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understanding of the abnormal observations, the expert system can reach the correct 
diagnosis. If, however, the end user interprets the abnormal observations in a wrong 
way and chooses a wrong textual answer to a presented question, then the expert 
system will reach a wrong conclusion. Devising a method whereby abnormalities are 
automatically detected, would greatly reduce the risk of human error, and would 
accordingly lead to a more accurate diagnosis. This could be achieved through the 
integration of an image-processing component with a diagnostic problem solver. 
Image processing is a powerful tool that has been applied in many domains such as
intelligent remote sensing via satellite, medical image analysis, radar, sonar, robotics, 
and automated inspection. Image information can play a crucial role, in the diagnosis 
of different diseases in the agricultural domain where the understanding of image 
symptoms is often essential to problem solving. Consider for example the information 
stored in the following fungal images:

The expert system can reach a correct and accurate diagnosis through extracting 
symptoms from those defected images (e.g.: yellow spots and angular shape in 
Figuer1), (white spots and circular shape in Figure2), and (white spots and linear 
shape in Figure3), apply the reasoning process while taking into account the extracted 
symptoms. 

This work aims to facilitate the process of integrating expert system with image 
processing. The diagnosis of cucumber diseases is used as an example. The 
motivation for automating image feature extraction in a diagnostic expert system can 
be summarized as follows: 

-The expert interpretation/analysis of defected image content is subjective, 
-The normal behavior of a real expert is to detect the symptoms from an image 

before employing his expertise. So automating symptom detection via feature 
extraction simulates real experts. 

-Such integration alleviates the need for relying heavily on user inputs.
-Such integration assures that the final decision of the expert system is accurate, 

because an accurate decision requires accurate inputs.

This paper is divided into four sections in addition to its introduction section. Second 
section presents CLAES diagnostic model, Third section describes the architecture of 
the proposed diagnostic model. Fourth section present experiments and discussions. 
Fifth section displays conclusions.

Fig. 1 Fig. 2 Fig. 3



2 The CLAES Diagnostic model [3]

This section presents the CLAES diagnostic model. The description of this model 
is based on the notation provided in CommonKADS methodology. The inference 
knowledge of this model is depicted in Figure 4. An inference structure diagram is 
used to describe this type of knowledge. Three types of components are used in this 
diagram, namely: inference steps, dynamic roles, and static roles. An inference step 
(represented by an ellipse) is a declarative definition of the directional relationship 
between the input and output roles. A dynamic role (represented by a rectangle) refers 
to the data used as input or output of an inference step. A static role (represented by a 
bold-line rectangle) refers to the domain knowledge (domain model) on which an 
inference step operates. Figure 4 represents the inference structure, which consists of 
three-inference steps, namely: expand, generate hypothesis, and differentiate. The 
goal of the expand inference step is to derive parameters used in the system according 
to the available data involved in the case description role. To perform its function, it 
uses the expansion model, which contains knowledge that derives and/or abstracts 
new parameters based on the available known parameters. 

The output of this inference step is new case description that has been expanded. 
The objective of the generate hypotheses inference step is to use the set of 
observations, involved in the case description role to generate a set of suspected 
disorders (hypotheses). The step uses the knowledge included in the causal model, 
which contains a collection of causality relationships between the observations and 
the disorders to generate the hypotheses. The function of the differentiate inference 
step is to confirm/disconfirm each hypothesis within the generated hypotheses set 
based on the acquisition of some additional observations related to the current 
hypotheses set producing a set of confirmed disorders.

Fig. 4: Diagnosis Inference Structure 



2.1 Cucumber Diagnostic Expert System

Cucumber diagnostic expert system is one of the five expert systems available in 
CUPTEX [22]. CUPTEX is the crop management expert systems, which is developed 
at CLAES to manage cucumber crop. The diagnosis expert system finds out the 
causes (Diseases) of the user complain (Observation). The system interacts with the 
end user the through textual dialogue to get the user complaint and to ask additional 
observations that is required to confirm the user assumptions. 
The diseases can be:

• Infectious diseases cased by Fungi, Bacteria, Viruses, etc.
• Non-infectious diseases or disorder caused by mineral toxicities, soil acidity, 

nutrient deficiencies, or environmental factors.
Disorder identification is obtained by considering symptoms observed by eye, which 
denotes a malfunction in the physiology of plant. 

One or more possible diseases may cause the presence of these symptoms. So the 
system continues to ask the user additional symptom that may be existed on the plant 
or in the environment. The diagnosis system uses these additional observations to 
reject some of the possible diseases and proceed with the selection of the most 
probable ones. Figure 5 shows the hierarchical disorders and observation, which is 
included in CUPTEX knowledge base.

Fig. 5: Disorders and Observations Hierarchy



3 The Proposed Diagnostic model

Figure 6 presents the architecture of the new proposed diagnostic model 
integrated with the image analyzer. 

In this model, the defected image of the defected plant is used as an input to 
the model. The image analyzer component detect the abnormal symptom in the 
defected image then extract their features, and classify those features to specific 

class(s). Those classes are stored in a dynamic database to be interpreted by the 
interpreter. The interpreter converts each record in the dynamic database into a 
disorder(s) name and sets this disorder name into working memory as a hypothesized 
disorder. Figure 7 presents the algorithm of our interpreter. 

Fig. 6: Proposed Diagnostic model
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 DisorderInterpreter ()

ile Not End of Dynamic DB Do
in 
ssVal = Get First Record ()
lassVal <0 OR ClassVal >4) Then

DisName = “Unknown”
ElseIf(ClassVal >=0 & ClassVal <= 1) Then
DisName = “Downy Mildew”
ElseIf (ClassVal >1 AND ClassVal <= 2) Then

DisName = “LeafMiner”
ElseIf (ClassVal >2 And ClassVal <= 3)  Then

DisName = “Powdery Mildew”
ElseIf (ClassVal >3 And ClassVal <= 4) Then
DisName = “Normal”
Else
DisName = “Unknown”

 If 
isName <> “Unknown” OR DisName <> “Normal”) Then
SetInWM(DisName)

 If
ssVal = GetNextRecord ()
Fig. 7: Pseudo code of the Interpreter 



Our model provides two different paths to generate the hypothesized disorder(s). The 
first one is based on textual interaction with the user through predict inference step 
which uses the knowledge base in causal model. The second one is based on 
analyzing the defected image through the image analyzer component, which is more 
accurate than the textual input. 

Differentiate inference step uses also causal model and additional textual input 
through additional observation input role in addition to another input role which is in 
expanded case description to differentiate between the hypothesized disorder(s). In the 
next section we will discuss the image analyzer components.

3-The Architecture of the Image Analyzer

The image analyzer was developed in order to automate the process of 
determining cause(s) of the abnormal symptoms. An image-processing component is 
employed to identify and classify leaf batches into a hypothesized disorder. The 
proposed architecture of the image analyzer is depicted in Figure 8.

This system consists of thre
and a classifier. The proce
phases. The first processing
defected cases caused by d
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4-The Spot Detector

The main purpose of the spot detector is to extract spot features from a 
defected color image represented by spot color and spot shape. As depicted in Figure 
9, the input of the spot detector is the acquired defected color image and the output of 
the spot detector is the extracted features of the defected image. 

There are number of phases involved in the process of spot detection. These are: The 
image acquisition phase, the enhancement phase, the segmentation phase, and the 
feature extraction phase. 

4.1The Image Acquisition Phase

In this phase, images were captured using a high-resolution 3-CCD color camera 
(DSC-P1 Cyber-shot, Sony) with 3.3 million-pixel sensitivity, 3X optical zoom lens, 
auto focus illuminator light, and Focal Length 8 - 24mm. The camera was placed at 
about 60mm from top of the leaves. The image from the camera was digitized into a 
24-bit image with resolution 720 x 540 pixels. The storage format of the images is the 
bitmap format. The used data set consisted of three categories of spotted images, 
based on three disorders, which are: powdery mildew, leafminer, and downy mildew. 
This data set was taken in the cucumber green house at CLAES. In addition some 
images are taken from literature for testing purpose 
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Fig.9: Spot Detector Phases
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so as to get the threshold by which we can increase the contrast of the image, and the 
final step is to adjust the intensity of the image by applying the thresholds. 

4.3The Segmentation Phase
Image segmentation is the first step in image analysis and pattern recognition. It is 

a critical and essential step and is one of the most difficult tasks in image processing, 
as it determines the quality of the final result of analysis. The problem of 
segmentation has been broadly investigated by scientists using both classical [4,5] and 
fuzzy based techniques [6-9]. Classical segmentation approaches take crisp decisions 
about the regions. However, regions in an image are not always crisply defined, and 
uncertainty can arise within each level of image processing as in our addreses. Most 
plant images are represented by overlapping gray-scale intensities for different tissues. 
In addition, borders between tissues are not clearly defined and memberships in the 
boundary regions are intrinsically fuzzy. Fuzzy set theory provides a mechanism to 
represent and manipulate uncertainty and ambiguity. Therefore fuzzy clustering turns 
out to be particularly suitable for the segmentation of plant images. One widely used 
algorithm is the fuzzy c-means (FCM) algorithm which was first presented by Dunn 
[10], further developed by Bezdek [11], and subsequently revised by Rouben[12], Gu 
[13], and Xie [14]. However, Bezdek’s FCM remains the most commonly used 
algorithm. 

The segmentation of defected plant images involves partitioning the image 
space into different cluster regions with similar intensity image values. The success of 
applying FCM to fit the segmentation problem depends mainly on adapting the input 
parameter values [15,16]. As a consequence, if any of the parameter is assigned an 
improper value, the clustering results in a partitioning scheme that is not optimal for 
the specific data set and that leads to a wrong decision. These parameters include, the 
feature of the data set, the optimal number of clusters, and the degree of fuzziness. 
Based on experiments with these parameters, we’ve shown that the optimal cluster 
number for leaf spots is 4, and the degree of fuzziness is 2 [17]. We’ve applied those 
parameters to our data set and the results are presented in Figure 10,11,12,13 and 14. 
In those Figures, the top row represents the original defected input images, while the 
bottom row represents abnormalities, detected via segmentation.
Fig. 10: Original and Segmented Images (Powdery Mildew)



Fig.13: Segmentation results on some literature images

Fig. 12: Original and Segmented Images (Downey Mildew)

Fig. 11: Original and Segmented Images (LeafMiner)
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6 The Classifier 
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Table 1: Classifier accuracy for five classes

Fig. 15: Feature Database



normal leaves exhibit no abnormal features, which makes it easy for the classifier to 
identify them. The third highest recognition percentage was that for unknown 
diseases. This high recognition percentage is due to the fact that the classifier has been 
trained extensively to recognize 3 specific diseases. As a result the classifier is 
capable of identifying the features that best point to them as well as features that do 
not indicate their presence. The second highest identification percentage was that for 
the powdery mildew disease. This can be explained by the ease by which features 
related to that disease can be detected. The fourth, and fifth percentages are those for 
downy mildew and leafminer diseases. These percentages are acceptable for those 
diseases because there was an overlap in the appearance of some symptoms related to 
those disorders.

7  Implemented System

Our system was built using MATLAB 6.5, Visual Basic 6, and the knowledge 
base was built using KSR shell. The development process was done through three 
phases. In the first phase, the MATLAB was used to build the core of the image 
processing. In the second phase, the core that was developed in the first phase was 
transferred into a Component Object Model (COM) using a COM builder tool, which 
is delivered with MATLAB. Component Object Model is a technology by which the 
component can communicate with the outer-world. Such component can run in the 
same process, in different processes on the same machine, or even on different 
machines. The user interface was developed using Visual Basic in the third phase, this 
user interface uses the Image Analyzer component and knowledge base component.

The user interface is depicted in Figure 16. It consists of three list boxes for 
navigating symptoms, which is Initial Symptom List box, Properties List box, and 
Values List box. The other List box is for displaying suspected and confirmed 
disorders as well as some controls to browse the defected image. The working 
memory is displayed as a grid, which contains the user input symptoms. In addition to 
some push buttons to provide diagnosis functionality. 

Fig. 16: Interface for Diagnostic Expert System



The model provides different two paths to generate the hypothesized 
disorder(s). The first one is based on textual interaction with the user through predict 
inference step which uses the knowledge base in causal model. The second one is 
based on analyzing the defected image through the image analyzer component, which 
is more accurate than the textual input. 
Differentiate inference step uses also causal model and additional textual input 
through additional observation input role in addition to another input role which is in 
expanded case description to differentiate between the hypothesized disorder(s). as 
presented in Figure14.

8 Conclusions

This paper has demonstrated the usefulness of integrating an image analyzer 
within a diagnostic expert system model through a real life example.

In order to diagnose a disorder from a leaf image, four image-processing 
phases were applied: enhancement, segmentation, feature extraction, and 
classification.

In order to employ this system we first have to train it using a set of images of 
disorders. We have tested the system on 3 cucumber disorders. The results of this test 
indicated that this system could indeed identify disorders with a high level of 
accuracy.

Applying this model to any other crop disorders requires only special care to 
be taken in order to acquire a sufficient set of images representative of these disorders 
for use in the training step.

Integrating this model within a diagnostic expert system then will greatly 
reduce any error prone dialogue between the system and the user while resulting in 
increased accuracy in the system’s diagnosis.

9 Future Work

The work presented in this paper opens up lots of avenues for future research. 
The following are some of the points that can investigate.

Fig. 14: Confirmation Phase of the Diagnostic Expert System



Currently image processing system focus on three disorders identification, it 
would be helpful to extend the system in order to include other disorders.

Also it would be helpful to extend the system to be able to detect and identify 
abnormalities on the other parts of the plant such as fruits, stem, and root.

The system could be extended in order to cover all crops. 
Building an expert system robotic capable to see abnormalities of a plant and 

understand it and give a treatment operation directly.

10 Acronyms & abbreviations

CLAES Central Lab. for Agricultural Expert Systems
ES Expert Systems
KBS Knowledge Base System
CUPTEX Cucumber Expert Systems
FCM Fuzzy C-Mean
COM Component Object Model
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