Tuning Statistical Machine Translation
Parameters'

Ahmed Ragab Nabhan and Ahmed Rafea

Abstract— Word alignment is the basis of statistical machine
translation. GIZA++ is a popular tool for producing word alignments
and translation models. It uses a set of parameters that affect the
quality of word alignments and translation models. These parameters
exist to overcome some problems such as overfitting. This paper
addresses the problem of tuning GIZA++ parameter for better
translation quality. The results show that our systematic procedure
for parameter tuning can improve the translation quality.

Keywords— Parameter tuning, smoothing factors, training
scheme, overfitting.

I. INTRODUCTION

IZA++ is the most popular statistical machine translation

toolkit available for public domain [1]. A team of
researchers has developed this toolkit in order to boost the
research in statistical machine translation [2]. GIZA++ is an
extension of the program GIZA that has enhanced features and
implements Hidden Markov Model (HMM).

In this paper, we investigate the key parameters that
GIZA++ uses during training, and the impact on the training
process. Moreover, we apply a systematic procedure for tuning
these parameters on a limited corpus. We conducted
experiments on GIZA++, a major landmark in statistical
machine translation. The results show that our systematic
procedure for tuning GIZA++ can improve the translation
quality.

The article is organized as follows. Section 2 represents a
review of statistical machine translation. In section 3, we state
the motivation for the tuning procedure and discuss the
function of key parameters of GIZA++. In section 4, we
provide a methodology for parameter tuning. In section 5, we
report our experiments and the results.

This work is supported in part by a Collaboration Project on Statistical
Machine Translation, between Information Science Institute, University of
Southern California, and Computer Science Department, American
University in Cairo. The project is funded by US-Egypt Science Board

Ahmed Ragab Nabhan is with Mathematics Department, Faculty of
Science, Fayoum branch, Cairo University, Egypt, (e-mail:
ragab@claes.sci.eg).

Ahmed Rafea is with Computer Science Dept., American University in
Cairo, 113, Sharia Kasr El-Aini, P.O. Box 2511, 11511, Cairo, Egypt. (e-mail:
rafea@aucegypt.edu).

' Proceedings of the International Conference on Computational
Intelligence (ICCI 2004), Turkey, 2004

II. BACKGROUND

Models of statistical machine translation are based on the
notion of word alignment. An alignment between a pair of
sentences is an object that links a word in the target sentence
with a word in the source sentence from which it arose [3].
Figure 1 shows a possible alignment between an Arabic
sentence and an English sentence.

EKofi Anan visits Cairo tomorrow

| o S _phlEl sk ols A

Figurel. An Alignment between two sentences.

Alignments are the basis on which translation models are built.
For two sentences that are translations to each other, there is
more than one possible alignment. Each alignment is given a
probability value that represents how sure we are about the
alignment.

The probability of an alignment a given a source sentence e
and its target translation f can be expressed as follows:

Plale, f)= el

p(fle)

Summing over a for both sides yields:

Pla,fle)
Y Plale.f)=)—""—= @
: = P(fle)
The left hand side sums to 1 and P (f | e) can be factored out,
and finally we get the translation model equation:

P(fle)=> Pla.fle))

Hence, the translation model probability P (f | e) is the sum of
all probabilities of producing a French string f and an
alignment a given an English string e.

In order to estimate the probability P (a, f | e), Brown et al
introduced a series of five statistical models each of which
contributes to the calculation of p (a, | e) [3]. Vogel et al
introduced Hidden Markov Model (HMM) as an alternative to
the standard Model 2 [4].

The Estimate Maximization (EM) algorithm is used to

estimate the parameter values for the models [4], [5]. GIZA++
applies the EM algorithm on a parallel text to build the
translation model in the form of a set of tables.

III. MOTIVATION

GIZA++ has a set of parameters that affect the training
process. These parameters have default values. However, these
values should be adjusted for every new task [6]. The default
parameter values may not be adequate for the training corpus
we have. Some authors reported that a poor performance was
achieved when using the default settings of GIZA++ [7]. These
parameters exist to modify the training scheme, to achieve
efficient training and to overcome some problems such as
overfitting. The motivation beyond this work is to define a
methodology to set these parameters. The following
subsections describe how parameter settings affect overfitting
and the training scheme used to build the translation model.

A. Opverfitting

Overfitting means fitting too much the training data and the
model starts to degrade performance on test data. A model
with overfitting does not predict well. Overfitting occurs
because some of the relationships that appear statistically
significant are actually noise (this happens with rare words in
the corpus). To reduce the effect of overfitting, GIZA++ uses a
number of smoothing parameters for various models. The
purpose of smoothing factors is to smooth sharp probability
values and decrease the gap between high probability values
and low ones. In every training iteration, alignment
probabilities are smoothed using certain formula that contains
a smoothing factor. For example, in HMM training iterations,
the following formula is used for smoothing alignment
probabilities:

Plajlaj—1,1)=al/I+(1-a)Plajlaj—1,1) 4)

Where a; is the source word position and a;.; is position of the
previous source word and I is the length of the source
sentence. Here a is a smoothing factor for HMM. In GIZA++,
this factor is represented by a parameter named emalsmooth.

To turn off smoothing, we can set the smoothing parameter to
zero. There are smoothing parameters for Models 2 through 4.
The smoothing factor for model 3 is set to zero in the default
settings of GIZA++, but adjusting the value of this parameter
may increase the quality of the translation model.

B. Training Scheme

A training scheme specifies the sequence of used models
and the number of training iterations used for each model [8].
For example, we may choose a training scheme that uses five
iterations for Model 1 and three iterations for Model 2, three
iterations for Model 3 and three iterations for Model 4.
Another training scheme may use HMM instead of Model 2.

By default, GIZA++ uses HMM instead of Model 2.
However, HMM has a problem that it does not work well if
there are large jumps due to different word orderings in the
language pairs [7]. In our experiments on Arabic—English
translation system, the performance of Model 2 outperforms
the HMM model. We believe that the number of iterations
should be adjusted also. Convergence of various models may
occur at less number of iterations than the default. We think
that unnecessary extra iterations may lead to the trap of
overfitting. For this reason, the training scheme should be
modified to suit the training data. GIZA++ has a number of
parameters that define the number of training iterations for
each model.

IV. METHODOLOGY

In order to tune GIZA++ for translation quality, we
classified parameters according to certain criteria. Some
parameters are general; in the sense that they are not
modifying the training of a specific model and they exist for
efficient training or they have a global effect on the training
process. We also classified parameters according to whether
they are discrete value or real value parameters. Discrete value
parameters can be tuned at low cost since there are few
discrete values to try out. Real value parameters were
optimized by using the Genetic Algorithm (GA). We further
classified parameters with regard to the models they modify.
GIZA++ uses different smoothing parameters for HMM,
Model 2, 3, and 4. In our experiments, we study two basic
training schemes: one that uses Model 2 and the other one uses
HMM. Each training scheme was evaluated separately.

We tuned parameters in the order of the models they affect;
that is; we tuned general parameters, then HMM (or Model 2)
parameters, then Model 3 and Model 4 parameters. After
tuning, we optimized the number of training operations for
each model.

In this section we present the key parameters of GIZA++.
Next, we present the performance metric we used in the
optimization program. Then, we explain the algorithm of
parameter tuning.

A. GIZA++ Parameters

This subsection introduces the parameters that are covered
by our study.

General parameters

Most of these parameters exist for efficient training. These
parameters mainly determine cutoff and threshold levels.
Examples of general parameters are p0, probsutoff,
probsmooth, and countincreasecutoff

4.2.2 HMM Parameters

The following parameters affect HMM training.

emprobforempty
This parameter represents the probability of a transition to
NULL in the HMM network.

emalsmooth
A smoothing factor for alignments probabilities of HMM.

Model 2-4 parameters
These parameters are mainly smoothing factors for alignment
probabilities and cutoff values.

B. Performance Metrics

There are many ways to measure the goodness of the
translation model that GIZA++ produces. One way is to
calculate the perplexity of the model. GIZA++ produces a file
that summarizes perplexity values at the end of each training
iteration.

Another way of evaluating translation model is measuring
alignment quality by comparing viterbi alignments against
reference alignments [9]. A viterbi alignment is the best
alignment between a pair of sentences (the alignment with the
highest probability value). In this case, a portion of the corpus
has to be manually aligned. The quality of alignments is
measured on the basis of alignment error rate (AER) [9].
These methods are typically used when the goal is to evaluate
and compare various translation models. For more information
about alignments evaluation methodology, see [9].

Since our ultimate goal is to improve translation quality, we
tuned GIZA++ directly using the NIST score of the output
translation of test data.

C. Parameter Tuning

We first tune general parameters. Then, optimize the
parameters in an increasing model order in the training
scheme.

We used GA for tuning real valued parameters rather than
using Al searching algorithms such as Hill Climbing or Greedy
search. The reason is that Genetic Algorithms have the
advantage of not stopping at local optima and can perform
well on noisy data. We think that GA is more suitable for the
limited corpus we have. The proposed tuning methodology is
adequate for small size data, since the cost of tuning GIZA++
to a larger corpus is high. It is suitable to tune GIZA++ using a
portion of the corpus.

We used a population size of 16 members. Each member
represents a valid value for the parameter. The first generation
was initiated randomly. To get the fitness of each member, we
run GIZA++ with the new parameter settings (the member
value and previously tuned parameters). Next, we used the
produced translation model in generating translations of a test

sample. We used a standard baseline composed of GIZA++,
CMU language modeling toolkit [10] and IST ReWrite decoder
[11]. We evaluate the translation using the NIST score [12].
Members with the highest NIST score are selected for
reproduction phase, and new generation is produced using
standard crossover and mutation operators of GA. The
following pseudo code represents the tuning of a parameter.

Procedure Parameter_Tuning:

1. Generate random values of the parameter to initialize the first
generation

2. For each value j in the generation
Run GIZA++ with the parameter value j
Measure translation quality using NIST metric
Next j
3. For i:=1 to Num_of_optimization_runs do
Choose the Best members(values) with the highest score
Produce next generation using GA operators
For each value j in the new generation do
Run GIZA++ with the parameter value j
Measure translation quality using NIST metric
Next j
Next i
4. Report the member with the highest NIST score
End.

V. EXPERIMENTS AND RESULTS

We used a limited corpus of size 2500 sentence pairs in our
experiments. We have two test sets: a tuning test set that is
used during the optimization phase and a final test set to
compare the tuned parameters effect against the default
parameter setting. The domain of the corpus is a news domain.
We performed five experiments each of which has certain
objective.

The objective of the first experiment is to get the score that
the default configuration of GIZA++ yields, in order to
compare its performance against the optimized configuration.
In this experiment, we ran GIZA++ with its default parameter
settings. We use the resulting translation model to translate the
test set data and measured the quality of translation using the
NIST metric. The default parameter values of GIZA++ yields
a score of 3.3948.

The objective of the second experiment is to measure the
translation quality that the optimized parameter setting yields.
We ran the tuning program on the training corpus and the
tuning test set. At the end of the tuning program, we get the
optimized parameter values and ran GIZA++ with these
values. We used the translation model to translate the test set.
The optimized parameter values yield a NIST score of 3.9490.

The objective of the third and fourth experiment is to
compare the effect of parameter tuning against the effect of
using linguistic resources such as dictionaries and lemmatizers.
In both experiments, we augmented the corpus by adding
bilingual dictionary entries for source and target vocabulary
into the training corpus. The trick was proposed by [9]. The
idea is to boost training by adding dictionary entries to the
training corpus. The one-to-one correspondence between
dictionary words enhances the alignments for words that are in
the dictionary and besides it improves the alignments for
neighboring words that are not in the dictionary.

In the third experiment, we ran GIZA++ with the default
parameter settings on the augmented corpus. Then, we
measure the performance on test data. The NIST score for this
experiment was 3.8170.

In the fourth experiment, we ran GIZA++ with the
optimized parameter values we get in experiment two on the
augmented corpus. The NIST score achieved by this
experiment was 4.061.

The objective of the fifth experiment was to test the effect of
parameter tuning in the presence of linguistic resources such as
dictionaries. In this experiment, we ran the tuning program on
the augmented corpus. We take the optimized parameter
values and ran GIZA++ with it. Then we used the translation
model to translate the test set. We measured the translation
quality and the NIST score was 4.2073.

The procedure we used for parameter tuning enhances the
translation quality. The results show that parameter tuning is
needed even with using linguistic resources.

NIST score

4.5
4

3.5 1
3
2.5 A
2 4
1.5 4
1
0.5 1
0 - T T T T
1 2 3 4 5

Figure 2. NIST scores for experiments 1-5

VI. ACKNOWLEDGEMENT

The authors would like to thank Prof. Kevin Knight, Dr. Franz
Och, and Dr. Alexander Fraser for suggesting tuning GIZA++.
We also thank Dr. Harrington and Chris Callison-Burch for
their valuable advices.

VII. REFERENCES

[1] Franz Josef Och, Hermann Ney. (2000b), Improved
Statistical Alignments Models. Proc. of the 38" Annual
Meeting of the Association for Computational Linguistics, pp.
440-447, Hong Kong, China, 2000.

[2] Yaser Al-Onaizan, JanCurin, Micheal Jahr, Kevin Knight,
John Lafferty, Dan Melamed, Franz Josef Och, David Purdy,
Noah A. Smith, David Yarowsky. (1999). Statistical Machine
Translation Final Report. www.clsp.jhu.edu/ws99/projects/mt

[3] Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, Robert L. Mercer. (1993). The Mathematics of
Statistical Machine Translation: Parameter Estimation.

http://www.clsp.jhu.edu/ws99/projects/mt/ibmpaper.ps

[4] Stephan Vogel, Hermann Ney, Christoph Tillmann. (1996).
HMM-Based Word Alignment in Statistical Translation.
http://acl.ldc.upenn.edu/C/C96/C96-2141.pdf.

[5] Kevin Knight, (1999). A Statistical MT Tutorial
Workbook. www.clsp.jhu.edu/ws99/projects/mt/mt-
workbook.htm

[6] Franz Josef Och. (2000). GIZA++ Readme File.
http://wasserstoff.informatik.rwth-
aachen.de/Colleagues/och/software/GIZA++.html

[7] Brian Harrington, (2003), Bagging and Boosting for Word
Alignment. http://harringtonweb.com:8090/~brh/misc/

[8] Franz Josef Och. (2002). Statistical Machine Translation:
From Single-Word Models to Alignment Templates.
http://www-mgi.informatik.rwth-
aachen.de/Kolloquium/pastOberseminar.html

[9] Franz Josef Och, Hermann Ney. (2000a), A Comparison
of Alignment Models for Statistical Machine Translation. In
Proceedings of the 18th International Conference on
Computational Linguistics, Saarbrucken, Germany, July.
http:/citeseer.ist.psu.edu/och00comparison.html

[10] The language modeling toolkit is available at:
ftp://ftp.cs.cmu.edu/project/fgdata/CMU_SLM/CMU_SIM_T
oolkit V1.0 release.tar.Z

[11] The ISI ReWrite decoder is available at:
http://www.isi.edu/naturallanguage/software/decoder/index.ht
ml

[12] The NIST scoring software is available at:
http://www.nist.gov/speech/tests/mt/resources/scoring.htm

