

A Framework for Information Extraction, Storage and Retrieval

Samhaa R. El-BeltagyΥ, Mohammed Said*, and Khaled ShaalanΥ

ΥDepartment of Computer Science

 Faculty of Computers and Information
 Cairo University

5 Tharwat Street, Orman,
Giza 12613, Egypt

*Central Lab for Agricultural Expert Systems
Agricultural Research Center

Ministry of Agriculture and Land
Reclamation.

El-Nour St., P.O. Box 438, Dokki
Giza, Egypt

E-mail: {samhaa, moh_said, shaalan}@claes.sci.eg

Abstract

This paper presents a set of tools that were developed in order to facilitate and speed up the
process of building information extraction and retrieval systems for documents that exhibit a set
of predefined characteristics. Specifically, the work presents a simple framework for extracting
information found in publications or documents that are issued in large volumes and which cover
similar concepts or issues within a given domain. The paper presents a simple model for defining
background knowledge and for using that to automatically augment segments of input documents
with metadata in order to assist users in easily locating information within these documents
through a structured front end. The model presented makes use of both document structure as
well as dynamically acquired background knowledge to achieve its goals.

1 Introduction

Locating information in any given document in a
precise and targeted manner is the goal of any
advanced search system. This is particularly true
within enterprises and organizations that often have
volumes of information rich texts, but rarely have
the means by which these resources can be
intelligently searched. The simple keyword model
has already demonstrated its inability to cope
appropriately with such resources [1]. In this work
we present a model that aims to address this
problem in publications that are issued in large
volumes and which cover similar concepts or issues
and from which information cannot be extracted
through the use of the structure of a document
alone. Specifically, the goal of this work is to
enable individual sections of such documents to be
automatically augmented with metadata, so that
users can perform structured search using a
predefined set of categories or classifications and
obtain as a result, only segments or sections of
documents that fit their search criteria. In prior
work [2], we investigated this area of work for a
specific set of documents (agricultural extension
documents). Using our method we’ve approached
an accuracy of 100% when retrieving document
sections based on a set of predefined categories.
The presented implementation however, was not
generic and thus did not enable us of extending our

proposed ideas to “any” set of documents. In this
paper we show how the previously described work
was extended into a very flexible and generic
framework that can enable: the creation of a set of
specifiers for background knowledge, dynamic
acquisition of instances of those specifiers,
indexing and tagging of documents using these
specifiers, and finally the generation of a search
interface for the retrieval of stored tagged
information.

2 Problem scope

The class of documents targeted by this work is
that of resources that contain a set of information
entities most of which fall under known categories,
but which contain no special markup to
differentiate them from other information entities.
Taking extension agricultural documents as an
example, a typical document will cover most issues
related to cultivating a crop, starting from land
preparation to harvest. Each section within a
document targets a given problem or issue, and
each sub-section embodies a specialization of that
issue. For example, a section called ‘Diseases’, will
have as its subsections most diseases that are likely
to affect a given crop. Similarly, a section covering
operations, will cover all agricultural operations
that apply to that crop. In this case and in similar
cases, there are two elements that can work in the

ICENCO 2004

 327

advantage of an intelligent tagging and search. The
first is that the main elements of search can be
identified before hand over a broad class of
documents. ‘Diseases’ and ‘Operations’ are two
examples of search categories that can be readily
identified. The second element, is that individual
mapping of instances related to the categories, are
more or less the same across all documents and are
featured in either section or subsection headings.
For instance, ‘Fertilization’, ‘Irrigation’, and ‘Land
Preparation’ , all belong to the class of agricultural
operations, while ‘Powdery Mildew’ belongs to the
class of agricultural diseases. These classes and
their instances will usually generalize across all
crops. So, the individual instances of these general
categories embody background knowledge that can
be added to individual document segments as meta-
data. User manuals, electrical appliance guides,
and many educational materials are further
examples of documents that exhibit similar features
to the one described above. Generally speaking,
augmenting various document sections with
metadata involves a number of steps which can be
summarized as follows:
� Identifying the various categories onto

which various document sections can be
mapped.

� Acquiring and representing background
knowledge in a way that can facilitate the
mapping of various document sections
into the identified categories.

� Segmenting various documents, and
employing background knowledge to map
each document section to its
corresponding category

� Storing structured index information in a
persistent data store such as a database, or
converting the document into an alternate
representation (ex. XML).

� Providing a user interface to enable search
across indexed documents.

 In the developed system, three stage are involved
in carrying out the above outlined steps. In the first
stage, a tool is provided to aid the system developer
in ontology building. In the second stage, indexing
of document sections and metadata augmentation
based on background knowledge is carried out. In
this stage also, dynamic acquisition of background
knowledge may take place. This allows for
background knowledge to evolve over time rather
than force its pre-definition. In the third stage, a
flexible and structured search front end is
automatically generated using the provided
background knowledge. The generated interface
allows the stored information to be queried in an
intelligent manner.

3 System Overview
The implemented system is composed of a number
of components that communicate together in order
to achieve the required functionality. The main
components of this system are: a background
knowledge editor, an indexing/meta-data tagger
linked to a DBMS, and a user interface generator
which creates a search front end which is also
linked to a DBMS. Figure 1 shows the various
components and their interactions. The tool
currently has built in support for both Arabic and
English.

Document
Publisher

Indexing
Backend

Input document

Background
knowledge

Web based
indexing

component

Select/upload

contents

Update

DBMSstore indexed
doc.

Web based
structured search

interface

System user

search
criteria

Query

Results

Formatted
results

System
Developer

Background
Knowledge editor

UI generator generate

Figure 1: System components and interactions

ICENCO 2004

 328

3.1 The Background Knowledge
editor

The background editor serves as the starting point
for the development of any information extraction
system within the presented framework. Using this
tool, the system developer creates the basic
categories under which classification can later take
place. Once the main categories are created,
instances of these categories can be filled also
using this editor. As mentioned before, not all
instances need to be defined at the beginning.
Instead, these could be acquired dynamically
during the indexing phase. When defining a
category, the developer has the option of defining
all terms that match the category both in English
and in Arabic thus representing a “same as”
relationship between the category’s name and all
equivalent names. The developer also has the
option of specifying a category as a “parent”
category, meaning that if the category is
encountered in a document, all sections that fall
underneath it can be automatically classified as
instances of this category even if no instance
information has been explicitly entered for this
category. This feature is particularly useful for

categories whose instances will not usually
generalize over the entered set of documents. Using
the agricultural extension documents example, the
category of ‘Varieties’ illustrates this point. In most
extension documents, there is usually a section on
varieties with various sub sections on each variety
and it’s different features. The name of a crop
variety is specific to some crop and as such cannot
be used as a general search term. To enable the
location of information on any given variety for a
given crop, the hierarchy of the document itself can
be utilized to infer that each subsection of any
section covering ‘Varieties’ is an instance of the
general category ‘variety’.

In addition to defining categories and their
instances, the background knowledge editor can
also be used to modify category and instance
information at any point in time. When the user
selects to save the background knowledge, an XML
[3] file is created is created for that knowledge.
XML was adopted as it provides a flexible yet
powerful way of representing both background
information as well as a document content. A
simple example of the generated file is shown
below:

This representation, despite its simplicity, allows
for the mapping of various phrases to their
corresponding categories, as well as provides a
simple thesaurus using the <sameAs> tag. The
indexChildNodes can be used to specify whether or
not specializations of a given term should be
indexed as belonging to that term, i.e. whether or
not a document’s hierarchy is to be utilized. In
addition to generating this XML, the editor also
creates an Access DB file with appropriate tables
and initializes it with information entered by the
system developer.

3.2 The Indexing/ Metadata tagger
Component

This indexing/metadata tagger, is the component
responsible for augmenting input documents with
meta-data using created background knowledge
and with storing the result in a persistent data store.
Using this component a user can select any html
documents he/she wants indexed and tagged. The

user also selects the background knowledge he/she
wants applied in the tagging process. The indexer
starts off by segmenting the document into
sections using the document’s html heading tags.
The indexer then tries to classify each section by
mapping its header to categories or instances
contained in the background knowledge. To carry
out the mapping process pattern matching
techniques are applied. Should a match be made
between a heading and one of the input index
terms, then the category of the section will be
deduced and the field designated for that category
will be filled with an ID pointing to the specific
instance against which a match was made. But if
the matching fails the system can update its
information through a simple “learning module”
that allows the document publisher to update the
background knowledge by classifying the un-
mapped section. Updating background knowledge
can involve the creation of new category instances,
or the creation of synonyms to associate with
existing ones. Initially, some background

- <Knowledge DomainName="Agriculture">
- <Category Name="diseases" Lang="En" IndexChildNode="True">
 <SameAs lang="En">disorders</SameAs>
 <SameAs lang="Ar">امراض</SameAs>
- <Instance Name="stem rust" Lang="En">
 <SameAs lang="Ar">الساق صدا</SameAs>

 </Instance>
 </Category>

 </Knowledge>

ICENCO 2004

 329

knowledge could be acquired from a domain
expert. Alternatively, it can be completely learned
through the indexing process (which also requires
usage by someone who is familiar with the

domain). Figure 2 summarizes the operation of
this component.

3.3 The Search interface

User interface development, usually takes up
significant time in the implementation of any
system. As the goal of developing this framework
was to facilitate and expedite the process of
building an IE system given that the input
documents exhibit the characteristics mentioned in
section 2, automating the process to user interface
development was recognized as an important part
of achieving this goal. To automate this process,
use has been made of the created background
knowledge as it clearly defines the structure
through which search can be carried out. Using
this UI, any user can rapidly retrieve his/her
required information by selecting one or more
values for the index parameters, where the index
parameters are those of pre-defined background
categories. Using pull down menus for each
category, users can be very specific in their query
by entering the precise instance for a given
category in which they are interested. The number
of selected parameters defines whether the query
will be a loose or a specific one. The more specific
the query, the lesser the number of records
returned. After a query is entered, it is converted to
SQL and dispatched to the database in which
indexing information has been stored. The result is
a list of index records that match the entered query.
The output includes the following: the heading title
of the matching section, a sample from the
matching paragraph, a hyperlink to the source
section. On following the hyperlink, only the text
of the selected section will be displayed. However,
depending on the level of a section, extra
information that defines the context of the section
as part of the whole document, might be displayed.

In addition, a hyperlink to the source document will
always be displayed.

4 Background

Due to its importance, a lot of work has been
carried out in the area of information extraction.
Information extraction can be defined as a process
which takes as an input unstructured or semi-
structured texts and produces as output clear
structured data. The produced data maybe used for
any number of purposes such as storage in a
database, direct display to users, or for analysis by
some intermediary process. Looking into ways for
extracting information from unstructured or semi-
structured texts has been investigated long before
the term information extraction came into
existence. For example, many system integration
projects [4] such as TSIMMIS[5] and Lore [6]
have looked into ways for extracting information
from semi-structured texts. These systems have
aimed to provide an integrated view to related data
scattered across various structured and semi-
structured resources and have thus developed
templates and wrappers to extract structured
information from semi-structured texts. The
primary goal of such systems was to unlock the
wealth of information stored within legacy
applications and to integrate those with other
related/similar data available in other resources.
Towards this end, specific languages and
representation models were designed and adopted.
Similarly, much work has been carried out within
the knowledge acquisition community with the aim
of providing automatic support for the extraction of
information from un-structured texts. When
information Extraction (IE) systems appeared, they
did so with the more focused goal of supporting the

Figure 3: The indexer/tagger component in action

Tagged
sections

Existing
knowledge

Sections

Indexer

Background
Knowledge

Segmentor Document

Data
Base

ICENCO 2004

 330

task of extracting information from specific
domains or for particular tasks [7]. Most IE
systems rely on templates, hand generated
annotations, or domain dependant NLP knowledge.
For example, the SoftMealy system [8] and the
system presented in [9], are both IE systems that
attempt to extract information from Web pages
through examples of such pages all of which
exhibit similar structure. These systems work when
structure templates of well defined fields of content
exist. For example, a page containing some
country codes, may have the name of a country
formatted in bold and the code for that country is
formatted in italics [9]. It is possible then, to use
this formatting information to extract country-code

pairs. However, it is often the case that structure or
formatting on its own can not be used to extract
information. One of the solutions purposed to over
come this obstacle, is to tag the information in a
way that would enable its extraction. This is the
approach we’ve aimed to followed when
developing the outlined system. The most closely
related work to the one described in this work is
our previous work in this area [2]. However, there
are many differences and enhancements that have
been brought forth by the developed framework.
The following table highlights the major
differences between the work presented herein and
that presented in [2]:

Previous system Presented System

Can support only one application Can support any number of applications
Application features hardwired into source code No hard wiring of any application features required
Database tables and records fixed Database tables and records generated dynamically
Background knowledge edited manually using any
XML editor

Background knowledge edited using an easy to use
graphical UI that requires no knowledge of XML

User interface hand crafted User interface generated automatically
Developed in Java and ASP Developed in C# and ASP .Net

5 Conclusion

This paper presented an easy to use, and flexible
framework for the development of information
extraction systems for any class of publications that
are issued in large volumes and which cover
similar concepts or issues. By allowing a system
developer to define/his or her main categories and
later dynamically acquire instances of these
categories, the framework allows the IE system to
evolve over time. Also, by hiding all
implementation details from the system developer
and automating the creation of a user interface for
search, the framework allows a user with very
limited computer skills to develop a powerful
information extraction and retrieval system in very
little time.

References
[1] S. El-Beltagy, “Context, Queries, and the

Web,” University of Southampton,
Southampton, UK ECSTR-IAM01-002,
2000.

[2] S. El-Beltagy, A. Rafea, and Y.

Abdelhamid, “Chapter 13: Using
Dynamically Acquired Background
Knowledge For Information Extraction
And Intelligent Search,” in Intelligent
Agents for Data Mining and Information
Retrieval, M. Mohammadian, Ed.
Hershey, PA, USA: Idea Group
Publishing, 2004.

[3] T. Bray, J. Paoli, and C. M. Sperberg-
McQueen, “Extensible Markup Language
(XML) 1.0,” World Wide Web
Consortium
http://www.w3.org/TR/1998/REC-xml-
19980210, 1998.

[4] S. El-Beltagy, “Approaches to System

Integration For Distributed Information
Management,” University of
Southampton, Southampton, UK ECSTR
MM98/7, 1998.

[5] H. Garcia-Molina, J. Hammer, K. Ireland,

Y. Papakonstantinou, J. Ullman, and J.
Widom, “Integrating and Accessing
Heterogeneous Information Sources in
TSIMMIS,” presented at AAAI
Symposium on Information Gathering,
Stanford, California, USA, 1995.

[6] J. McHugh, S. Abiteboul, R. Goldman, D.

Quass, and J. Widom, “Lore: A Database
Management System for Semistructured
Data,” SIGMOD Record, vol. 26, pp. 54-
66, 1997.

[7] M. Vargas-vera, J. Domingue, Y.

Kalfoglou, E. Motta, and S. Buckingham
Shum, “Template-driven Information
Extraction for Populating Ontologies,”
presented at IJCAI 2001 workshop on
Ontologies Learning, Seattle, USA., 2001.

ICENCO 2004

 331

[8] C. Hsu, “Initial results on wrapping
semistructured web pages with finite-state
transducers and contextual rules,”
presented at AAAI-98 Workshop on AI
and Information Integration, Madison, WI,
USA, 1998.

[9] N. Kushmerick, D. S. Weld, and R. B.

Doorenbos, “Wrapper Induction for
Information Extraction,” presented at Intl.
Joint Conference on Artificial Intelligence
(IJCAI), 1997.

ICENCO 2004

 332

