; the performance of F
on a good choice of this parameter. Bezdek et al. [1] suggested that,
be in the range 1.5 to 3 to give good results. It was noted, however, 
strong theoretical justification or empirical evidence for this choic
[31] also noted that “ no theoretical basis for choosing a good value 
suggested 1.1 to 5 were “typically reported as the most useful r
McBrateney and Moore [27] also investigated the choice of m and f
of approximately 2 was optimal. Whereas Choe and Jordan [6
algorithm is insensitive to the range from 8 to 30. Cannon and Jaco
for image applications, the range between 1.1 to 2.5 “has proved
practical purposes”. In subsection 3.2, the experimental results of a
values of the fuzzy exponential m over the following sets {1.1,1.5
values, are demonstrated.

3 Results
Through this section, experimental results of adapting the

parameters of FCM will be discussed as well as the output of app
FCM to our data sets

3.1 Optimal Cluster Number Results

According to the analysis of the optimal number of clusters u
coefficient, partition entropy, and compactness and separation me
algorithm was applied for the number of clusters between 4 and 8
found that it is not useful to specify less than 4 clusters and more t
this dataset. Since fewer than 4 clusters give an under segmentation
clusters give an over segmentation. The results are summarized in ta
in Figures 3,4,5. As shown from Figures, the optimal number of clust
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Powdery (Class1) Downey (Class2) Leafminer (Class3)

Clusters F(U,c) H(U,c) S(U,c) F(U,c) H(U,c) S(U,c) F(U,c) H(U,c) S(U,c)

4 0.805 0.538 0.083 0.837 0.455 0.074 0.841 0.441 0.086
5 0.77 0.658 0.126 0.805 0.56 0.107 0.794 0.577 0.13
6 0.743 0.757 0.139 0.781 0.647 0.12 0.759 0.688 0.246
7 0.71 0.866 0.167 0.755 0.647 0.133 0.722 0.798 0.423
8 0.667 0.997 0.264 0.721 0.84 0.249 0.696 0.886 0.672

Table1: Partition&Entropy&Compactness measures for the three Classes
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Figure3: Fuzzy measures for Class1
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Figure4: Fuzzy measures for Class2
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Figure5: Fuzzy measures for Class3
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3.2 Degree of Fuzziness Results

As discussed in Subsection 2.3.3 there is no accurate decision about the 
exponential value m. from the previous research the most recommended values 
between 1.1, 15. Thus through this subsection we present the experimental results of 
applying these set of values. Figure 6 shows the results of applying the previous set of 
values on our three classes of dataset. As shown, the values 1.1to 2.2 for m do not 
cause a significant difference in noise. On the other hand, values of m higher than 2.2 
have more noise. So we choose the number 2 as the optimum number of m for our 
problem since the calculation will be easier than using 1.1 and 1.5.

Figure6: Comparison between different values of m
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3.3 Results of FCM

Through this subsection, experimental result of applying FCM on the literature 
images and our set of images will be demonstrated. Figure 7 shows the original 
literature images and the results of segmentation. 

Figure7: Segmentation Results on some Literature Images



Figure 8,9,10 show some images that are taken from central Lab. for agricultural 
expert systems (CLAES), for leafminer, downey milew, and powdery mildew and the 
segmentation results.

Figure9: Original and segmented CLAES images for Downey Mildew

Figure8: Original and segmented CLAES images for Leafminer
9

Figure9: Original and segmented CLAES images for Downey
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Figure 11 demonstrates the result of segmentation after selecting only part of the 
defected image.

4 Conclusions

In this paper, we have implemented FCM as a clustering algorithm for 
segmenting the leaf spots in cucumber crop. The algorithm was successfully applied 
in two types of defected images, literature images, and our own acquired images. We 
also described several methods for choosing optimal cluster numbers and experiments 
for choosing the degree of fuzziness. Our experiments show that, the optimal cluster 
number for leaf spots problems is 4, and the degree of fuzziness is 2. Those 
parameters give accurate results for segmenting the spots. This method can be used 
effectively to detect the spots. The feature of these spots can be extended to another 
phase for delivery to a diagnostic system.

Figure11: Window Selection Segmentation

Figure10: Original and segmented CLAES images for Powdery
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Also the segmentation accuracy was improved by using spatial information 
from neighboring pixels and by incorporating the x, y coordinates of the pixels. From 
experiments we have determined that applying the clustering algorithm to a full size 
image with a large number of pixels results in excessively long processing time. The 
segmentation was found to be more accurate when we considered only the defected 
part of the leaf. Therefore, we used the window segmentation for two reasons: The 
first one was to enhance the detection of the segmentation specially when the spots 
where too small. The second one was to reduce the processing time.

In general, we recommend using FCM for segmenting the plant images to 
detect the leaf abnormalities, and hence can be diagnosed and controlled.
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